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Abstract: This systematic review aimed to synthesise the existing studies regarding the effects
of ocean acidification (OA) on seaweed aquaculture. Ocean acidification scenarios may increase
the productivity of aquacultured seaweeds, but this depends on species-specific tolerance ranges.
Conversely, seaweed productivity may be reduced, with ensuing economic losses. We specifically
addressed questions on: how aquacultured seaweeds acclimatise with an increase in oceanic CO2;
the effects of OA on photosynthetic rates and nutrient uptake; and the knowledge gaps in mitigation
measures for seaweed farming in OA environments. Articles were searched by using Google Scholar,
followed by Scopus and Web of Science databases, limiting the publications from 2001 to 2022.
Our review revealed that, among all the OA-related studies on macroalgae, only a relatively small
proportion (n < 85) have examined the physiological responses of aquacultured seaweeds. However,
it is generally agreed that these seaweeds cannot acclimatise when critical biological systems are
compromised. The existing knowledge gaps regarding mitigation approaches are unbalanced and
have overly focused on monitoring and cultivation methods. Future work should emphasise effective
and implementable actions against OA while linking the physiological changes of aquacultured
seaweeds with production costs and profits.

Keywords: acclimatisation; macroalgae; physiological response; productivity

1. Introduction

The global seaweed aquaculture industry has contributed to the production of various
downstream and upstream products such as food, biopolymers, cosmetics, nutraceuticals,
bioenergy compounds, and pharmaceuticals [1]. The production of seaweed-based biofuel
as an alternative to fossil fuel [2] has managed to reduce up to 1500 tons CO2 km−2 year−1

when compared to emissions from fossil fuels [3]. Among its other functions, the open
ocean aquaculture of seaweeds provides shoreline protection from storms and waves [3,4].
Seaweed production can also help to reduce ocean eutrophication by absorbing nutri-
ents required for seaweed growth [5]. With a wide distribution of biomass at the global
level, Seaweed Aquaculture Beds (SABs) have the potential to at least act as a temporary
carbon sink to mitigate the immediate effects of climate change [6]. This is due to the
seaweed’s capacity for carbon assimilation and accumulation, and CO2 sequestration in a
relatively short period [4,7]. On the other hand, there is evidence indicating that certain
naturally growing seaweeds have the capacity for carbon sequestration and accumulation,
which can be exported and buried in deep sea regions [8,9]. However, with the elevation
in atmospheric CO2, ocean acidification (OA), as one of the impacts of climate change,
will negatively affect entire marine systems. Although this is a globally pressing matter,
the discourse on the potential ecological or economic impacts of seaweed production is
still limited.
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Seaweeds are used in many different industries after they are harvested. As such,
seaweed cultivation has grown from constituting 45.9% of global mariculture production
in 2004 to 51.3% in 2018. In terms of monetary value, this represents 24.2% of the associated
worldwide profits, worth US$ 28.1 billion [10,11]. The combined production output of
China, Indonesia, Japan, the Republic of Korea, the Philippines, and Malaysia contributed
up to 99.5% of global seaweed mariculture production in 2018 [11–13]. This region led the
world’s seaweed production, with an estimated at 32.4 million tonnes in 2018, compared to
a threefold lower production in 2000 (10.5 million tonnes; [14]). Global seaweed cultivation
then increased to 35.1 million tonnes in 2020 for food and non-food uses [15]. The highest
output in terms of seaweeds by quantity farmed within temperate and tropical regions are:
Eucheuma (also known as gusô, 10.2 million tons in 2015), Japanese kelp (8 million tons),
Gracilaria (sare, 3.9 million tons), Undaria (wakame, 2.3 million tons), Kappaphycus (elkhorn
sea moss, 1.8 million tons), and Porphyra (nori, 1.2 million tons) [1,12,16]. From the tem-
perate region, seaweed production in Norway reached a sales value of EUR 74,000 in 2017,
while studies have predicted that annual sales will rise further to EUR 4 billion by 2050 [17].

Up to 95.6% of all seaweed used by humans is aquacultured to ensure sustainability
in terms of supply and to prevent the overexploitation of the natural population [10]. The
remainder is harvested from naturally growing beds. Brown seaweeds, which comprise
nearly 64% of the farmed production, are harvested for a variety of uses, including human
nutrition and alginate extraction. They are used in various sectors including the medical
industry, textile printing, and paper coating [1,6,18,19]. Other seaweeds such as Chondrus
crispus (Irish moss), Kappaphycus, and Eucheuma are used as gelling material, emulsifiers,
and stabilisers in the pharmaceutical, cosmetic, and food processing industries [1,13,18].

Environmental and biotic stressors can negatively affect the growth and productivity
of macroalgae including aquacultured seaweeds [20]. The sources of these stressors vary
from marine pollution [21,22], disease outbreaks [23–25], epiphytic infestation, algal para-
sites [25], periodic storms [26], and global warming [23]. Rising sea-levels due to global
warming may cause shifts in shoreline morphology, with the subsequent effect of lowered
productivity output through changes in seaweed distributional patterns [20]. Such changes
may have more pronounced effects on naturally growing seaweed beds that would be
harvested for seaweed industries rather than those in floating cultures [20]. The impact of
sea-level changes on floating cultures might not be obvious but changes in pH can still be
considered one of the factors which affect their physiological responses [27] (Table 1).

Knowledge on seaweed physiology, especially concerning how environmental stres-
sors affect the productivity of aquacultured seaweed, is clearly essential to ensure the
success of seaweed farming [1]. Ocean acidification (OA) is an inherent stress factor for
optimal seaweed growth. Ocean acidification, or a reduction in seawater pH, stems from
atmospheric CO2 dissolving in seawater, eventually acidifying the water via the produc-
tion of carbonic acid (H2CO3). This then dissociates into bicarbonate ions (HCO3−) and
protons (H+) [28]. The seawater chemistry is altered when hydrogen ions [H+] increase
and the concentration of carbonate ions (CaCO3) are reduced. This eventually causes a
decrease in oceanic pH and leads to OA conditions [29,30]. According to the Representative
Concentration Pathway (RCP) 6.0, atmospheric CO2 emission will rise to 700 ppm by the
year 2100. Ocean pH is expected to decline by 0.3–0.5 units towards the end of the century,
with an estimated corresponding increase of 100–150% in [H+] [28,31–33]. Thus, carbonate
saturation states are predicted to decline by approximately 45% by 2100 [34–37].

Studies indicate that the metabolic rates and population growths of marine organisms
can endure increases in oceanic CO2 up to their physiological threshold limits because
of their ability to acclimatise within an optimum range of pH values [38,39]. However, a
failure to acclimatise would put those species at risk of mortality [38,40]. In this regard,
although studies regarding the impacts of OA to marine fauna or fisheries aquaculture
have been conducted [38,41,42], knowledge gaps remain surrounding the impacts of OA
on seaweed aquaculture. While these limits are more discernible for calcifying macroalgae,
the tolerance of fleshy macroalgae to OA is still unclear, i.e., whether such environmental
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changes will positively or negatively affect their productivity [43,44]. The physiological
responses of non-calcifying seaweed towards OA are species-specific and inconsistent at
different developmental stages [45], mostly due to different carbon-uptake strategies [43,46].
Furthermore, the interactive effects of OA and other environmental variables such as
temperature complicates any definitive prediction with regard to the exact impacts of OA
effects on fleshy seaweed [45].

In this review, we discuss how the increase in dissolved CO2 with pH variation will
affect the physiological responses of aquacultured seaweeds. In particular, we focused on
directions towards answering the following questions: (1) How do aquacultured seaweeds
acclimatise to an increase in oceanic CO2? (2) What are the effects of OA on the photo-
synthetic rates and nutrient uptakes of aquacultured seaweeds? And: (3) What are the
knowledge gaps in the mitigation strategies for future seaweed aquaculture considering an
ocean-acidified environment?

2. Materials and Methods

This review follows the guidelines provided by Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) and the methodology is presented in a PRISMA
flow scheme (Figure 1) [47].
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2.1. Resource Identification

We broadly approached the review of the literature based on the methodology sug-
gested by Snyder (2019) [48]. We first defined the main purpose and research question
using the following scopes: (1) the specific seaweed species aquacultured in (2) scenarios
of OA conditions. A stepwise search strategy was started by limiting specific keywords,
which were selected based on the two scopes. We trawled Google Scholar, Scopus, and
Web of Science as the main literature databases. This step would cover peer-reviewed
articles that are accessible through the public domain. The keyword searches in these
databases included terms such as “ocean acidification,” “elevation of dissolved CO2,” “sea-
weed aquaculture,” “seaweed productivity,” “photosynthetic rate”, and “physiological
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response.” To achieve a wide coverage in terms of sources for a comprehensive litera-
ture search, we added the keyword input by choosing related terms such as “seaweed
adaptation”, “seaweed acclimatization”, “climate change”, “global warming”, “macroal-
gae”, and “seaweed industry”. We applied additional techniques for advanced-phrase
searches by combining strings developed and strengthened using Boolean operators (i.e.,
“AND”) in Google Scholar and Scopus. The strings “Ocean acidification” AND “Carbon
dioxide” AND “Seaweed” AND “Aquaculture” AND “Physiological responses” returned
702 articles published between 2001 and 2021 (Figure 1). Similarly, when trawling the Web
of Science database, the combination of search strings in the field tag to obtain topic hits
(TS) were: (TS = (Ocean acidification)) AND (TS = (Seaweed)) AND (TS = (Physiological
Response)). This search returned 382 results for papers published between 2012 and 2021.
The timeframe is consistent with the methodology for scoping systematic reviews [48], and
specifically for this study, and was stipulated to ensure that no species were overlooked.
Furthermore, the emphasis on this timeframe for article selection was to minimise the
duplication of subject species and to ensure that the published information provided was
up to date. To avoid the duplication of articles in the literature search, all articles obtained
were imported into a reference manager (Mendeley), as suggested by Li et al. [49].

2.2. Scoping and Screening

Keeping in mind the main scope of the research question (i.e., surrounding aqua-
cultured seaweeds and OA), the search hits were first screened based on the titles and
abstracts of the papers to determine their suitability and relevance. During the article
trawling, a limited number of non-peer reviewed technical papers and database reports
were included in the screening, but only if these articles were highly cited (>100 times),
such as those reporting on the economic and management aspects of seaweed aquacul-
ture [22], as well as selected Food and Agriculture Organization (FAO) [12,21,50,51] and
Intergovernmental Panel on Climate Change reports [36,37,50,52]. Studies of seaweed
species in aquaculture, farmed in both tropical and temperate regions, were shortlisted.
Their relevance was further refined to consolidate the literature that directly related to the
environmental variables of OA. To ensure a sufficiency of sources obtained for this review,
we did not limit our literature search based on studies about the physiological effects of
aquacultured seaweeds due to environmental stressors such as global warming and climate
change. Rather, we also focused on search results related to the potential of aquacultured
seaweeds as a natural mitigation tool for OA. This is in addition to other articles that
highlighted any economic valuation—positive or negative—related to OA on the seaweed
aquaculture industry. As a result, we made certain that our collection included narratives
of the relationship between dissolved CO2 elevation and aquacultured seaweed species,
based primarily on their physiological responses (Table 1), followed by any subsequent
impacts on industry-level aquaculture production. Any studies of aquacultured seaweed
species that dealt with biological, ecological, and biogeochemical aspects that were not
directly related to OA were excluded during the screening. Articles in languages other than
English were also excluded (Figure 1).

2.3. Article Analysis

To provide a more insightful perspective to address question (3), a further analysis
of the identified articles relating to the mitigation of the effects of OA on aquacultured
seaweeds was performed. A first screening was carried out through keyword searches for
terms that allude to mitigation approaches, such as site buffering, site selection, framework,
and monitoring [53,54]. This was carried out to determine the main keywords that would be
analysed, which would then lead to ranking the most discussed mitigation-related strategies
in the literature. We found 131 papers which addressed or discussed mitigation to varying
extents while focusing on mitigation as the main thematic area. The overarching theme
relates to effective global measures involving synergy between policies, regulatory frame-
works, and strategy implementation [14,55,56]. To ensure the results were unbiased [48],
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studies were analysed to determine if the search findings met these specific criteria, in
that: (i) the approaches mentioned had been conducted; (ii) the current state of the strategy
implementation; or (iii) challenges faced or efforts needed to further develop the mitigation
measures. The keywords were searched manually throughout the articles based on occur-
rence frequency in the main text body of the articles. The total number of specific word hits
from each article were recorded accordingly while excluding the same keywords if these ap-
peared in the reference list (see Supplementary Data Table S1). We found a limited number
of research articles with the same keywords (Supplementary Data Table S1). Certain key-
words appeared less frequently in research articles compared to technical reports, although
a similar phrasal context was applied by the authors of the respective articles (Table 2).
Based on the article analysis and keyword search, 35 articles were identified as being the
most relevant. Up to 10 keywords were finally shortlisted, which were either mentioned as
the exact word/phrase in the article or discussed in a similar context. The specific term of
‘management’ was not considered as a keyword but as a root word since the definition could
be further clarified by using the other identified keywords. These keywords and the context
used was summarised to avoid an overlapping analysis (Table 2). The amount of specific
word hits was summed and converted into percentages representing the proportion of each
keyword that appeared out of the overall search (Supplementary Data Table S1) before
ranking the 10 components (based on the shortlisted keywords) of mitigation approaches.
Lastly, the ranked data was visualised graphically through a radar chart (Figure 2). This
chart aims to list the top findings based on the queried article set. Its use allows for a
focus on assessing the overall inherent issues and potential mitigation strategies for OA
impacts on seaweed aquaculture. The visual presentation and holistic approach of the
radar chart summarises the results and highlights the knowledge gaps that would require
further studies.
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After the compilation was performed, we then identified, analysed, and interpreted
any presence of consistent trends in the texts of the shortlisted literature to highlight the
most relevant subtopics for further discussion [48]. We discussed these subtopics based
on the headings of the following sections (see below). These sections are consistent with
the themes of seaweed physiology, environmental stressors, seaweed cultivation, and
aquaculture management, based on expert opinions and interpretations in the studies in
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question, in the context of evaluating the prospects of seaweed production in OA scenarios.
The synthesis of studies published in the past 32 years that linked aquacultured seaweeds
with OA conditions was then conceptualised (Figure 3) and tabulated (Table 1).
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Table 1. The impact of OA on seaweed species in temperate and tropical regions. The CCMs of types
1 to 3 are described in Section 3.

Region Species CCM Type Variable Main Findings References

Temperate Alaria esculenta 3 Photosynthetic activity,
biochemical
composition (lipid
content), enzymatic
activities (eCA)

Increase in growth, lipid content, and
photosynthetic efficiency (Fv/Fm) under
elevated CO2, with lower photon requirements;
enzymes are not sensitive to changes in CO2.

[57–60]

Saccharina
japonica

1, 2, 3 Iodine accumulation,
photosynthetic
efficiency,
photosynthetic oxygen,
germination

Tissue growth enhanced under lower pH with
a simultaneous increase in iodine accumulation;
inhibition of photosynthetic rate is relatively
higher under lower pH, and the photosynthetic
efficiency (Fv/Fm) is not much affected;
reduction in meiospore germination and
reproduction rate.

[10,51,61–66]

Saccharina
latissima

2 and 3 Photosynthetic
acclimation, pigment
composition

Photosynthesis and growth rates are negatively
affected; CCMs are deactivated; optimal
temperature for growth is 5–15 ◦C; no effects on
biochemical composition.

[17,34,57,67–70]

Undaria
pinnatifida

2 and 3 Gametophyte
development

No significant impact on meiospore
germination but increase in germling growth
rates and gametophyte sizes when seawater pH
is reduced from 8.40 to 7.20; rates of net
photosynthesis (NPS) of gametophytes and
juvenile sporophytes start to decrease when pH
drops from 7.20 to 5.5.

[1,10,12,65,71–73]

Pyropia sp. 1 and 2 Photosynthetic rate,
growth rate

Increase in growth and nutrient uptake; growth
of thalli enhanced by 30% at pH of 6 and 7;
photosynthetic rate increases when pH drops
from 7 to 6, but photosynthesis and respiration
rate decrease at pH of 4 and 5; tissue death
when low pH conditions are prolonged.

[1,4,74–80]
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Table 1. Cont.

Region Species CCM Type Variable Main Findings References

Gracilaria sp. 2 and 3 Growth rate,
photosynthesis,
photosynthetic
inorganic carbon
uptake, iodine
accumulation

Growth rate increases through carbon uptake;
enhanced carbon/nitrogen ration;
photosynthetic pigments remain unchanged;
increase in photosynthetic acclimation; increase
in iodine accumulation under elevated
dissolved CO2.

[1,4,12,16,61,81–85]

Chondrus crispus 2 and 3 Photosynthetic rate Able to acclimatise when oceanic pH decreases,
and photosynthetic rate is maintained; carbon
fixation rate is highest at pH of 7.

[1,18,29,86–88]

Sargassum
fusiforme

1, 2, 3 Growth rate, nitrogen
assimilation,
photorespiration

Photosynthetic rate is maintained under
increase in CO2 since the species is able to
tolerate pH declines with enhanced relative
growths; biomass increase was associated with
nitrogen assimilation within tissues.

[12,27,39,89,90]

Macrocystis
pyrifera

1, 2, 3 Germination rate,
gametophyte
development, iodine
accumulation, growth
rate, photosynthetic rate

Meiospore germination, gametophyte
development, and spore production and
recruitment negatively affected in acidified
conditions; iodine accumulation slightly
increases, and tissue growth exhibited under
elevated pCO2; no changes in growth and
photosynthetic rate but increased uptake
of CO2.

[18,61,90–94]

Sargassum vulgare 1, 2, 3 Alginate content,
polysaccharides content,
bioactivity (antibacterial
activity, antifungal
activity), carbohydrate
availability, antioxidant
capacity, enzymatic
activities,
photosynthetic rates

This species is able to acclimatise to low pH
conditions of 6–6.7; secondary metabolites are
lower; bioactive properties grow naturally in
acidified conditions; alginate content higher in
acidified conditions; increase in dissolved CO2
results in increased bioactivity, antioxidant
capacity, enzyme activity, photosynthetic rate,
and polysaccharide content.

[95–99]

Porphyra sp. 2 and 3 Growth rate Increase in growth. [16,94]

Ulva rigida 2 and 3 Growth rate and
assimilation (carbon
and nitrogen),
HCO3-utilisation,
photosynthetic rate,
dark respiration rate,
soluble protein content,
inactivation of CCMs,
nitrogen metabolism

Increase in growth rate and nutrient
assimilation especially for carbon and nitrogen
under acidified conditions; photosynthetic rate,
dark respiration, and soluble protein reduced
with increased dissolved CO2; photosynthesis
process is negatively affected due to the
inactivation of CCMs.

[99–101]

Fucus vesiculosus 2 and 3 Growth, nutritional
quality, carbon
and nitrogen
content, fertility

Reduction in growth and C:N ratio; no changes
in other elemental compositions; increase in
pCO2 alter temporal development of fertility,
according to the changes in
temperature seasonally.

[45,101–104]

Tropical Gracilaria sp. 2 and 3 Growth rate,
photosynthesis,
gephotosynthetic
inorganic carbon
uptake, iodine
accumulation

Growth rate increases through carbon uptake;
no significant effect on maximum relative
electron transport rates (rETRmax); increase in
iodine accumulation under elevated
dissolved CO2.

[1,4,12,82,105–107]

Undaria
pinnatifida

2 and 3 Photosynthesis,
gametophyte
development, germling
growth rate

No significant impact on meiospore
germination; increase in germling growth rate,
and gametophyte size when seawater pH is
reduced from 8.40 to 7.20; rates of net
photosynthesis of gametophytes and juvenile
sporophytes decrease when pH drops from 7.20
to 5.5.

[12,72,73,108]

Kappaphycus
alvarezii

1 and 3 Daily growth rate
(DGR), photosynthesis

DGR decreases at pH 6 due to the low
availability of photosynthetic carbon sources in
low pH conditions; decrease in efficiency of
CO2 accumulation.

[1,12,13,18,93,109]

Pyropia sp. 1 and 2 Net photosynthesis,
growth rate, respiration

Increased growth and nutrient uptake; growth
of thalli enhanced by 30% at pH of 6 and 7;
photosynthetic rate increases when pH drops
from 7 to 6; photosynthesis and respiration rate
decrease at pH of 4 and 5; thalli death in
prolonged low pH conditions.

[4,74–76,79,80,110–113]

Eucheuma sp. 2 and 3 Photosynthetic rate Increase in photosynthetic rate when oceanic
pH decreases below 8.

[1,18,94]
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Table 1. Cont.

Region Species CCM Type Variable Main Findings References

Caulerpa
lentillifera

3 Carbon absorption rate Increase in growth through carbon uptake. [111,114,115]

Hypnea spp. 3 Growth rate, maximum
quantum yield,
chlorophyll a content,
antioxidant activity

Decrease in growth rate, maximum quantum
yield (fv/fm), and chlorophyll a content;
increase in antioxidant activity.

[116–122]

Gelidium spp. 3 Growth rate,
carbohydrate content

Decrease in growth rate; no significant changes
in carbohydrate content; reduction in
species richness.

[87,123–127]

Table 2. Definition of the terms used in the radar chart, with the selection of words based on the
applied contextual meaning to avoid duplication in occurrence counts and their use being overlooked
during the keyword search.

Keyword Definition in Context References

Policy The related aims to: mitigate CO2 emission to the atmosphere; [8,128]
inform decision-making at local, regional, and national levels in order to integrate into
global goals;

[7,14,16,56,129]

manage areas that are used for seaweed aquaculture.

Framework The provisions for: policy and integrated planning that requires more experimental and
innovative practices at different authoritative levels (local, state, or federal jurisdictions);

[16,56]

legal frameworks, which refer to guidelines in the setting up and management of
seaweed aquaculture;

[8,13,54]

management of fisheries resources and aquaculture governance; conservation and the
sustainable use of aquatic living resources.

[14,56,130]

Regulation The provisions to: adequately manage the resources of coastal aquaculture, including
seaweed cultivation;

[13,128]

coupled with an appropriate monitoring and law enforcement system while banning
unsustainable practices.

[14,16]

Monitoring Efforts to: measure the local environmental and spatial variability in carbonate chemistry
within coastal areas or aquaculture farms;

[50,53,54,131]

track long-term environmental changes through a combination of efforts by various
stakeholders globally;

[17,34,128]

incorporating a Fisheries and Resources Monitoring System (FIRMS) in seaweed aquaculture;
improve transparency in fisheries and aquaculture stock and production records.

[14,56,132]

Evaluation The appraisal of: the application and performance of aquaculture systems that involve several
authorities to ensure ecosystem sustainability;

[4,14,54,131,133]

the interaction with existing resources that are characteristic of coastal areas and suitable for
different types of farming.

[13,17,128]

Assessment The inclusion of: managerial tools for quantifying the risks and benefits associated with
seaweed aquaculture;

[8,54]

diagnosing the current status of stocks in fisheries and aquaculture; [14,34,133]
Environmental Impact Assessment; [25,128]

Site selection Related efforts to: choose optimal sites for aquaculture activities within each environment; [4,53,133–135]
match seaweed species with specific cultivation techniques; [13]
include licensing approvals from authorities. [50]

IMTA A method of aquaculture that: consist of species components from different trophic levels and
serving different ecosystem functions;

[13,53,130,133]

increases the biomass production and sustainability of aquaculture; [17,54,130,132]
mitigates environmental problems caused by specific forms of fed aquaculture [131]

Site buffering Related efforts to: buffer seawater pH and carbonate chemistry; [53]
quantify the ability of seaweeds to buffer the impacts of climate change including OA. [3,8,135]

Selective breeding and
genetic improvement

A method of aquaculture that is used: to cultivate seaweeds for specific traits to enhance
production and resilience under conditions of projected climate change;

[4,13,14,53,54]

to obtain a culture stock that has increased tolerance against the impacts of OA through
strain development.

[34,136]

3. Ocean Acidification and Seaweeds’ Photosynthetic Rates and Nutrient Uptakes

When seaweeds with different photosynthetic capacities are exposed to increasing
oceanic CO2 concentrations, biochemical and molecular changes cause varying carbon up-
take capacities [39]. This has various implications in terms of alterations in the physiological
responses of aquacultured seaweeds (Table 1). Seaweeds that solely obtain CO2 through
diffusive uptake are usually known as non-carbon concentrating mechanism (non-CCM)
species [137]. These species will exhibit increases in growth and photosynthetic rates under
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elevated CO2, with an eventual increase in species abundance instead of diversity [138].
Despite the availability of more dissolved CO2 as a result of OA, and the supply of CO2 as
the primary C source is no longer limited, it is worth noting that CO2 diffuses into water at
a slower rate than it does in air [27,139]. Most of the fleshy macroalgae in aquaculture are
carbon concentrating mechanism (CCM) species. These seaweeds require an adjustment in
terms of their kinetic mechanisms to utilise inorganic carbon such as bicarbonate ions to
facilitate CO2 delivery to the ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)
enzyme for carbon fixation [4]. Nonetheless, different CCM species will respond distinc-
tively towards OA in order to acclimatise and survive because not all have the same affinity
towards DIC [46,140].

According to Giordano et al. (2005) [141], there are three types of CCMs: (1) CCMs
based on C4 mechanisms and crassulacean acid metabolism (CAM); (2) CCMs based on
the active transport of DIC; and (3) CCMs based on changes in CO2 concentration in
compartments adjacent to RubisCO, where HCO3− is mostly found in the chloroplast
stroma and is converted to CO2 when it crosses to the thylakoid. Macrocystis pyrifera, for
example, is a type of fleshy macroalgae that uses both CO2 and HCO3− for photosynthesis
and growth [91]. Those species with a high affinity for DIC will either exhibit increases in
their metabolic processes or will not be obviously affected [140]. In this regard, HCO3−

is dehydrated extracellularly by external carbonic anhydrase (CAext), then converted to
CO2 by internal carbonic anhydrase (CAint) to be used by CCM seaweeds, or, alternatively,
it is accumulated within an internal inorganic carbon pool [39,91]. This mechanism has
been described in Chondrus crispus and Sargassum fusiforme [39,86,96] as well as in other
aquacultured seaweeds that use HCO3−, including Alaria esculenta, S. fusiforme, M. pyrifera,
C. crispus, and Saccharina latissima [91,142]. In contrast, CCM seaweeds with a low affinity
for DIC will benefit under elevated CO2 [137,140].

Aquacultured seaweeds would therefore acclimatise to elevated CO2 levels through
various carbon uptake strategies [3,27], which can be determined by the δ13C value of
seaweed tissues. CCM seaweeds typically have δ13C values ranging from −30‰ to −10‰.
This range, however, varies with changes in pCO2 in the marine environment [137], indicat-
ing that species attempt to acclimatise despite the fluctuating pCO2 [34,96]. Species such
as S. fusiforme can tolerate pH drops while maintaining appreciable photosynthetic rates.
Subjected to increasing CO2 levels, this species responds positively based on enhanced rel-
ative growth rates and increased biomass associated with significant nitrogen assimilation
within its tissues [39,89]. Other studies have shown that Kappaphycus alvarezii and Sargassum
vulgare were able to acclimatise in low-pH conditions (pH 6 and pH 6.7, respectively) [74],
while M. pyrifera exhibited no changes in growth and photosynthetic rates under elevated
oceanic CO2 because it has the ability to utilise both CO2 and HCO3− [91]. Other economi-
cally important seaweeds such as Hypnea pseudomusciformis, Porphyra yezoensis, Gracilaria
chilensis, G. changii, and G. lemaneiformis exhibited increased growth rates with an increase
in dissolved CO2 concentrations [4,46,81,106,117,143,144]. Hence, the growth of seaweeds
partly depends on their HCO3− uptake and utilisation capacity [96], and the impact on their
photosynthetic rate is generally species-specific [27]. Certain seaweeds have the potential to
mitigate OA through carbon sequestration [3,135,145] due to their respective physiological
changes under pH variation, thus leading to high biomass production [7], as was clearly
observed for fast-growing fleshy macroalgae (Table 1).

In contrast, other aquacultured seaweeds, notably red seaweeds such as Gracilaria
tenuistipitata, Porphyra leucosticta, and P. linearis, experience decreased growth rates in high
pCO2 concentrations due to a reduction in photosynthetic capacity, invariably leading to
a decline in photosynthetic efficiency [46,82,146–148]. Decreased growth rates are also
possible because CCM seaweeds are sensitive to increased H+ concentrations during OA,
which can disrupt cellular homeostasis [137]. Such effects have been studied in the case of
the changes in M. pyrifera meiospore germination (Table 1) under extreme OA at a mean
pH of 7.60 [92]. However, questions arise as to the precise timeframe during which the
seaweed’s physiology remains unchanged or in a positively balanced state despite the
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increase in pCO2. In a simulated situation of acidified conditions, the photosynthetic rate
of P. linearis increased but only lasted for approximately 16 h [147]. The low-pH level in an
experimental environment resulted in elevated respiration rates and the consumption of
accumulated photosynthate, eventually causing a decline in growth rates, especially at a
pH of 6.0 [147]. A similar situation was reported for Porphyra haitanensis, whereby its thallus
growth increased significantly by 30% when the pH decreased by 1–2 units. Lowering
pH levels further results in a significant drop in growth rates until the eventual death of
its thalli [74]. Additionally, low-pH growth conditions can severely impact alginate and
carrageenan production [149,150]. These observations imply that elevations in dissolved
CO2 levels can potentially reduce seaweed productivity.

Not all seaweeds undergo the same consequence in terms of changes in growth rate.
This is because the rate of nutrient uptake influences the growth rate of seaweeds under
elevated CO2 conditions. An increase in pCO2 increased Ulva rigida’s nitrogen assimilation
rate, which in turn increased its growth rate [82,100,151]. Sargassum fusiforme has been
shown to have higher NO3− uptake rates when exposed to elevated CO2 levels [39,152]. In
similar experimental conditions, there were no changes in the uptake of inorganic nitrogen
by M. pyrifera despite an increase in CO2 [152]. Other factors that influence the growth
rate of seaweeds under elevated CO2 include limitations in nutrient availability in the
water column due to the frequent increase in species biomass locally or the stratification
that is induced by ocean warming [153]. This occurs through the alteration of ocean
carbonate chemistry, which is mainly attributed to the increase in ocean temperature with
the increase in CO2 concentrations [4,154,155]. Stratification hinders nutrient supply to
primary producers from deep to surface waters because of the formation of layers that
prevent normal water mixing such as during upwelling processes. Such effects have been
reported in the Southern Baltic Sea and the Basque coast of Spain, where Fucus vesiculosus
and Gelidium corneum experienced lowered growth rates due to nutrient limitations caused
directly by ocean stratification [4,156–158], while G. corneum in the Cantabrian Sea became
less productive due to a reduction in nitrate availability [157].

4. Potential Mitigation Strategies for Ocean Acidification Impacts on
Seaweed Aquaculture

The high production volume of aquacultured seaweed demonstrates industry de-
mands and a significant contribution in terms of farming revenue [159]. The difference
between the cost (capital, maintenance, material inputs, and labour) and the income gen-
erated, on the other hand, determines the economic sustainability and cost-effectiveness
of seaweed cultivation [3,22]. Indeed, if OA has an impact on seaweed production, the
market’s value chain in terms of supply and demand will be disrupted, resulting in price
volatility and declining profit margins in various processing industries and global mar-
ketplaces [22,160]. Therefore, a clear motivation to mitigate the effect of OA on seaweed
aquaculture revolves around maintaining profitable production output in the circumstances
of an ever-changing global climate. Mitigation strategies must be expanded at the regional
level [53] and should serve as fundamental frameworks for strengthening policy imple-
mentation and to ensure the respective standards for proper seaweed cultivation practice
and effective management are delivered [54]. Unfortunately, an overarching management
plan that wholly addresses OA, specifically in seaweed aquaculture, is still lacking in many
countries [54].

The governance management for seaweed aquaculture—in the flow of policy, frame-
work, regulation, monitoring, followed by assessment and evaluation [14]—ideally com-
bines multiple aspects of mitigation strategies as the essential elements to counteract
OA. These key elements would further incorporate the managerial tools for long term
implementation, which include site selection, advanced aquaculture techniques, such as
integrated multi-trophic aquaculture (IMTA—see below), site buffering, selective breeding,
and genetic improvement (Figure 2). These same factors have been emphasised in multiple
articles, which provide indirect leads to a more sustainable seaweed aquaculture. Based
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on the broad framework established, regulations should be developed in accordance with
mutual goals such as the Sustainable Development Goals (SDGs), which may include
technical guidelines to ensure the long-term growth of the seaweed aquaculture indus-
try [14,55]. It is also recommended to identify and, if necessary, establish authoritative
bodies with a functional role at the national level. Their responsibilities should include
ensuring the sustainability of aquaculture practice while adhering to existing regulatory
policies [129,161]. Based on this approach, carbon tax implementation can be expanded
globally to manage CO2 release in order to reduce greenhouse gas emissions despite a
rapidly growing and developing economy [162–164].

5. Multi-Disciplinary Approach to Mitigate the Ocean Acidification Impacts on
Seaweed Aquaculture

To counteract the consequences caused by OA, the mitigation steps should ideally be
approached in concert. The identification of optimal farming techniques may be a viable
first step. Different seaweed aquaculture systems, such as a recirculating land-based system,
must be further developed, either through open-water systems or tank cultivation [1,160].
The farming method of choice is primarily determined by the farm’s scalable capacity
and how to maximise productivity based on local environmental factors [20]. In an open-
water cultivation, proper site selection and spatial planning are the key elements to ensure
the effectiveness of seaweed aquaculture under elevated CO2 scenarios [3,6,13,136]. In
Malaysia, farmers rely on the monoline method as the main farming technique, which has
increased production from 60 thousand tons in 2006 to 261 thousand tons since 2015 [12].
Open-water cultivation may be replaced by land-based seaweed farming. Although the
former is not new [165], more research is required to improve cultivation techniques and
ensure nutrient uptake efficiency in vitro. Certain seaweeds grew well in the presence
of elevated CO2, but as density increased, nutrient availability became limited due to
competition for uptake [132]. Therefore, certain land-based seaweed farming approaches
have been implemented through the concept of integrated aquaculture, notably Integrated
Multi-trophic Aquaculture (IMTA), to ensure the supply of nutrients required to support
sustainability regarding seaweed growth [16]. In general, IMTA, which consists of comple-
mentary ecosystems functions within a single aquaculture system, is known as one of the
mitigation strategies for marine aquaculture during OA [53,166]. With the co-cultivation of
seaweed as a key component, the whole system would lessen the impact of OA through
CO2 buffering while maintaining the possibility of further management applications, such
as seaweed-based bioremediation [16,53,159,167]. This would ameliorate the effects of
increased CO2 while also creating a favourable environment for seaweed cultivation.

Sustainable seaweed aquaculture stresses proper monitoring regardless of the pro-
duction technology. This can be improved with a long-term monitoring programme using
networks such as the Global Ocean Acidification Observing Network (GOA-ON) [168] or
the more regional Southeast Asian Global Ocean Observing System (SEAGOOS) [169]. The
variation of water parameters within each culture should be monitored and controlled to
provide optimal conditions for seaweed cultivation [13,134,170,171] using devices that are
regularly calibrated to ensure data accuracy [52]. Choosing cultivars with specific traits
that exhibit higher growth capacity, thermal tolerance, and disease resistance brings us one
step closer to having a comprehensive mitigation strategy [134,136,172,173]. This strategy
can be further leveraged through genetic improvement using hybridisation technology,
which is a means of modifying and developing existing cultivar strains for higher biomass
yields without limiting the choice of aquacultured seaweed species [134]. Concerning
the seaweeds selected for a cultivation system, species with high DIC affinity could be
prioritised to optimise CO2 or HCO3− uptake capacity [106,152]. Gracilaria may be one
of the choice species to extract organic and inorganic components since it is efficient at
assimilating ammonia, phosphate, and DIC [106,151].

Risk assessments based on an adaptive framework should be prioritised as part of
the steps to address potential problems, such as threats from climate change [8,174]. The
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Ecosystem Risk Assessment (ERA) is one viable approach for identifying hazards from
adverse events and their consequences for a specific organism. The quantification of pre-
impact levels and qualitative studies should be considered based on the projected effects of
OA, followed by the design and evaluation of precautionary methods [175]. Indeed, more
efforts to conduct risk assessments for marine plants classified by the International Union
for the Conservation of Nature (IUCN), particularly macroalgae, are required in all coastal
regions [56]. This is necessary to reduce the selection of farmed seaweed species that may
exhibit negative growth rates in stressful and disturbed marine environments [56].

Finally, the findings from a broad-based approach will provide information on how to
consolidate existing policies while ensuring the sustainability of seaweed aquaculture [175].
While anticipating the ripple effects of declining seaweed production, which may result in
economic losses, it is critical to develop a systematic and practical plan to overcome future
challenges in seaweed aquaculture. A conceptual framework was outlined (Figure 3), which
includes various aspects of seaweed aquaculture geared toward sustaining productivity
despite the constraints in OA scenarios.

6. Conclusions

Seaweed aquaculture has the potential to reduce CO2 emissions while also supporting
ecosystem services through CO2 sequestration; however, elevated CO2 and OA are likely
to have an impact on seaweed production. To mitigate the negative effects of severe OA
on aquacultured seaweed, a comprehensive mitigation plan with adequate monitoring is
required. Seaweeds, as the largest group of aquacultured species with high productivity by
volume, may be affected by regional and global changes in biomass yield. However, the
responses of aquacultured seaweeds to OA vary by species, as evidenced by changes in
physiological mechanisms such as the photosynthetic rate and nutrient uptake, which affect
seaweed productivity. At the same time, the acclimatisation of aquacultured seaweeds to
elevated oceanic CO2 depends on their carbon uptake strategies, while kinetic mechanism
adjustments would further determine changes in the photosynthetic rate in each species.
If OA has a negative effect on seaweed cultivation, the extent of its impact on seaweed
production must be quantified, and because industry profitability is determined by seaweed
price and operating expenses, monetary loss can be calculated precisely. More studies are
needed to quantify the effects caused by OA on the economy. This includes establishing
a link between physiological changes in seaweed and industrial productivity in terms
of production costs and potential revenues. As a result, multiple mitigation strategies
approached from various angles should be implemented to mitigate the effects of OA
on aquacultured seaweed. The emphasis should be on addressing existing knowledge
gaps in mitigation approaches, which are still imbalanced and overly skewed toward
monitoring- and IMTA-centric efforts. This entails multidisciplinary approaches developed
through synergy among various stakeholders—from researchers to aquaculture farmers
and policymakers—for a more holistic seaweed aquaculture system that incorporates key
mitigation tools. In short, the combined effects of OA on biological and economic factors
necessitate the implementation of a more collaborative mitigation strategy that incorporates
the various multidisciplinary aspects of OA and seaweed production.
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