Tsunami Damping due to Bottom Friction Considering Flow Regime Transition and Depth-Limitation in a Boundary Layer
Abstract
:1. Introduction
2. Methodology
2.1. Wave Flux Method
2.2. Friction Factor
2.3. Depth Limitation
3. Results and Discussion
3.1. Tsunami Shoaling over Uniform Water Depth
3.2. Tsunami Shoaling over Uniform Slope Bathymetry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jonsson, I.G. Wave boundary layers and friction factors. In Proceedings of the 10th International Conference on Coastal Engineering, Tokyo, Japan, 5–8 September 1966; ASCE: New York, NY, USA, 1966; pp. 127–148. [Google Scholar]
- Jonsson, I.G.; Carlsen, N.A. Experimental and theoretical investigation in an oscillatory turbulent boundary layer. J. Hydraul. Res. 1976, 14, 45–60. [Google Scholar] [CrossRef]
- Sleath, J.F.L. Turbulent oscillatory flow over rough beds. J. Fluid Mech. 1987, 82, 369–409. [Google Scholar] [CrossRef]
- Jensen, B.L.; Sumer, B.M.; Fredsøe, J. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 1989, 206, 265–297. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, T.; Davies, A.G.; Ribberink, J.S. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 2011, 684, 251–283. [Google Scholar]
- Yuan, J.; Madsen, O.S. Experimental and theoretical study of wave-current turbulent boundary layers. J. Fluid Mech. 2015, 765, 480–523. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D. An experimental investigation of acceleration-skewed oscillatory flow over vortex ripples. J. Geophys. Res. Oceans 2019, 124, 9620–9643. [Google Scholar] [CrossRef]
- Yalin, M.S.; Russell, R.C.H. Shear stresses due to long waves. J. Hydraul. Res. 1966, 4, 55–98. [Google Scholar] [CrossRef]
- Knight, D.W.; Ridgway, M.A. Velocity distributions in unsteady open channel flow with different boundary roughness. In Proceedings of the 17th of IAHR Congress, Baden, Germany, 15–19 August 1977; pp. 437–444. [Google Scholar]
- Chen, D.; Chen, C.; Tang, F.E.; Stansby, P.; Li, M. Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds. Exp. Fluids 2007, 42, 719–736. [Google Scholar] [CrossRef]
- Larsen, B.E.; Arbøll, L.K.; Kristoffersen, S.F.; Carstensen, S.; Fuhrman, D.R. Experimental study of tsunami-induced scour around a monopile foundation. Coast. Eng. 2018, 138, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Sana, A.; Kawamura, I.; Yamaji, H. Depth-limited oscillatory boundary layers on a rough bottom. Coast. Eng. J. 1999, 41, 85–105. [Google Scholar] [CrossRef]
- Celik, I.; Rodi, W. Calculation of wave-induced turbulent flows in estuaries. Ocean Eng. 1985, 12, 531–542. [Google Scholar] [CrossRef]
- Li, M.; Sanford, L.; Chao, S.Y. Effects of time dependence in unstratified tidal boundary layers: Results from large eddy simulations. Estuar. Coast. Shelf Sci. 2005, 62, 193–204. [Google Scholar] [CrossRef]
- Williams, I.A.; Fuhrman, D.R. Numerical simulation of tsunami-scale wave boundary layers. Coast. Eng. 2016, 110, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Kaptein, S.J.; Duran-Matute, M.; Roman, F.; Armenio, V.; Clercx, H.J.H. Effect of the water depth on oscillatory flows over a flat plate: From the intermittent towards the fully turbulent regime. Environ. Fluid Mech. 2019, 19, 1167–1184. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Tinh, N.X.; Yu, X.; Liu, G. Development of depth-limited wave boundary layers over a smooth bottom. J. Mar. Sci. Eng. 2021, 9, 27. [Google Scholar] [CrossRef]
- Tinh, N.X.; Tanaka, H. Study on boundary layer development and bottom shear stress beneath a tsunami. Coast. Eng. J. 2019, 61, 574–589. [Google Scholar] [CrossRef]
- Tanaka, H.; Tinh, N.X. Numerical study on sea bottom boundary layer and bed shear stress under tsunami. In Proceedings of the 29th International Ocean and Polar Engineering Conference (ISOPE), Honolulu, HI, USA, 16–21 June 2019; pp. 3189–3195. [Google Scholar]
- Tanaka, H.; Tinh, N.X.; Sana, A. Transitional behavior of flow regime in shoaling tsunami boundary layers. J. Mar. Sci. Eng. 2020, 8, 700. [Google Scholar] [CrossRef]
- Tanaka, H.; Shuto, N. Friction laws and flow regimes under wave and current motion. J. Hydraul. Res. 1984, 22, 245–261. [Google Scholar] [CrossRef]
- Tanaka, H.; Sana, A. Numerical Study on Transition to Turbulence in a Wave Boundary Layer. In Sediment Transport Mechanisms in Coastal Environments and Rivers; World Scientific: Singapore, 1994; pp. 14–25. [Google Scholar]
- Larsen, B.E.; Fuhrman, D.R. Full-scale CFD simulation of tsunamis. Part 2: Boundary layers and bed shear stresses. Coast. Eng. 2019, 151, 42–57. [Google Scholar] [CrossRef]
- Tanaka, H.; Thu, A. Full-range equation of friction coefficient and phase difference in a wave-current boundary layer. Coast. Eng. 1994, 22, 237–254. [Google Scholar] [CrossRef]
- Tanaka, H. An explicit expression of friction coefficient for a wave-current coexistent motion. Coast. Eng. Jpn. 1992, 35, 83–91. [Google Scholar] [CrossRef]
- Liu, P.L.-F.; Orfila, A. Viscous effects on transient long wave propagation. J. Fluid Mech. 2004, 520, 83–92. [Google Scholar] [CrossRef]
- Liu, P.L.-F. Turbulent boundary layer effects on transient wave propagation in shallow water. Proc. R. Soc. Lond. 2016, 462, 3481–3491. [Google Scholar] [CrossRef]
- Orfila, A.; Simarro, G.; Liu, P.L.-F. Bottom frictional effects on periodic long wave propagation. Coast. Eng. 2007, 54, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Tinh, N.X.; Tanaka, H.; Yu, X.; Liu, G. Numerical implementation of wave friction factor into the 1D tsunami shallow water equation model. Coast. Eng. J. 2021, 63, 174–186. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1990; 368p. [Google Scholar]
- Svendsen, I.A. Introduction to Nearshore Hydrodynamics; World Scientific: Singapore, 2005; 744p. [Google Scholar]
- Sleath, J.F.A. Sea Bed Mechanics; John Wiley and Sons Inc.: New York, NY, USA, 1984; 335p. [Google Scholar]
- Bretschneider, C.L.; Reid, R.O. Modification of Wave-Height Due to Bottom Friction, Percolation, and Refraction; Technical Memorandum 45; US Army Beach Erosion Board: Washington, DC, USA, 1954; pp. 1–36.
- Humbyrd, C.J. Turbulent Combined Wave-Current Boundary Layer Model for Application in Coastal Waters. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012; 157p. [Google Scholar]
- Sumer, M.B.; Fuhrman, D.R. Turbulence in Coastal and Civil Engineering; World Scientific: Singapore, 2020; 758p. [Google Scholar]
- Tanaka, H.; Tinh, N.X.; Sana, A. Improvement of the full-range equation for wave boundary layer thickness. J. Mar. Sci. Eng. 2020, 8, 573. [Google Scholar] [CrossRef]
- Sana, A.; Tanaka, H. Full-range equation for wave boundary layer thickness. Coast. Eng. 2007, 54, 639–642, Corrigendum in Coast. Eng. 2019, 152, 103516. [Google Scholar] [CrossRef]
- Lacy, J.R.; Rubin, D.M.; Buscombe, D. Currents, drag, and sediment transport induced by a tsunami. J. Geophys. Res. 2012, 117, C9. [Google Scholar] [CrossRef]
- Imamura, F. Review of Tsunami Simulation with a Finite Difference Method. In Long-Wave Runup Models; Yeh, H., Liu, P., Synolakis, C., Eds.; World Scientific: Singapore, 1996; pp. 25–42. [Google Scholar]
- Liu, P.L.F.; Woo, S.B.; Cho, Y.S. Computer Programs for Tsunami Propagation and Inundation; Technical Report; Cornell University: Ithaca, NY, USA, 1998. [Google Scholar]
Method | Used Friction Factor |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | If δ/h < 1 (non-depth-limited), f = fw for rough-turbulent regime by Tanaka [25] |
7 | If δ/h < 1 (non-depth-limited), f = fw from the full-range equation by Tanaka and Thu [24] |
Bottom slope | 1/100 |
Tsunami source depth | h0 = 4000 m |
Source tsunami height | H0 = 1 m |
Wave period | T = 15 min |
Diameter of bed material | d = 0.3 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, H.; Tinh, N.X.; Sana, A. Tsunami Damping due to Bottom Friction Considering Flow Regime Transition and Depth-Limitation in a Boundary Layer. J. Mar. Sci. Eng. 2022, 10, 1433. https://doi.org/10.3390/jmse10101433
Tanaka H, Tinh NX, Sana A. Tsunami Damping due to Bottom Friction Considering Flow Regime Transition and Depth-Limitation in a Boundary Layer. Journal of Marine Science and Engineering. 2022; 10(10):1433. https://doi.org/10.3390/jmse10101433
Chicago/Turabian StyleTanaka, Hitoshi, Nguyen Xuan Tinh, and Ahmad Sana. 2022. "Tsunami Damping due to Bottom Friction Considering Flow Regime Transition and Depth-Limitation in a Boundary Layer" Journal of Marine Science and Engineering 10, no. 10: 1433. https://doi.org/10.3390/jmse10101433
APA StyleTanaka, H., Tinh, N. X., & Sana, A. (2022). Tsunami Damping due to Bottom Friction Considering Flow Regime Transition and Depth-Limitation in a Boundary Layer. Journal of Marine Science and Engineering, 10(10), 1433. https://doi.org/10.3390/jmse10101433