Contained Ensiling of High-Lipid Perennial Ryegrass: Fermentation Quality, Fatty Acid Retention, and Storage Stability †
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Replication
2.2. Plant Materials and Growth Conditions
2.3. Greenhouse Space and Irrigation System
2.4. Fertilization
2.5. Pest Management
2.6. Ensiling Processes
2.7. Chemical Analyses
2.8. Statistical Analysis
3. Results
3.1. Seasonal Effects on Biomass Production Under Containment
3.2. Herbage FA Content
3.3. Seasonal Effects on Herbage Composition Prior to Ensiling
3.4. Effect of Sugar Supplementation on Ensiling
3.5. Silage Production and Energy Quality Improvements
3.6. Fermentation Characteristics
3.7. Silage Quality After Long-Term Storage
4. Discussion
4.1. Feasibility of Producing GM Ryegrass Silage Under Containment
4.2. Seasonal Variation, Pot Limitation, and Repeated Harvesting Effects
4.3. Seasonal Effects on Water-Soluble Carbohydrates and Ensiling Outcomes
4.4. Fatty Acid Retention in HME and Compositional Stability During Ensiling and Storage
4.5. Energy Content, Fermentation Profile, and Implications for Downstream Studies
4.6. Relevance to Sheep Feeding Trial and Scope Limitations
4.7. Methodological Considerations and Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beechey-Gradwell, Z.; Winichayakul, S.; Roberts, N. High lipid perennial ryegrass growth under variable nitrogen, water, and carbon dioxide supply. J. N. Z. Grassl. Assoc. 2018, 80, 219–224. [Google Scholar]
- Bryan, G.; Winichayakul, S.; Roberts, N. Nutritional enhancement of animal feed and forage crops via genetic modification. J. R. Soc. N.Z. 2024, 55, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Cooney, L.J.; Beechey-Gradwell, Z.; Winichayakul, S.; Ricardson, K.A.; Crowther, T.; Anderson, P.; Scott, R.W.; Bryan, G.; Roberts, N.J. Changes in leaf-level nitrogen partitioning and mesophyll conductance deliver increased photosynthesis for Lolium perenne leaves engineered to accumulate lipid carbon sinks. Front. Plant Sci. 2021, 12, 641822. [Google Scholar] [CrossRef] [PubMed]
- Winichayakul, S.; Scott, R.; Roldan, M.; Hatier, J.-H.B.; Livingston, S.; Cookson, R.; Curran, A.C.; Roberts, N.J. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 2013, 162, 626–639. [Google Scholar] [CrossRef]
- Beechey-Gradwell, Z.; Kadam, S.; Bryan, G.; Cooney, L.; Nelson, K.; Richardson, K.; Cookson, R.; Winichayakul, S.; Reid, M.; Anderson, P.; et al. Lolium perenne engineered for elevated leaf lipids exhibit greater energy density in filed canopies under defoliation. Field Crops Res. 2022, 275, 108340. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abadalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9276–9326. [Google Scholar] [CrossRef]
- Winichayakul, S.; Beechey-Gradwell, Z.; Muetzel, S.; Molano, G.; Crother, T.; Lewis, S.; Xue, H.; Bryan, G.; Roberts, N.J. In vitro gas production and rumen fermentation profile of fresh and ensiled genetically modified high metabolizable energy ryegrass. J. Dairy Sci. 2020, 103, 2405–2418. [Google Scholar] [CrossRef]
- Boukrouh, S.; Mnaouer, I.; de Souza, P.M.; Hornick, J.-L.; Nilahyane, A.; El Amiri, B.; Hirich, A. Microalgae supplementation improves goat milk composition and fatty acid profile: A meta-analysis and meta-regression. Arch. Anim. Breed. 2025, 68, 233–238. [Google Scholar] [CrossRef]
- Giagnoni, G.; Lund, P.; Johansen, M.; Weisbjerg, M.R. Effect of dietary fat source and concentration on feed intake, enteric methane, and milk production in dairy cows. J. Dairy Sci. 2025, 108, 553–567. [Google Scholar] [CrossRef]
- Conner, T. New Zealand’s three-decade ban on genetic modification, explained. AgResearch News 2023. Available online: https://www.agresearch.co.nz/news/new-zealands-three-decade-ban-on-genetic-modification-explained/ (accessed on 1 November 2025).
- Monroe, C.F.; Hilton, J.H.; Hodgson, R.E.; King, W.A.; Krauss, W.E. The loss of nutrients in hay and meadow crop silage during storage. J. Diary Sci. 1946, 29, 239–256. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S. Silage review: Recent advances and future technologies for baled silages. J. Dairy Sci. 2018, 101, 4075–4092. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, D.; Killerby, M.A.; Charley, R.C.; Chevaux, E.; Drouin, P.; Schmidt, R.J.; Bright, J.; Romero, J.J. Factors affecting nutrient losses in hay production. Grass Forage Sci. 2024, 79, 499–515. [Google Scholar] [CrossRef]
- New Zealand Novachem Agrichemical Manual 2008 & 2009. Agrimedia Ltd., Christchurch. Web Version. Available online: https://www.novachem.co.nz/ (accessed on 1 August 2022).
- Sun, X.; Luo, N.; Longhurst, B.; Luo, J. Fertiliser nitrogen and factors affecting pasture responses. Open Agric. J. 2008, 2, 35–42. [Google Scholar] [CrossRef]
- Dairynz.co.nz. 2024. Available online: https://www.dairynz.co.nz/feed/pasture-species/ryegrass/#:~:text=Production%20of%20perennial%20ryegrass%2Dbased,ryegrass%20pastures%20can%20last%20indefinitely (accessed on 1 November 2025).
- Goldammer, T. Greenhouse Management: A Guide to Operations and Technology, 3rd ed.; Apex Publishers USA: Raleigh, NC, USA, 2025; ISBN 979-8-89766-348-4. [Google Scholar]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Hoedtke, S.; Zeyner, A. Comparative evaluation of laboratory-scale silages using standard glass jar silages or vacuum-packed model silages. J. Sci. Food Agric. 2011, 91, 841–849. [Google Scholar]
- Serva, L.; Andrighetto, I.; Segato, S.; Marchesini, G.; Chinello, M.; Magrin, L. Assessment of maize silage quality under different pre-ensiling conditions. Data 2023, 8, 117. [Google Scholar] [CrossRef]
- Johnson, H.E.; Merry, R.J.; Davies, D.R.; Kell, D.B.; Theodorou, M.K.; Griffith, G.W. Vacuum packing: A model system for laboratory-scale silage fermentations. J. Appl. Microbiol. 2005, 98, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Marett, L.C.; Greenwood, J.S.; Hannah, M.; Jacobs, J.L.; Wales, W.J. Effects of different strategies for feeding supplements on milk production responses in cows grazing a restricted pasture allowance. J. Dairy Sci. 2013, 96, 1218–1231. [Google Scholar] [CrossRef]
- Weiss, W.P.; Tebbe, A.W. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Transl. Anim. Sci. 2018, 3, 953–961. [Google Scholar] [CrossRef]
- Roughan, P.G.; Holland, R. Predicting in-vivo digestibility of herbages by exhaustive enzymic hydrolysis of cell walls. J. Sci. Food Agric. 1977, 28, 1057–1064. [Google Scholar] [CrossRef]
- Browse, J.; McCourt, P.J.; Somerville, C.R. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal. Biochem. 1986, 152, 141–145. [Google Scholar] [CrossRef]
- Winichayakul, S.; Macknight, R.; Le Lievre, L.; Beechey-Gradwell, Z.; Lee, R.; Cooney, L.; Xue, H.; Crowther, T.; Anderson, P.; Richardson, K.; et al. Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances. PLoS ONE 2022, 17, e0275503. [Google Scholar] [CrossRef] [PubMed]
- Parsons, A.; Rasmussen, S.; Xue, H.; Newman, J.; Anderson, C.; Cosgrove, G. Some ‘high sugar grasses’ don’t like it hot. Proc. N. Z. Grassl. Assoc. 2004, 66, 265–271. [Google Scholar] [CrossRef]
- Jermyn, M.A. New method for determining ketohexoses in the presence of aldohexoses. Nature 1956, 177, 38–39. [Google Scholar] [CrossRef]
- Hachiya, T.; Okamoto, Y. Simple spectroscopic determination of nitrate, nitrite, and ammonium in Arabidopsis thaliana. Bio-Protocol 2017, 7, e2280. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, A.; Gagneul, D.; Weber, A.P.M. High-throughput colorimetric method for the parallel assay of glyoxylic acid and ammonium in a single extract. Anal. Biochem. 2007, 362, 151–153. [Google Scholar] [CrossRef]
- Ghidotti, M.; Fabbri, D.; Torri, C.; Piccinini, S. Determination of volatile fatty acids in digestate by solvent-extraction with dimethyl carbonate and gas chromatography-mass spectrometry. Anal. Chim. Acta 2018, 1034, 92–101. [Google Scholar] [CrossRef]
- Borshchevskaya, L.N.; Gordeeva, T.L.; Kalinina, N.; Sineokii, S.P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016, 71, 755–758. [Google Scholar] [CrossRef]
- Cherney, J.; Cherney, D. Assessing Silage Quality. Silage Sci. Technol. 2003, 42, 141–198. [Google Scholar]
- Playne, M.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef]
- Piepho, H.P.; Buchse, A.; Emrich, K. A Hitchhiker’s guide to mixed models for randomized experiments. J. Agron. Crop Sci. 2003, 189, 310–322. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- EFSA GMO Panel Working Group on Animal Feeding Trials. Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials. Food Chem. Toxicol. 2008, 46, S2–S70. [Google Scholar] [CrossRef]
- Fajardo, C.; Macedo, M.; Buha, T.; De Donato, M.; Costas, B.; Mancera, J.M. Genetically modified animal-derived products: From regulations to applications. Animals 2025, 15, 1570. [Google Scholar] [CrossRef] [PubMed]
- Smyth, S.J. Regulatory barriers to improving global food security. Glob. Food Sec. 2020, 26, 100440. [Google Scholar] [CrossRef] [PubMed]
- Raman, R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops Food. 2017, 8, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Lindh, M.; Hoeber, S.; Weih, M.; Manzoni, S. Interactions of nutrient and water availability control growth and diversity effects in a Salix two-species mixture. Ecohydrology 2022, 15, e2401. [Google Scholar] [CrossRef]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size maters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Beechey-Gradwell, Z.; Cooney, L.; Winichayakul, S.; Andrews, M.; Hea, S.Y.; Crowther, T.; Roberts, N. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. J. Exp. Bot. 2020, 71, 2351–2361. [Google Scholar] [CrossRef]
- Tuxun, A.; Xiang, Y.; Shao, Y.; Son, J.E.; Yamada, M.; Yamada, S.; Tagawa, K.; Baiyin, B.; Yang, Q. Soilless cultivation: Precise nutrient provision and growth environment regulation under different substrates. Plants 2025, 14, 2203. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Diurnal changes in the nutritive composition of four forage species at high and low N fertiliser. J. N. Z. Grassl. Assoc. 2017, 79, 103–110. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R. Determination of water-soluble carbohydrates in grass. J. Sci. Food Agric. 1964, 15, 395–398. [Google Scholar] [CrossRef]
- Seale, D.R.; Henderson, A.; Pettersson, K.O.; Lowe, J.F. The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass Forage Sci. 1986, 41, 61–70. [Google Scholar] [CrossRef]
- Yang, S.J.; Zhang, K.; Ji, R.X.; Chen, X.W.; Wang, J.; Raja, I.H.; Shan, A.S.; Zhang, S. Assessment of nutritional value, aerobic stability and measurement of in vitro fermentation parameters of silage prepared from several leguminous plants. BMC Plant Biol. 2025, 25, 641. [Google Scholar] [CrossRef]
- da Silva, É.B.; Costa, D.M.; Santos, E.M.; Moyer, K.; Hellings, E.; Kung, L., Jr. The effects of Lactobacillus hilgardii 4785 and Lactobacillus buchneri 40788 on the microbiome, fermentation, and aerobic stability of corn silage ensiled for various times. J. Dairy Sci. 2012, 104, 10678–10698. [Google Scholar] [CrossRef]
- Bao, J.; Wang, L.; Yu, Z. Effects of different moisture levels and additives on the ensiling characteristics and in vitro digestibility of Stylosanthes silage. Animals 2022, 12, 1555. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.; Li, X.; MacAdam, J.W.; Zhang, Y. Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Front. Microbiol. 2023, 14, 1164904. [Google Scholar] [CrossRef]
- Vieira, D.J.C.; Grigoletto, N.T.S.; Poletti, G.; Chesini, R.G.; Diepersloot, E.C.; Takiya, C.S.; Ferraretto, L.F.; Rennó, F.P. Impact of decreasing undigested neutral detergent fiber concentration in corn silage–based diets for dairy cows: Nutrient digestibility, ruminal fermentation, feeding behavior, and performance. J. Dairy Sci. 2025, 108, 8462–8475. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P. Predicting energy values of feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Elgersma, A.; Ellen, G.; van der Horst, H.; Muuse, B.G.; Boer, H.; Tamminga, S. Comparison of the fatty acid composition of fresh and ensiled perennial ryegrass (Lolium perenne L.), affected by cultivar and regrowth interval. Anim. Feed Sci. Technol. 2003, 108, 191–205. [Google Scholar] [CrossRef]
- Álvarez-Torres, J.N.; Ramírez-Bribiesca, J.E.; Bautista-Martínez, Y.; Crosby-Galván, M.M.; Granados-Rivera, L.D.; Ramírez-Mella, M.; Ruiz-González, A. Stability and effects of protected palmitic acid on in vitro rumen degradability and fermentation in lactating goats. Fermentation 2023, 10, 110. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Petir, H.V. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 2007, 87, 431–440. [Google Scholar] [CrossRef]
- Abdiani, N.; Kolahi, M.; Javaheriyan, M.; Sabaeian, M. Effect of storage conditions on nutritional value, oil content, and oil composition of sesame seeds. J. Agric. Food Res. 2024, 16, 101117. [Google Scholar] [CrossRef]
- Alves, S.; Jeronimo, E.; Bessa, R.; Cabrita, A.R. Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. J. Anim. Sci. 2011, 89, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Tewoldebrhan, T.A.; Zom, R.L.G.; Cone, J.W.; Hendriks, W.H. Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows. J. Dairy Sci. 2012, 95, 1472–1483. [Google Scholar] [CrossRef]
- Santos, M.C.; Kung, L., Jr. Short communication: The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. J. Diary Sci. 2016, 99, 5466–5469. [Google Scholar] [CrossRef] [PubMed]
- Gordo, A.; Hernando, B.; Artajona, J.; Fondevila, M. In vitro study of the effect of ensiling length and processing on the nutritive value of maize silages. Animals 2023, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Winichayakul, S.; Roberts, N. Toward sustainable crops: Integrating vegetative (non-seed) lipid storage, carbon-nitrogen dynamics, and redox regulation. Front. Plant Sci. 2025, 16, 1589127. [Google Scholar] [CrossRef] [PubMed]
- Winichayakul, S.; Xue, H.; Richardson, K.A.; Maher, D.; Reid, M.; Robert, N. Lipid storage in green tissues alters redox homeostasis, malate metabolism, phospholipids, and nitrogen partitioning in plants. Plant Physiol. Biochem. 2025, 227, 110144. [Google Scholar] [CrossRef]
- Han, L.; Zhou, H. Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages. J. Anim. Sci. Biotechnol. 2013, 4, 48. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Sandoval, E.; Taylor, P.S.; Antwi, C.; Olinga, S.; Cosgrove, G.P. Methane emissions differ between sheep offered a conventional diploid, a high-sugar diploid or a tetraploid perennial ryegrass cultivar at two allowances at three times of the year. Anim. Prod. Sci. 2018, 58, 1043–1048. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Hunt, C.; Martin, R.; West, J.; Lovejoy, P.; Waghorn, G. Chapter 1: New Zealand Ruminant methane measurement centre, AgResearch, Palmerston North. In Technical Manual on Respiration Chamber Design; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2024; Available online: https://www.globalresearchalliance.org/wp-content/uploads/2012/03/GRA-MAN-Facility-BestPract-2012-ch13.pdf (accessed on 1 November 2025).
- Moraes, L.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Morgan, S.A.; Huws, S.A.; Lister, S.J.; Sanderson, R.; Scollan, N.D. Phenotypic variation and relationships between fatty acid concentrations and feed value of perennial ryegrass genotypes from a breeding population. Agronomy 2020, 10, 343. [Google Scholar] [CrossRef]
- Buchanan-Smith, J.G. As investigation into palatability as a factor responsible for reduced intake of silage by sheep. Anim. Prod. 1990, 50, 253–260. [Google Scholar] [CrossRef]
- Huhtanen, P.; Khalili, H.; Nousiainen, J.I.; Rinne, M.; Jaakkola, S.; Heikkilä, T.; Nousianen, J. Prediction of the relative intake potential of grass silage by dairy cows. Livest. Prod. Sci. 2022, 73, 111–130. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]



| Active Ingredient | Chemical Class 1 | Target Species | Trade Product 2 | Rate per Hectare | W/h Period (Days) |
|---|---|---|---|---|---|
| Methomyl | Carbamate | aphids | Orion Methomyl 200SL | 1.5–2 L | 7 |
| Chlorpyrifos | Organophosphate | aphids, thrips | Nufarm Chlorpyrifos 500EC | 300–400 mL | 7 |
| Carbendazim | Carbamate | powdery mildew | Adria Goldazim 500SC | 300–500 mL | 14 |
| Diflubenzuron | Benzoylurea | sciarid fly | Nufarm Dimilin | 40 L | 7 |
| * Pirimicarb | Carbamate | aphids | Adria Piritek | 250 g | 7 (forage brassica grazing) |
| * Deltamethrin | Pyrethroid | aphids, thrips | Adria Deltamax 25EC | 250–500 mL | 14 (maize grazing) |
| * Pirimiphos-methyl + permethrin | Organophosphate + pyrethroid | aphids, thrips | Orion Ambush | 750 mL–1 L | 7 (fodder brassicas and fodder beet) |
| * Azoxystrobin | ß-methoxyacrylate | powdery mildew | Syngenta Amistar | 750 mL | 28 (wheat, barley, ryegrass seed crops—silage) |
| * Tebuconazole | Triazole | powdery mildew | Bayer Folicur SC | 145 mL | 14 (peas) |
| * Fipronil | Phenylpyrazole | sciarid fly | Adria Recoil | 16 mL/300 L soil | 7 (vegetable brassicas) |
| Items (n = 12) | Null | HME | p Value |
|---|---|---|---|
| Total mass a (kg DM) | 138 | 131 | - |
| % DM | 30.1 ± 1.15 | 30.6 ± 1.02 | 0.7407 |
| FA (% DM) | 2.75 ± 0.24 | 4.85 ± 0.27 | *** |
| BC (mmoles/kg DM) | 735 ± 51.8 | 754 ± 32.8 | 0.7496 |
| pH | 4.21 ± 0.12 | 4.21 ± 0.09 | 0.9734 |
| Lactic Acid (% DM) | 15.2 ± 0.44 | 16.2 ± 0.37 | 0.1010 |
| C (% DM) | 42.5 ± 0.28 | 43.3 ± 0.25 | * |
| N (% DM) | 3.76 ± 0.25 | 3.84 ± 0.22 | 0.8072 |
| CP (% DM) | 23.5 ± 1.55 | 24.2 ± 1.45 | 0.7147 |
| NDF (% DM) | 34.5 ± 1.98 | 34.4 ± 2.01 | 0.9878 |
| DMD (kg/kg DM) | 0.72 ± 0.01 | 0.73 ± 0.01 | 0.7035 |
| GE (MJ/kg DM) | 17.5 ± 0.06 | 18.1 ± 0.07 | *** |
| Predicted ME1 (MJ/kg DM) | 9.96 ± 0.15 | 10.0 ± 0.14 | 0.7035 |
| Predicted ME2 (MJ/kg DM) | 10.3 ± 0.15 | 10.8 ± 0.16 | 0.0581 |
| Acetic acid (% DM) | 1.58 ± 0.18 | 0.83 ± 0.01 | *** |
| NH4+-N (g/kg DM) | 0.10 ± 0.03 | 0.08 ± 0.02 | 0.5387 |
| Items | Null-52 DAS | HME-52 DAS | Null-342 DAS | HME-342 DAS | p Value |
|---|---|---|---|---|---|
| % DM | 29.0 ± 0.86 | 28.5 ± 1.16 | 27.7 ± 1.32 | 31.0 ± 0.12 | 0.1236 |
| pH | 4.01 ± 0.08 | 3.94 ± 0.08 | 4.07 ± 0.02 | 3.95 ± 0.04 | 0.7481 |
| FA (% DM) | 3.59 ± 0.50 | 5.75 ± 0.42 G | 2.80 ± 0.20 D × G | 5.17 ± 0.12 D × G | *** |
| ∆ Increase in FA (% DM) | 2.16 ± 0.13 | 2.37 ± 0.09 | 0.8327 | ||
| C16:0 (% FA) | 14.8 ± 0.01 | 11.2 ± 0.09 G | 21.8 ± 1.21 D × G | 11.3 ± 0.38 G | *** |
| C16:1 (% FA) | 2.69 ± 0.08 | 2.24 ± 0.005 G | 3.17 ± 0.06 D × G | 2.22 ± 0.05 G | ** |
| C18:0 (% FA) | 0.79 ± 0.03 | 1.14 ± 0.03 | 1.88 ± 0.13 D | 1.35 ± 0.20 | * |
| C18:1 (% FA) | 0.72 ± 0.009 | 8.90 ± 0.04 G | 2.97 ± 0.22 D × G | 9.64 ± 0.13 G | * |
| C18:2 (% FA) | 6.97 ± 0.03 | 21.0 ± 0.02 G | 8.77 ± 0.06 D × G | 21.5 ± 0.12 G | ** |
| C18:3 (% FA) | 74.0 ± 0.83 | 55.6 ± 0.53 | 61.4 ± 2.40 D × G | 54.0 ± 0.65 G | ** |
| DMD (kg/kg DM) | 0.69 ± 0.03 | 0.74 ± 0.02 | 0.75 ± 0.005 | 0.78 ± 0.004 G | * |
| GE (MJ/kg DM) | 17.6 ± 0.13 | 18.4 ± 0.10 G | 17.6 ± 0.07 | 18.3 ± 0.07 G | ** |
| ME1 (MJ/kg DM) | 10.0 ± 0.48 | 10.2 ± 0.38 | 10.5 ± 0.08 | 10.8 ± 0.06 G | * |
| ME2 (MJ/kg DM) | 10.3 ± 0.49 | 11.1 ± 0.41 | 10.8 ± 0.03 | 11.6 ± 0.02 G | *** |
| HAc (% DM) | 1.56 ± 0.18 | 0.85 ± 0.01 G | 1.34 ± 0.14 | 0.94 ± 0.05 G | *** |
| BC (mmoles/kg DM) | 775 ± 53.8 | 837 ± 11.9 | 404 ± 6.28 D | 417 ± 21.9 D | *** |
| LA (%DM) | 16.2 ± 0.33 | 16.9 ± 0.42 | 10.8 ± 1.11 D | 11.7 ± 0.98 D | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Winichayakul, S.; Prentice, A.; Anderson, P.; Crowther, T.; Xue, H.; Zou, X.; Reid, M.; Richardson, K.A.; Maher, D.; Scott, R.W.; et al. Contained Ensiling of High-Lipid Perennial Ryegrass: Fermentation Quality, Fatty Acid Retention, and Storage Stability. Agriculture 2026, 16, 358. https://doi.org/10.3390/agriculture16030358
Winichayakul S, Prentice A, Anderson P, Crowther T, Xue H, Zou X, Reid M, Richardson KA, Maher D, Scott RW, et al. Contained Ensiling of High-Lipid Perennial Ryegrass: Fermentation Quality, Fatty Acid Retention, and Storage Stability. Agriculture. 2026; 16(3):358. https://doi.org/10.3390/agriculture16030358
Chicago/Turabian StyleWinichayakul, Somrutai, Ashley Prentice, Philip Anderson, Tracey Crowther, Hong Xue, Xiuying Zou, Michele Reid, Kim A. Richardson, Dorothy Maher, Richard W. Scott, and et al. 2026. "Contained Ensiling of High-Lipid Perennial Ryegrass: Fermentation Quality, Fatty Acid Retention, and Storage Stability" Agriculture 16, no. 3: 358. https://doi.org/10.3390/agriculture16030358
APA StyleWinichayakul, S., Prentice, A., Anderson, P., Crowther, T., Xue, H., Zou, X., Reid, M., Richardson, K. A., Maher, D., Scott, R. W., Cooney, L. J., Jonker, A., Kleinmans, J., & Roberts, N. J. (2026). Contained Ensiling of High-Lipid Perennial Ryegrass: Fermentation Quality, Fatty Acid Retention, and Storage Stability. Agriculture, 16(3), 358. https://doi.org/10.3390/agriculture16030358

