Early Detection of Rice Blast Disease Using Satellite Imagery and Machine Learning on Large Intrafield Datasets
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Field Data
2.3.1. Remote Sensing Data
2.3.2. Yield Data
2.3.3. Determination of Pyricularia oryzae
2.3.4. Statistics and ML Algorithms
- Infected: yield < 2135 kg·ha−1;
- Partially infected: 2135 ≤ yield ≤ 3182 kg·ha−1;
- Non-infected: yield > 3182 kg·ha−1.
Principal Component Analysis
Machine Learning Models
Performance Evaluation
- , : The different rice varieties;
- : The number of samples that truly belong to class and were predicted as class ;
- : Total number of samples that truly belong to class (i = 1, 2, 3);
- : Total number of samples that were predicted as class (j = 1, 2, 3);
- N: Total number of samples.
2.3.5. Software
3. Results
3.1. PCA
3.2. Machine Learning Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A

| 35 DAS | DIM.1 | DIM.2 | DIM.3 |
| B02 | 2.73 | 22.15 | 25.34 |
| B03 | 0.01 | 30.23 | 8.78 |
| B04 | 6.32 | 15.53 | 21.15 |
| B05 | 0.04 | 27.03 | 31.65 |
| B06 | 14.96 | 1.96 | 1.33 |
| B07 | 15.86 | 0.33 | 0.18 |
| B08 | 15.61 | 0.27 | 0.02 |
| B8A | 15.84 | 0.33 | 0.49 |
| B11 | 15.12 | 0.50 | 5.85 |
| B12 | 13.46 | 1.64 | 5.18 |
| 55 DAS | DIM.1 | DIM.2 | DIM.3 |
| B02 | 17.68 | 0.18 | 0.02 |
| B03 | 17.76 | 0.35 | 1.65 |
| B04 | 17.67 | 0.00 | 2.44 |
| B05 | 18.03 | 0.35 | 0.83 |
| B06 | 0.10 | 24.27 | 10.90 |
| B07 | 8.30 | 16.51 | 0.66 |
| B08 | 8.24 | 16.54 | 0.20 |
| B8A | 0.18 | 4.64 | 82.70 |
| B11 | 2.72 | 24.64 | 0.00 |
| B12 | 3.91 | 12.48 | 0.57 |
| 80 DAS | DIM.1 | DIM.2 | DIM.3 |
| B02 | 9.60 | 9.90 | 9.42 |
| B03 | 10.95 | 7.61 | 3.69 |
| B04 | 4.85 | 25.11 | 5.56 |
| B05 | 10.69 | 7.87 | 0.05 |
| B06 | 12.53 | 3.87 | 1.23 |
| B07 | 9.52 | 13.44 | 2.81 |
| B08 | 8.54 | 15.76 | 3.16 |
| B8A | 8.91 | 15.14 | 2.88 |
| B11 | 12.74 | 0.13 | 26.21 |
| B12 | 11.64 | 1.16 | 44.98 |
| 35 DAS | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B08A | B11 | B12 |
| B02 | 1 | 0.73 | 0.99 | 0.63 | −0.2 | −0.3 | −0.31 | −0.3 | −0.26 | −0.16 |
| B03 | 1 | 0.61 | 0.92 | 0.22 | 0.06 | 0.05 | 0.05 | 0.06 | 0.15 | |
| B04 | 1 | 0.55 | −0.44 | −0.52 | −0.53 | −0.51 | −0.46 | −0.37 | ||
| B05 | 1 | 0.19 | 0.02 | 0.02 | 0.01 | 0.01 | 0.13 | |||
| B06 | 1 | 0.98 | 0.96 | 0.97 | 0.91 | 0.87 | ||||
| B07 | 1 | 0.99 | 1 | 0.93 | 0.87 | |||||
| B08 | 1 | 0.98 | 0.92 | 0.86 | ||||||
| B08A | 1 | 0.94 | 0.87 | |||||||
| B11 | 1 | 0.97 | ||||||||
| B12 | 1 | |||||||||
| 55 DAS | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B08A | B11 | B12 |
| B02 | 1 | 0.94 | 0.93 | 0.90 | 0.02 | −0.54 | −0.55 | 0.06 | 0.39 | 0.66 |
| B03 | 1 | 0.88 | 0.97 | 0.12 | −0.53 | −0.55 | 0.12 | 0.40 | 0.66 | |
| B04 | 1 | 0.88 | −0.14 | −0.60 | −0.60 | −0.03 | 0.36 | 0.67 | ||
| B05 | 1 | 0.09 | −0.56 | −0.55 | 0.11 | 0.43 | 0.71 | |||
| B06 | 1 | 0.72 | 0.67 | −0.12 | 0.69 | 0.40 | ||||
| B07 | 1 | 0.97 | −0.28 | 0.38 | −0.03 | |||||
| B08 | 1 | −0.29 | 0.40 | 0.01 | ||||||
| B08A | 1 | −0.27 | −0.19 | |||||||
| B11 | 1 | 0.89 | ||||||||
| B12 | 1 | |||||||||
| 80 DAS | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B08A | B11 | B12 |
| B02 | 1 | 0.94 | 0.85 | 0.89 | 0.64 | 0.43 | 0.37 | 0.39 | 0.72 | 0.77 |
| B03 | 1 | 0.82 | 0.96 | 0.73 | 0.50 | 0.44 | 0.46 | 0.79 | 0.83 | |
| B04 | 1 | 0.82 | 0.32 | 0.08 | 0.03 | 0.05 | 0.48 | 0.62 | ||
| B05 | 1 | 0.71 | 0.48 | 0.42 | 0.44 | 0.79 | 0.85 | |||
| B06 | 1 | 0.95 | 0.91 | 0.93 | 0.90 | 0.78 | ||||
| B07 | 1 | 0.98 | 0.99 | 0.79 | 0.63 | |||||
| B08 | 1 | 0.98 | 0.74 | 0.58 | ||||||
| B08A | 1 | 0.77 | 0.60 | |||||||
| B11 | 1 | 0.96 | ||||||||
| B12 | 1 |
References
- Lim, S.H. Floating rice fields, the quest for solutions to combat drought, floods and rising sea levels. In WCFS2020: Proceedings of the Second World Conference on Floating Solutions, Rotterdam; Springer: Singapore, 2021; pp. 219–239. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#home (accessed on 6 July 2025).
- MAPA. Ministerio de Agricultura, Pesca y Alimentación. Available online: https://www.mapa.gob.es/es/default.aspx (accessed on 19 April 2025).
- Ferrando, J.S.; Jambrino, B.D. El parc natural de l’Albufera. Un paisaje cultural cargado de historia. PH Bol. Inst. Andal. Patrim. Hist. 2014, 22, 54–77. [Google Scholar] [CrossRef]
- Ballesteros, R. El Departamento del Arroz del IVIA. Comunitat Valencia. Agrar. 2003, 21, 65–69. [Google Scholar]
- Padmanabhan, S.Y. The great Bengal famine. Annu. Rev. Phytopathol. 1973, 11, 11–26. [Google Scholar] [CrossRef]
- Thon, M.R.; Pan, H.; Diener, S.; Papalas, J.; Taro, T.; Mitchell, T.K.; Dean, R.A. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol. 2006, 7, 16. [Google Scholar] [CrossRef]
- Wang, X.; Lee, S.; Wang, J.; Ma, J.; Bianco, T.; Jia, Y. Current advances on genetic resistance to rice blast disease. Rice-Germplasm Genet. Improv. 2014, 23, 195–217. [Google Scholar]
- Teng, P.S.; Torres, C.Q.; Nuque, F.L.; Calvera, S.B. Current knowledge on crop losses in tropical rice. In Crop Loss Assessment in Rice; International Rice Research Institute: Los Baños, Philippines, 1990; pp. 39–54. [Google Scholar]
- Pla, E.; Català, M.M.; Tomàs, N. Ficha número 9: La Pyriculariosis del arroz. In Fichas Técnicas IRTA de las Mejores Prácticas de Cultivo del Arroz; IRTA Amposta: Amposta, Spain, 2020. [Google Scholar]
- Montes Delgado, F. Caracterización Agronómica y Monitoreo de la Pyriculariosis de una Selección de Variedades de Arroz. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 8 March 2016. [Google Scholar]
- Kihoro, J.; Bosco, N.J.; Murage, H.; Ateka, E.; Makihara, D. Investigating the impact of rice blast disease on the livelihood of local farmers in the greater Mwea region of Kenya. SpringerPlus 2013, 2, 308. [Google Scholar] [CrossRef] [PubMed]
- Kunova, A.; Palazzolo, L.; Forlani, F.; Catinella, G.; Musso, L.; Cortesi, P.; Dallavalle, S. Structural investigation and molecular modeling studies of strobilurin-based fungicides active against the rice blast pathogen Pyricularia oryzae. Int. J. Mol. Sci. 2021, 22, 3731. [Google Scholar] [CrossRef]
- Katsantonis, D.; Kadoglidou, K.; Dramalis, C.; Puigdollers, P. Rice blast forecasting models and their practical value: A review. Phytopathol. Mediterr. 2017, 56, 187–216. [Google Scholar]
- Català, M.; Almacellas, J.; Marín, J.P.; Tomàs, N.; Martínez Eixarch, M.; Pla Mayor, E. Reacción a Pyricularia grisea de las variedades más importantes de arroz cultivadas en el Delta del Ebro durante el período 2000–2008. Phytoma España Rev. Prof. Sanid. Veg. 2010, 220, 48–60. [Google Scholar]
- Chandrasekhara, M.V.; Gururaj, S.; Naik, M.K.; Nagaraju, P. Screening of rice genotypes against rice blast caused by Pyricularia oryzae Cavara. Karnatak J. Agric. Sci. 2008, 21, 305. [Google Scholar]
- Gómez de Barreda, D.; Pardo, G.; Osca, J.M.; Catala-Forner, M.; Consola, S.; Garnica, I.; López-Martínez, N.; Palmerín, J.A.; Osuna, M.D. An overview of rice cultivation in Spain and the management of herbicide-resistant weeds. Agronomy 2021, 11, 1095. [Google Scholar] [CrossRef]
- Oliveira-Garcia, E.; Budot, B.O.; Manangkil, J.; Dala Lana, F.; Angira, B.; Famoso, A.; Jia, Y. An efficient method for screening rice breeding lines against races of Magnaporthe oryzae. Plant Dis. 2024, 108, 1179–1187. [Google Scholar] [CrossRef]
- Nalley, L.; Tsiboe, F.; Durand-Morat, A.; Shew, A.; Thoma, G. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS ONE 2016, 11, e0167295. [Google Scholar] [CrossRef]
- Schönfeld, M.V.; Heil, R.; Bittner, L. Big data on a farm—Smart farming. In Big Data Context; Springer: Cham, Switzerland, 2018; pp. 109–120. [Google Scholar] [CrossRef]
- Ginestet, P.C. Estimación de Rendimientos y Contenido de Proteína en el Cultivo de Trigo Candeal Mediante la Utilización de Sensores Remotos; Curso Internacional de Agricultura de Precisión: Manfredi, Argentina, 2014. [Google Scholar]
- Alzubi, J.; Nayyar, A.; Kumar, A. ML from theory to algorithms: An overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. ML in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Vydeki, D. Application of ML in detection of blast disease in South Indian rice crops. J. Phytol. 2019, 11, 31–37. [Google Scholar]
- Castillo, F.; Ruiz Beltrán, L. Agroclimatología de España; INIA: Cuaderno, Spain, 1997; p. 7. [Google Scholar]
- Franch, B.; San Bautista, A.; Fita, D.; Rubio, C.; Tarrazó-Serrano, D.; Sánchez, A.; Uris, A. Within-field rice yield estimation based on Sentinel-2 satellite data. Remote Sens. 2021, 13, 4095. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- European Space Agency. Copernicus Browser [Software]. 2024. Available online: https://browser.dataspace.copernicus.eu/ (accessed on 12 June 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Topcon. Available online: https://www.topconpositioning.com/ (accessed on 14 January 2025).
- Fita, D.; Rubio, C.; Franch, B.; Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; San Bautista, A. Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop. Precis. Agric. 2025, 26, 33. [Google Scholar] [CrossRef]
- SES; IRRI. Standard Evaluation System for Rice; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Surin, A.; Arunyanart, P.; Dhitikiattipong, R.; Rojanahusdin, W.; Disthaporn, S.; Soontrajarn, K. Rice yield loss to sheath rot. Int. Rice Res. Newsl. 1988, 13, 34–35. [Google Scholar]
- Katsube, T.; Koshimizu, Y. Influence of blast disease on harvests in rice plant. I. Effect of panicle infection on yield components and quality. Bull. Tohoku Natl. Agric. Exp. Stn. 1970, 39, 155–196. [Google Scholar]
- Bohnenkamp, D.; Behmann, J.; Mahlein, A.K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Radiom, S.; Alimohammadi, A. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques. Comput. Electron. Agric. 2019, 156, 119–128. [Google Scholar] [CrossRef]
- Rodríguez, J.; Lizarazo, I.; Prieto, F.; Angulo-Morales, V. Assessment of potato late blight from UAV-based multispectral imagery. Comput. Electron. Agric. 2021, 184, 106061. [Google Scholar] [CrossRef]
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wu, W.; Song, Y.; Xu, Y.; Guo, L.; Zhu, Y. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Galván Fraile, J. Machine Learning for Remote Sensing of Xylella fastidiosa. Master’s Thesis, Universitat de les Illes Balears, Palma, Spain, 2020. Available online: http://hdl.handle.net/11201/156941 (accessed on 10 July 2024).
- Waters, E.K.; Chen, C.-M.; Rahimi Azghadi, M. Machine Learning for asymptomatic ratoon stunting disease detection with freely available satellite-based multispectral imaging. arXiv 2024, arXiv:2410.03141. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in land cover and crop classification based on temporal features learning from Sentinel-2 data using recurrent-convolutional neural network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef]
- Yuan, L.; Yu, Q.; Xiang, L.; Zeng, F.; Dong, J.; Xu, O.; Zhang, J. Integrating UAV and high-resolution satellite remote sensing for multi-scale rice disease monitoring. Comput. Electron. Agric. 2025, 234, 110287. [Google Scholar] [CrossRef]
- Chapu, I.; Chandel, A.; Sie, E.K.; Okello, D.K.; Oteng-Frimpong, R.; Okello, R.C.O.; Balota, M. Comparing regression and classification models to estimate leaf spot disease in peanut (Arachis hypogaea L.) for implementation in breeding selection. Agronomy 2024, 14, 947. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessments methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- QGIS Project. Available online: https://www.qgis.org/en/site/ (accessed on 14 January 2025).
- Python, version 3.11; Python Software Foundation: Wilmington, DE, USA, 2023. Available online: https://www.python.org (accessed on 10 March 2025).
- Rana, V.K.; Suryanarayana, T.M.V. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using Sentinel-2 bands. Remote Sens. Appl. Soc. Environ. 2020, 19, 100351. [Google Scholar] [CrossRef]
- Maponya, M.G.; Van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164. [Google Scholar] [CrossRef]
- López-Andreu, F.J.; Erena, M.; Domínguez-Gómez, J.A.; López-Morales, J.A. Sentinel-2 images and machine learning as tools for monitoring the Common Agricultural Policy: Calasparra rice as a case study. Agronomy 2021, 11, 621. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, D.; Yang, W. An algorithm for early rice area mapping from satellite remote sensing data in southwestern Guangdong in China based on feature optimization and random forest. Ecol. Inform. 2022, 72, 101853. [Google Scholar] [CrossRef]


| Season | Number of Fields | Area (ha) |
|---|---|---|
| 2021 | 22 | 39.37 |
| 2022 | 21 | 77.72 |
| 2023 | 16 | 52.50 |
| 2024 | 34 | 101.9 |
| DAS | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | 105 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Emergence stage | Pretillering stage | Tillering stage | Stem elogation | Panicle Initation | Heading stage | Flowering stage | Milk stage | Dough stage | Mature stage | ||||||||||||
| Vegetative phase | Reproductive phase | Ripering stage | Senescence | ||||||||||||||||||
| Flooded | Dry | Flooded | Dry | Flooded | Dry | ||||||||||||||||
| Bands | Wavelength (nm) | Resolution (m) | Region |
|---|---|---|---|
| B02 | 490 | 10 | Visible |
| B03 | 560 | 10 | Visible |
| B04 | 665 | 10 | Visible |
| B05 | 705 | 20 | Infrared |
| B06 | 740 | 20 | Infrared |
| B07 | 783 | 20 | Infrared |
| B08 | 842 | 10 | Infrared |
| B08A | 865 | 20 | Infrared |
| B11 | 1610 | 20 | Swinfrared |
| B12 | 2190 | 20 | Swinfrared |
| Dates | DAS | |||
|---|---|---|---|---|
| 2021 | 2022 | 2023 | 2024 | |
| 1 June | 14 June | 15 May | 3 June | 5 |
| 1 July | 14 July | 14 June | 3 July | 35 |
| 22 July | 3 August | 4 July | 23 July | 55 |
| 15 August | 29 August | 29 August | 17 August | 80 |
| 15 September | 28 September | 12 September | 16 September | 110 |
| PII 45 DAS | PII 65 DAS | PII 85 DAS | PII 105 DAS | Yield | |
|---|---|---|---|---|---|
| PII 45 DAS | −0.24 ns | −0.24 ns | −0.37 ns | 0.30 ns | |
| PII 65 DAS | −0.38 ns | −0.14 ns | 0.17 ns | ||
| PII 85 DAS | 0.93 ** | −0.54 ns | |||
| PII 105 DAS | −0.67 * | ||||
| Yield |
| Disease | Algorithms | Reference |
|---|---|---|
| Wheat yellow rust | SVM | [35] |
| Citrus huanglongbing | KNN and SVM | [36] |
| Potato late blight | RF and SVM | [37] |
| Grape leaf disease | KNN | [38] |
| Xylella fastidiosa in almond trees | SVM | [39] |
| Ratoon stunting disease in sugarcane | SVM | [40] |
| Crop classification and land cover | RF | [41] |
| Rice bacterial blight | RF, SVM and KNN | [42] |
| Late leaf spot of peanuts | RF, KNN | [43] |
| Predicted Variety | ||||||||
|---|---|---|---|---|---|---|---|---|
| Real Variety | … | … | ||||||
| … | … | |||||||
| … | … | |||||||
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ||
| … | … | |||||||
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ||
| … | … | |||||||
| … | … | N | ||||||
| Statistical Parameters | Explanation | Equation | |
|---|---|---|---|
| Accuracy | Proportion of correct predictions over the total number of samples | (6) | |
| Precision | Proportion of correctly classified positive from the total predicted positive | (7) | |
| Recall (Sensitivity or True Positive Rate) | Proportion of correctly classified positive from the total truly positive | (8) | |
| Specificity (or True Negative Rate) | Proportion of correctly classified negative from the total truly negative | (9) | |
| F1-Score (or F-measure) | Harmonic mean between Precision and Recall values | (10) |
| Scenario | Sentinel-2 Band Combination | DAS | Selection Criteria | ||
|---|---|---|---|---|---|
| Visible | NIR | SWIR | |||
| 1 | B02, B03, B04 | B05, B06, B07, B08, B08A | B11, B12 | 35 55 80 | All available bands. Allows maximum use of the explained variance (>95%). Serves as a baseline of maximum information. |
| 2 | B04 | B05, B07, B08 | B11 | 35 55 | Band B12 is eliminated for this combination due to its correlation with B11, B08A due to its low weight in DIM. 2. |
| 3 | B04 | B07 | B11 | 35 55 | One band from each region is selected, taking into account the correlation between them. |
| 4 | B04 | B05, B08 | B11 | 35 55 | Band B07 is replaced by bands B05 and B08 due to their correlation with this and the weight in DIM. 1. |
| 5 | B04 | B05, B08 | - | 35 55 | The combination with bands B04, B05, and B08 is simplified by including data from two of the three regions. |
| 6 | - | B05, B07, B08, B08A | - | 35 55 | Bands in the IR region with high correlation values are studied. |
| 7 | B03, B04 | B08 | B11 | 35 55 | B03 and B04 bands are correlated, and data from the other two regions are included. |
| DAS | Combination | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
|---|---|---|---|---|---|---|---|
| 35 | Scenario 1 | Test | 0.88 | 0.85 | 0.77 | 0.92 | 0.80 |
| Validation | 0.89 | 0.88 | 0.77 | 0.92 | 0.81 | ||
| Scenario 2 | Test | 0.86 | 0.81 | 0.75 | 0.91 | 0.78 | |
| Validation | 0.87 | 0.80 | 0.73 | 0.90 | 0.76 | ||
| Scenario 3 | Test | 0.86 | 0.82 | 0.72 | 0.90 | 0.76 | |
| Validation | 0.86 | 0.81 | 0.76 | 0.90 | 0.78 | ||
| Scenario 4 | Test | 0.82 | 0.78 | 0.69 | 0.88 | 0.73 | |
| Validation | 0.80 | 0.77 | 0.68 | 0.86 | 0.71 | ||
| Scenario 5 | Test | 0.84 | 0.78 | 0.70 | 0.90 | 0.73 | |
| Validation | 0.85 | 0.79 | 0.74 | 0.90 | 0.76 | ||
| Scenario 6 | Test | 0.84 | 0.78 | 0.74 | 0.89 | 0.76 | |
| Validation | 0.86 | 0.82 | 0.73 | 0.90 | 0.76 | ||
| Scenario 7 | Test | 0.78 | 0.72 | 0.65 | 0.86 | 0.67 | |
| Validation | 0.79 | 0.74 | 0.67 | 0.85 | 0.70 | ||
| 55 | Scenario 1 | Test | 0.88 | 0.85 | 0.80 | 0.92 | 0.82 |
| Validation | 0.89 | 0.84 | 0.79 | 0.93 | 0.81 | ||
| Scenario 2 | Test | 0.86 | 0.80 | 0.75 | 0.91 | 0.77 | |
| Validation | 0.88 | 0.85 | 0.78 | 0.92 | 0.81 | ||
| Scenario 3 | Test | 0.85 | 0.84 | 0.74 | 0.90 | 0.78 | |
| Validation | 0.87 | 0.87 | 0.78 | 0.91 | 0.82 | ||
| Scenario 4 | Test | 0.79 | 0.71 | 0.65 | 0.86 | 0.67 | |
| Validation | 0.79 | 0.76 | 0.66 | 0.86 | 0.70 | ||
| Scenario 5 | Test | 0.83 | 0.76 | 0.69 | 0.88 | 0.72 | |
| Validation | 0.83 | 0.77 | 0.72 | 0.88 | 0.74 | ||
| Scenario 6 | Test | 0.84 | 0.78 | 0.72 | 0.89 | 0.75 | |
| Validation | 0.85 | 0.79 | 0.75 | 0.90 | 0.77 | ||
| Scenario 7 | Test | 0.76 | 0.67 | 0.63 | 0.84 | 0.64 | |
| Validation | 0.74 | 0.63 | 0.59 | 0.82 | 0.60 |
| DAS | Combination | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
|---|---|---|---|---|---|---|---|
| 35 | Scenario 1 | Test | 0.79 | 0.76 | 0.65 | 0.86 | 0.68 |
| Validation | 0.78 | 0.76 | 0.66 | 0.86 | 0.69 | ||
| Scenario 2 | Test | 0.66 | 0.64 | 0.53 | 0.76 | 0.56 | |
| Validation | 0.69 | 0.65 | 0.58 | 0.77 | 0.60 | ||
| Scenario 3 | Test | 0.64 | 0.62 | 0.52 | 0.75 | 0.53 | |
| Validation | 0.67 | 0.63 | 0.56 | 0.76 | 0.57 | ||
| Scenario 4 | Test | 0.65 | 0.62 | 0.52 | 0.76 | 0.55 | |
| Validation | 0.66 | 0.60 | 0.56 | 0.76 | 0.57 | ||
| Scenario 5 | Test | 0.67 | 0.64 | 0.55 | 0.77 | 0.57 | |
| Validation | 0.70 | 0.66 | 0.59 | 0.78 | 0.60 | ||
| Scenario 6 | Test | 0.65 | 0.61 | 0.50 | 0.75 | 0.52 | |
| Validation | 0.68 | 0.66 | 0.53 | 0.76 | 0.55 | ||
| Scenario 7 | Test | 0.60 | 0.62 | 0.48 | 0.72 | 0.52 | |
| Validation | 0.63 | 0.60 | 0.49 | 0.73 | 0.52 | ||
| 55 | Scenario 1 | Test | 0.72 | 0.71 | 0.57 | 0.81 | 0.60 |
| Validation | 0.72 | 0.75 | 0.56 | 0.81 | 0.60 | ||
| Scenario 2 | Test | 0.69 | 0.78 | 0.53 | 0.79 | 0.57 | |
| Validation | 0.69 | 0.78 | 0.52 | 0.79 | 0.56 | ||
| Scenario 3 | Test | 0.69 | 0.77 | 0.53 | 0.79 | 0.57 | |
| Validation | 0.69 | 0.74 | 0.52 | 0.79 | 0.56 | ||
| Scenario 4 | Test | 0.60 | 0.54 | 0.45 | 0.72 | 0.46 | |
| Validation | 0.63 | 0.55 | 0.45 | 0.73 | 0.47 | ||
| Scenario 5 | Test | 0.67 | 0.58 | 0.46 | 0.77 | 0.47 | |
| Validation | 0.68 | 0.53 | 0.46 | 0.78 | 0.47 | ||
| Scenario 6 | Test | 0.67 | 0.54 | 0.47 | 0.78 | 0.48 | |
| Validation | 0.68 | 0.50 | 0.46 | 0.78 | 0.47 | ||
| Scenario 7 | Test | 0.57 | 0.36 | 0.45 | 0.68 | 0.38 | |
| Validation | 0.59 | 0.31 | 0.40 | 0.67 | 0.33 |
| DAS | Combination | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
|---|---|---|---|---|---|---|---|
| 35 | Scenario 1 | Test | 0.93 | 0.91 | 0.86 | 0.95 | 0.88 |
| Validation | 0.92 | 0.89 | 0.83 | 0.94 | 0.86 | ||
| Scenario 2 | Test | 0.92 | 0.90 | 0.83 | 0.94 | 0.86 | |
| Validation | 0.92 | 0.89 | 0.84 | 0.94 | 0.86 | ||
| Scenario 3 | Test | 0.90 | 0.88 | 0.80 | 0.93 | 0.84 | |
| Validation | 0.89 | 0.87 | 0.78 | 0.93 | 0.82 | ||
| Scenario 4 | Test | 0.91 | 0.89 | 0.86 | 0.94 | 0.87 | |
| Validation | 0.93 | 0.90 | 0.86 | 0.95 | 0.88 | ||
| Scenario 5 | Test | 0.87 | 0.84 | 0.75 | 0.92 | 0.78 | |
| Validation | 0.88 | 0.87 | 0.79 | 0.92 | 0.82 | ||
| Scenario 6 | Test | 0.89 | 0.87 | 0.80 | 0.93 | 0.83 | |
| Validation | 0.90 | 0.88 | 0.81 | 0.93 | 0.84 | ||
| Scenario 7 | Test | 0.84 | 0.81 | 0.74 | 0.90 | 0.77 | |
| Validation | 0.85 | 0.81 | 0.77 | 0.90 | 0.79 | ||
| 55 | Scenario 1 | Test | 0.93 | 0.91 | 0.84 | 0.95 | 0.87 |
| Validation | 0.94 | 0.94 | 0.88 | 0.96 | 0.91 | ||
| Scenario 2 | Test | 0.92 | 0.91 | 0.85 | 0.95 | 0.87 | |
| Validation | 0.93 | 0.93 | 0.88 | 0.95 | 0.90 | ||
| Scenario 3 | Test | 0.90 | 0.90 | 0.83 | 0.93 | 0.86 | |
| Validation | 0.90 | 0.90 | 0.82 | 0.93 | 0.85 | ||
| Scenario 4 | Test | 0.91 | 0.88 | 0.84 | 0.94 | 0.86 | |
| Validation | 0.92 | 0.91 | 0.86 | 0.94 | 0.88 | ||
| Scenario 5 | Test | 0.85 | 0.82 | 0.69 | 0.90 | 0.73 | |
| Validation | 0.87 | 0.85 | 0.76 | 0.91 | 0.79 | ||
| Scenario 6 | Test | 0.87 | 0.84 | 0.76 | 0.92 | 0.79 | |
| Validation | 0.90 | 0.88 | 0.79 | 0.93 | 0.82 | ||
| Scenario 7 | Test | 0.83 | 0.77 | 0.76 | 0.89 | 0.77 | |
| Validation | 0.83 | 0.82 | 0.74 | 0.89 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agenjos-Moreno, A.; Simeón, R.; Rubio, C.; Uris, A.; Ricarte, B.; Franch, B.; San Bautista, A. Early Detection of Rice Blast Disease Using Satellite Imagery and Machine Learning on Large Intrafield Datasets. Agriculture 2025, 15, 2560. https://doi.org/10.3390/agriculture15242560
Agenjos-Moreno A, Simeón R, Rubio C, Uris A, Ricarte B, Franch B, San Bautista A. Early Detection of Rice Blast Disease Using Satellite Imagery and Machine Learning on Large Intrafield Datasets. Agriculture. 2025; 15(24):2560. https://doi.org/10.3390/agriculture15242560
Chicago/Turabian StyleAgenjos-Moreno, Alba, Rubén Simeón, Constanza Rubio, Antonio Uris, Beatriz Ricarte, Belén Franch, and Alberto San Bautista. 2025. "Early Detection of Rice Blast Disease Using Satellite Imagery and Machine Learning on Large Intrafield Datasets" Agriculture 15, no. 24: 2560. https://doi.org/10.3390/agriculture15242560
APA StyleAgenjos-Moreno, A., Simeón, R., Rubio, C., Uris, A., Ricarte, B., Franch, B., & San Bautista, A. (2025). Early Detection of Rice Blast Disease Using Satellite Imagery and Machine Learning on Large Intrafield Datasets. Agriculture, 15(24), 2560. https://doi.org/10.3390/agriculture15242560

