Abstract
Dairy cow longevity is a key driver of farm profitability, animal welfare, and environmental sustainability. Despite genetic progress in milk production, the average herd life has declined in many high-yielding dairy systems, raising concerns about early culling. This study analyzed data from 2057 Holstein–Friesian cows in Hungary to characterize the distribution and timing of culling events and to identify major risk factors affecting productive lifespan. We studied age, parity, milk yield, and culling reason using descriptive statistics, Kruskal–Wallis tests, multinomial logistic regression, and Kaplan–Meier survival analysis. Udder health problems were found to be the most frequent cause of culling (22.8%), followed by metabolic disorders (18.2%), locomotive problems (17.3%), and reproductive disorders (17.1%). Economic reasons such as low milk production contributed to a smaller proportion of culling. Most cows were culled after the second or third lactation, with survival probability dropping sharply within the first 1500–2000 days of life. Cows reaching four or more lactations represented a small but economically and genetically valuable subset of the herd. Our results indicated that in Hungary culling decisions are largely determined by health problems, which represent a greater limitation to the productive potential of dairy cows than economic factors. This research recommends that breeding programs prioritize genetic selection for robustness and that herd management adopts preventive health and reproductive strategies to prolong cow longevity, ultimately enhancing the efficiency and sustainability of dairy production systems. Additionally, prevention of animal wastage to foster animal welfare could be suggested as an additional advantage.