The Influence of Storage Technologies on the Quality and Storability of Blackcurrant (Ribes nigrum) Tihope cv.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Conditions
2.3. Measurements and Analyses
2.4. Data Processing and Statistical Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| RA | Regular atmosphere |
| CA | Controlled atmosphere |
| MAP | Modified atmosphere packaging |
| DS | Day of storage at 0 °C |
| SL | Shelf life |
| FF | Flesh firmness |
| TSSs | Total soluble solids |
| TA | Titratable acidity |
| TPCs | Total phenolic compounds |
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/TP (accessed on 15 April 2024).
- Gheribi, E. Związki polifenolowe w owocach i warzywach. Med. Rodz. 2011, 4, 111–115. [Google Scholar]
- Gopalan, A.; Reuben, S.C.; Ahmad, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Gryszczyńska, B.; Iskra, M.; Gryszczyńska, A.; Budzyń, M. Aktywność przeciwutleniająca wybranych owoców jagodowych. Postępy Fitoter. 2011, 4, 265–274. [Google Scholar]
- Jurgiel-Malecka, G.; Buchwał, A. Charakterystyka składu chemicznego owoców porzeczki uprawianej w regionie Pomorza Zachodniego. Żywność. Nauka. Technologia. Jakość 2016, 6, 90–101. [Google Scholar]
- Kowalski, R.; Gonzalez de Mejia, E. Phenolic composition, antioxidant capacity and physical characterization of ten blackcurrant (Ribes nigrum) cultivars, their juices, and the inhibition of type 2 diabetes and inflammation biochemical markers. Food Chem. 2021, 359, 129889. [Google Scholar] [CrossRef] [PubMed]
- Lister, C.E.; Wilson, P.E.; Sutton, K.H.; Morrison, S.C. Understanding the health benefits of blackcurrants. Acta Hortic. 2002, 585, 443–449. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Goulas, V.; Vicente, A.R.; Terry, L.A. Berry antioxidants: Small fruits providing large benefits. J. Sci. Food Agric. 2013, 94, 825–833. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic acid, anthocianins, organic acids and mineral content of some black and red currant cultivars. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef]
- Okatan, V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hort. 2020, 32, 79–85. [Google Scholar] [CrossRef]
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The effect of organic and conventional cultivations on antioxidants content in blackcurrant (Ribes nigrum L.) species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- Tian, Y.; Laaksonen, O.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.; Karhu, S.; Yang, B. Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. J. Agric. Food Chem. 2019, 67, 5621–5633. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT—Food Sci. Technol. 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Łysiak, G.P.; Lech, K.; Figiel, A. Functional relationships between phytochemicals and drying conditions during the processing of blackcurrant pomace into powders. Adv. Powder Technol. 2017, 28, 1340–1348. [Google Scholar] [CrossRef]
- Vicente, A.R.; Sozzi, G.O. Ripening and postharvest storage of ‘soft fruits’. Fruit Veg. Cereal Sci. Biotechnol. 2007, 1, 95–103. [Google Scholar]
- Gross, K.C.; Wang, C.Y.; Saltveit, M. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; Agriculture Handbook Number 66; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2016.
- Story, A.; Simons, D.H. Handling and Storage Practices for Fresh Fruit and Vegetables; Australian United Fresh Fruit and Vegetable Association Ltd.: Victoria, Australia, 1989. [Google Scholar]
- Batzer, U.; Helm, H.-U. Lagerung von Beerenobst (Storage of small fruits). Erwerbsobstbau 1999, 41, 51–55. [Google Scholar]
- Prange, R.K. Currant, Gooseberry, and Eldelberry. In The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; Gross, K.C., Wang, C.Y., Saltveit, M., Eds.; Agriculture Handbook 66; USDA, Agricultural Research Service: Washington, DC, USA, 2004; pp. 306–309. [Google Scholar]
- Thompson, A.K.; Prange, R.K.; Bancroft, R.; Putttongsiri, T. Recommended storage conditions for selected crops. In Controlled Atmosphere Storage of Fruits and Vegetables; CABI: Wallingford, UK, 2018; pp. 116–191. [Google Scholar] [CrossRef]
- Adobati, A.; Uboldi, E.; Franzetti, L.; Limbo, S. Shelf life extension of raspberry: Passive and active modified atmosphere inside master bag solutions. Chem. Eng. Trans. 2015, 44, 337–342. [Google Scholar] [CrossRef]
- Briano, R.; Giuggioli, N.R.; Girgenti, V.; Peano, C. Biodegradable and compostable film and modified atmosphere packaging in postharvest supply chain of raspberry fruits (cv. Grandeur). J. Food Process. Preserv. 2015, 39, 2061–2073. [Google Scholar] [CrossRef]
- Huynh, N.K.; Wilson, M.D.; Eyles, A.; Stanley, R.A. Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). J. Berry Res. 2019, 9, 687–707. [Google Scholar] [CrossRef]
- Pinto, L.; Palma, A.; Cefola, M.; Pace, B.; D’Aquino, S.; Carboni, C.; Baruzzi, F. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag. Shelf Life 2020, 26, 100573. [Google Scholar] [CrossRef]
- Stewart, D.; Oparka, J.; Johnstone, C.; Iannetta, P.P.M.; Davies, H.V. Effect of modified atmosphere packaging (MAP) on soft fruit quality. In Annual Report of the Scottish Crop Research Institute for 1999; Scottish Crop Research Institute: Dundee, Scotland, 1999; pp. 119–124. [Google Scholar]
- EN 12630:1999; Fruit and Vegetable Juices. Determination of Glucose, Fructose, Sorbitol and Sucrose Contents. Method Using High-Performance Liquid Chromatography. British Standards Institution: London, UK, 1999.
- Tsao, R.; Yang, R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A. Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol. 2007, 224, 755–762. [Google Scholar] [CrossRef]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 13.1; Dell Inc.: Tulsa, OK, USA; Statsoft Polska: Kraków, Poland, 2016.
- Gudkovskii, V.A.; Kozhina, L.V.; Akimov, M.Y.; Zhidekhina, T.V. Innovative storage technology of modern commercial black currant cultivars. Acta Hortic. 2020, 1277, 487–493. [Google Scholar] [CrossRef]
- Pluta, S.; Żurawicz, E.; Pruski, K. Suitability of fruits of selected blackcurrant (Ribes nigrum L.) cultivars for fresh market. J. Berry Res. 2012, 2, 23–31. [Google Scholar] [CrossRef]
- Pluta, S.; Żurawicz, E. ‘Tihope’ blackcurrant. HortScience 2015, 50, 1096–1098. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Duchovskis, P.; Bobinas, C. Changes in biologically active constituents during ripening in black currants. J. Fruit Ornam. Plant Res. 2006, 14 (Suppl. 2), 237–246. [Google Scholar]
- Siksnianas, T.; Stanys, V.; Sasnauskas, A.; Viskelis, P.; Rubinskiene, M. Fruit quality and processing potential in five new blackcurrant cultivars. J. Fruit Ornam. Plant Res. 2006, 14 (Suppl. 2), 265–271. [Google Scholar]
- Sasnauskas, A.; Trajkovski, V.; Strautina, S.; Tikhonova, O.; Siksnianas, T.; Rubinskiene, M.; Viskelis, P.; Lanauskas, J.; Valiuskaite, A.; Rugienius, R.; et al. Evaluation of blackcurrant cultivars and perspective hybrids in Lithuania. Agron. Res. 2009, 7, 737–743. [Google Scholar]
- Viskelis, P.; Anisimoviene, N.; Rubinskiene, M.; Jankovska, E.; Sasnauskas, A. Physical properties, antocianins and antioxidant activity of blackcurrant berries of different maturities. J. Food Agric. Environ. 2010, 8, 159–162. [Google Scholar]
- Pott, D.M.; Duran-Soria, S.; Allwood, J.W.; Pont, S.; Gordon, S.L.; Jennings, N.; Austin, C.; Stewart, D.; Brennan, R.M.; Masny, A.; et al. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits. Food Chem. 2023, 402, 134360. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Holcroft, D.M.; Kader, A.A. Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J. Agric. Food Chem. 1997, 45, 1662–1667. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.J.; Tabart, J.; Defraigne, J.O.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef] [PubMed]
- Van der Steen, C.; Jacxsens, L.; Devlieghere, F.; Debevere, J. Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biol. Technol. 2002, 26, 49–58. [Google Scholar] [CrossRef]



| Length of Fruit Storage in MAP | O2 (%) | CO2 (%) | Ethylene (ppm) |
|---|---|---|---|
| 2021 | |||
| 8 days of storage | - | 8.17 ± 0.670 | 0.144 ± 0.0101 |
| 2022 | |||
| 13 days of storage | 12.9 ± 1.15 | 9.70 ± 1.054 | 0.065 ± 0.0070 |
| 20 days of storage | 13.4 ± 0.35 | 9.50 ± 0.495 | 0.049 ± 0.0070 |
| 2023 | |||
| 18 days of storage | 14.4 ± 0.01 | 7.9 ± 1.280 | 0.038 ± 0.0035 |
| 33 days of storage | 14.4 ± 0.01 | 8.6 ± 0.490 | 0.028 ± 0.0007 |
| Length of Storage at 0 °C | Storage Conditions | Shelf Life (SL) Conditions | Evaluated Parameters |
|---|---|---|---|
| 2021 year | |||
| 8 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Respiration parameters Physicochemical parameters Content of sugars and bioactive compounds Sensory quality |
| 14 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Physicochemical parameters |
| 2022 year | |||
| 13 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Respiration parameters Physicochemical parameters Content of sugars and bioactive compounds Sensory quality |
| 20 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Respiration parameters Physicochemical parameters |
| 2023 year | |||
| 18 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Respiration parameters Physicochemical parameters Sensory quality |
| 33 days | RA CA MAP | 0 days—no SL 1 day at 18 °C 2 days at 10 °C | Respiration parameters Physicochemical parameters Content of sugars and bioactive compounds Sensory quality |
| Storage Technology | 2021 Year | 2022 Year | 2023 Year | |||
|---|---|---|---|---|---|---|
| 8 DS | 13 DS | 20 DS | 18 DS | 33 DS | ||
| CO2 Concentration (µL/g h) | ||||||
| Harvest | - | 27.01 ± 0.26 | 49.37 ± 1.80 | 42.31 ± 0.81 | ||
| No SL | RA | 26.96 ± 0.47 | 37.80 ± 1.08 | 34.25 ± 0.67 | 38.53 ± 0.57 | 34.67 ± 0.30 |
| CA | 30.13 ± 4.77 | 33.27 ± 4.85 | 26.63 ± 0.81 | 39.37 ± 3.25 | 43.24 ± 0.62 | |
| MAP | 34.81 ± 0.52 | 34.51 ± 0.60 | 33.37 ± 4.36 | 46.28 ± 1.92 | 43.93 ± 0.49 | |
| SL1d_18 °C | RA | 27.58 ± 0.55 | 29.51 ± 4.41 | 25.69 ± 0.51 | 28.90 ± 0.43 | 28.90 ± 5.01 |
| CA | 28.59 ± 0.75 | 32.49 ± 4.46 | 26.63 ± 0.81 | 30.24 ± 3.64 | 31.75 ± 5.40 | |
| MAP | 25.98 ± 5.60 | 37.44 ± 1.75 | 27.02 ± 2.32 | 39.97 ± 3.64 | 35.14 ± 0.39 | |
| SL2d_10 °C | RA | 32.73 ± 4.23 | 27.76 ± 0.26 | 31.71 ± 5.11 | 41.80 ± 5.13 | - |
| CA | 36.18 ± 0.90 | 37.67 ± 5.00 | 28.45 ± 0.86 | 35.80 ± 0.90 | 35.75 ± 1.08 | |
| MAP | 27.86 ± 1.64 | 26.15 ± 0.74 | 37.62 ± 6.71 | 39.30 ± 5.44 | 41.93 ± 6.21 | |
| Ethylene Concentration (µL/kg h) | ||||||
| Harvest | 0.02 ± 0.001 | 0.05 ± 0.022 | 0.04 ± 0.010 | |||
| No SL | RA | Not detectable | 0.04 ± 0.017 | 0.10 ± 0.048 | Not detectable | 0.06 ± 0.018 |
| CA | Not detectable | 0.02 ± 0.005 | 0.04 ± 0.013 | Not detectable | 0.02 ± 0.008 | |
| MAP | Not detectable | 0.05 ± 0.010 | 0.08 ± 0.020 | Not detectable | 0.03 ± 0.001 | |
| SL1d_18 °C | RA | Not detectable | 0.04 ± 0.018 | 0.11 ± 0.054 | 0.06 ± 0.036 | 0.10 ± 0.009 |
| CA | Not detectable | 0.05 ± 0.022 | 0.11 ± 0.029 | 0.03 ± 0.026 | 0.09 ± 0.014 | |
| MAP | Not detectable | 0.07 ± 0.035 | 0.07 ± 0.057 | 0.04 ± 0.022 | 0.16 ± 0.039 | |
| SL2d_10 °C | RA | 0.07 ± 0.012 | 0.05 ± 0.029 | 0.13 ± 0.046 | 0.04 ± 0.010 | - |
| CA | 0.03 ± 0.033 | 0.06 ± 0.019 | 0.07 ± 0.038 | 0.01 ± 0.015 | 0.04 ± 0.013 | |
| MAP | 0.03 ± 0.018 | 0.04 ± 0.004 | 0.11 ± 0.015 | 0.09 ± 0.051 | 0.14 ± 0.022 | |
| Storage Conditions | ABTS | TPC | Vitamin C | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
| 8 DS | 13 DS | 33 DS | 8 DS | 13 DS | 33 DS | 8 DS | 13 DS | 33 DS | ||
| Harvest | 7.2 b * | 9.1 b | 5.7 a | 330.4 bc | 336.5 bc | 287.3 ab | 146.2 abc | 175.0 bc | 116.7 abc | |
| No SL | RA | 8.4 de | 9.4 c | 6.4 bc | 320.4 ab | 350.5 cd | 299.0 b | 159.1 c | 181.6 d | 114.2 abc |
| CA | 8.0 c | 9.4 c | 6.7 d | 333.8 bc | 330.4 b | 300.2 b | 158.1 bc | 178.7 cd | 135.2 d | |
| MAP | 5.2 a | 8.8 b | 7.4 f | 349.7 de | 329.5 b | 331.1 c | 143.9 abc | 171.0 b | 131.3 d | |
| SL1d_18 °C | RA | 8.6 ef | 11.0 f | 7.0 e | 314.4 a | 364.6 de | 295.9 ab | 134.6 a | 187.5 e | 119.8 bc |
| CA | 8.9 g | 7.4 a | 6.3 b | 335.7 cd | 300.1 a | 283.2 a | 142.9 ab | 151.0 a | 108.8 a | |
| MAP | 9.8 g | 9.7 d | 7.0 e | 357.2 ef | 334.3 bc | 298.2 b | 140.5 a | 175.8 c | 122.5 c | |
| SL2d_10 °C | RA | 8.2 cd | 9.7 cd | - ** | 339.0 cd | 359.6 de | - | 134.9 a | 181.8 d | - |
| CA | 8.7 fg | 10.2 e | 6.5 c | 374.8 g | 368.9 e | 283.4 a | 147.3 abc | 187.8 e | 111.1 ab | |
| MAP | 8.1 c | 9.9 de | 7.1 e | 369.8 fg | 361.0 de | 294.5 ab | 138.0 a | 178.6 cd | 114.3 abc | |
| Storage Conditions | Sucrose | Glucose | Fructose | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | ||
| 8 DS | 13 DS | 33 DS | 8 DS | 13 DS | 33 DS | 8 DS | 13 DS | 33 DS | ||
| Harvest | 11.2 ab * | 15.0 f | 12.5 g | 22.2 a | 23.5 cd | 22.6 ab | 34.8 a | 37.1 bc | 36.0 a | |
| No SL | RA | 10.3 a | 11.3 cd | 7.5 c | 25.7 c | 25.0 e | 22.0 a | 40.0 c | 41.4 f | 37.1 ab |
| CA | 11.4 bc | 11.5 d | 10.0 e | 25.8 c | 22.7 bc | 25.6 cd | 40.5 c | 36.4 b | 37.9 b | |
| MAP | 15.0 e | 10.8 bcd | 11.9 f | 27.7 d | 21.8 b | 26.1 cd | 42.7 d | 36.3 b | 42.8 de | |
| SL1d_18 °C | RA | 12.3 cd | 11.1 bcd | 6.5 b | 23.6 b | 24.3 de | 24.4 bc | 38.0 b | 41.3 f | 43.9 e |
| CA | 12.4 d | 7.7 a | 8.8 d | 25.3 c | 18.3 a | 22.7 ab | 39.3 bc | 29.4 a | 36.0 a | |
| MAP | 11.2 ab | 10.7 bc | 8.6 d | 25.4 c | 21.7 b | 27.1 d | 39.9 c | 38.0 d | 43.0 de | |
| SL2d_10 °C | RA | 10.3 a | 10.6 b | - ** | 25.9 c | 21.8 b | - | 40.5 c | 38.0 cd | - |
| CA | 11.6 bcd | 13.0 e | 8.7 d | 25.9 c | 23.9 cde | 26.1 cd | 40.5 c | 39.1 e | 40.1 c | |
| MAP | 11.5 bcd | 10.4 b | 6.2 a | 24.9 c | 22.0 b | 25.1 c | 39.1 bc | 37.5 cd | d | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupińska, A.; Rutkowski, K.P.; Jóźwiak, Z.B.; Mieszczakowska-Frąc, M.; Ropelewska, E.; Wrzodak, A.; Szwejda-Grzybowska, J.; Masny, A. The Influence of Storage Technologies on the Quality and Storability of Blackcurrant (Ribes nigrum) Tihope cv. Agriculture 2025, 15, 2449. https://doi.org/10.3390/agriculture15232449
Skorupińska A, Rutkowski KP, Jóźwiak ZB, Mieszczakowska-Frąc M, Ropelewska E, Wrzodak A, Szwejda-Grzybowska J, Masny A. The Influence of Storage Technologies on the Quality and Storability of Blackcurrant (Ribes nigrum) Tihope cv. Agriculture. 2025; 15(23):2449. https://doi.org/10.3390/agriculture15232449
Chicago/Turabian StyleSkorupińska, Anna, Krzysztof P. Rutkowski, Zbigniew B. Jóźwiak, Monika Mieszczakowska-Frąc, Ewa Ropelewska, Anna Wrzodak, Justyna Szwejda-Grzybowska, and Agnieszka Masny. 2025. "The Influence of Storage Technologies on the Quality and Storability of Blackcurrant (Ribes nigrum) Tihope cv." Agriculture 15, no. 23: 2449. https://doi.org/10.3390/agriculture15232449
APA StyleSkorupińska, A., Rutkowski, K. P., Jóźwiak, Z. B., Mieszczakowska-Frąc, M., Ropelewska, E., Wrzodak, A., Szwejda-Grzybowska, J., & Masny, A. (2025). The Influence of Storage Technologies on the Quality and Storability of Blackcurrant (Ribes nigrum) Tihope cv. Agriculture, 15(23), 2449. https://doi.org/10.3390/agriculture15232449

