Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolate Collection and Preparation
2.2. In Vitro Mycelial Inhibition Assays
2.3. Fungicide Resistance Survey of Leptosphaeria maculans Field Populations
2.4. Sanger Sequencing of SDHI Target Genes
2.5. Deep Amplicon Sequencing (DAS) Markers for Fungal Population Monitoring
3. Results
3.1. Baseline Sensitivity of the SDHI Chemistries
3.2. Field Sensitivity of the SDHI Chemistries
3.3. Genetic Variation Within the SDHI Target Genes and Development of DAS Markers for Population Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, X.; Koopmann, B.; Ulber, B.; von Tiedemann, A. A global survey on diseases and pests in oilseed rape—Current challenges and innovative strategies of control. Front. Agron. 2020, 2, 590908. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Scanlan, J.L.; Marcroft, S.J.; Smith, A.J.; Sheedy, E.M.; Perndt, N.W.; Harrison, C.E.; Forsyth, L.M.; Idnurm, A. Fungicide sensitivity and resistance in the blackleg fungus, Leptosphaeria maculans, across canola growing regions in Australia. Crop Pasture Sci. 2021, 72, 994–1007. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Marcroft, S.J.; Sprague, S.J.; Scanlan, J.L.; Vesk, P.A.; Idnurm, A. Epidemiology and management of blackleg of canola in response to changing farming practices in Australia. Australas. Plant Pathol. 2021, 50, 137–149. [Google Scholar] [CrossRef]
- Ridley, L.; Parrish, G.; Chantry, T.; Richmond, A.; MacArthur, R.; Garthwaite, D. Pesticide Usage Survey Report: Arable Crops in the United Kingdom 2022; GOV.UK: London, UK, 2023.
- Zhang, X.; Fernando, W.G.D. Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci. 2018, 69, 40–47. [Google Scholar] [CrossRef]
- Canada, S. Table 32-10-0209-02 Average Number of Pesticide Applications and Average Percentage of Area Receiving Pesticides, by Farm Production Type. 2022. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210020901 (accessed on 6 July 2025).
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Sierotzki, H.; Scalliet, G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 2013, 103, 880–887. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Barr, L.; Bousquet, L.; Glaab, A.; Canning, G.; Ritchie, F.; Kildea, S.; Fraaije, B.A.; West, J.S. Evolution of decreased sensitivity to azole fungicides in western European populations of Plenodomus lingam (Phoma stem canker on oilseed rape). Plant Pathol. 2024, 73, 1517–1532. [Google Scholar] [CrossRef]
- Fajemisin, O.; Mazáková, J.; Ryšánek, P. Emergence of fungicide sensitivity in Leptosphaeria maculans isolates collected from the Czech Republic to DMI fungicides. Agriculture 2022, 12, 237. [Google Scholar] [CrossRef]
- Yang, Y.; Marcoft, S.J.; Forsyth, L.M.; Zhao, J.; Li, Z.; Van de Wouw, A.P.; Idnurm, A. Sterol demethylation inhibitor fungicide resistance in Leptosphaeria maculans is caused by modifications in the regulatory region of ERG11. Plant Dis. 2020, 104, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, J.L.; Mitchell, A.C.; Marcroft, S.J.; Forsyth, L.M.; Idnurm, A.; Van de Wouw, A.P. Deep amplicon sequencing reveals extensive allelic diversity in the erg11/cyp51 promoter and allows multi-population DMI fungicide resistance monitoring in the canola pathogen Leptosphaeria maculans. Fungal Genet. Biol. 2023, 168, 103814–103826. [Google Scholar] [CrossRef] [PubMed]
- King, K.M.; González-Rodríguez, L.M.; Kaczmarek, J.; Jędryczka, M.; West, J.S. Decreased DMI sensitivity of Plenodomus biglobosus (phoma of oilseed rape) associated with CYP51 substitution G476S. Pest Manag. Sci. 2025. [Google Scholar] [CrossRef] [PubMed]
- FRAC, Sterol Biosynthesis Inhibitor (SBI) Working Group. Minutes from WG Meeting on January 19th and March 21st 2024; Fungicide Resistance Action Committee: Brussels, Belgium, 2024; Available online: https://www.frac.info/media/f5edigir/minutes-of-the-2024-sbi-meeting-recommendations-for-2024-from-jan-19th-and-march-21st-2024.pdf (accessed on 6 July 2025).
- McCallum, A.J.; Idnurm, A.; Sheedy, E.M.; Van de Wouw, A.P. Sensitivity of Leptosphaeria maculans to QOI fungicides in Australia. Pest Manag. Sci. 2025; submitted. [Google Scholar]
- Fraser, M.; Hwang, S.F.; Ahmed, H.U.; Akhavan, A.; Stammler, G.; Barton, W.; Strelkov, S.E. Sensitivity of Leptosphaeria maculans to pyraclostrobin in Alberta, Canada. Can. J. Plant Sci. 2017, 97, 83–91. [Google Scholar] [CrossRef]
- Wang, Y.; Akhavan, A.; Hwang, S.F.; Strelkov, S.E. Decreased sensitivity of Leptosphaeria maculans to pyraclostrobin in Alberta, Canada. Plant Dis. 2020, 104, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- FRAC, Succinate Dehydrogenase Inhibitor (SDHI) Working Group. Virtual Meetings on January 16–17 and March 22, 2024; Fungicide Resistance Action Committee: Brussels, Belgium, 2024; Available online: https://www.frac.info/media/yf5nafhq/minutes-of-the-2024-sdhi-meeting-with-recommendations-for-2024-from-16-17th-jan-and-22nd-march-2024.pdf (accessed on 6 July 2025).
- Gawande, P.; Jana, S.; Kumar, A.; Biswas, J.; Bharti, D.; Jyoti, S.; Murmu, A.; Matore, B.W.; Singh, J.; Roy, P.P. Fungicidal SDH Inhibitors in Agriculture: Regulation and Future Perspectives. In Deciphering The Role of Succinate Dehydrogenase in Drug Discovery; Springer Nature: Singapore, 2025; pp. 227–268. [Google Scholar]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Van de Wouw, A.P.; Elliott, V.L.; Chang, S.; López-Ruiz, F.; Marcroft, S.J.; Idnurm, A. Identification of isolates of the plant pathogen Leptosphaeria maculans with resistance to the triazole fungicide fluquinconazole using a novel in planta assay. PLoS ONE 2017, 12, e0188106. [Google Scholar] [CrossRef] [PubMed]
- McCredden, J.; Cowley, R.B.; Marcroft, S.J.; Van de Wouw, A.P. Changes in farming practices impact on spore release patterns of the blackleg pathogen, Leptosphaeria maculans. Crop Pasture Sci. 2018, 69, 1–8. [Google Scholar] [CrossRef]
- McCallum, A.J.; Idnurm, A.; Scanlan, J.L.; Van de Wouw, A.P. Analysis of population-level avirulence and virulence genetic frequencies provides insight into resistance gene rotation and plant disease epidemiology. Plant Pathol. 2025, 74, 1055–1067. [Google Scholar] [CrossRef]
- Bushnell, B.; Rood, J.; Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 2017, 12, e0185056. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Lin, Y. VStrains: De novo reconstruction of viral strains via iterative path extraction from assembly graphs. In Proceedings of the International Conference on Research in Computational Molecular Biology, Istanbul, Turkey, 16–19 April 2023; pp. 3–20. [Google Scholar]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- FRAC. FRAC Code List 2024: Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action; Fungicide Resistance Action Committee: Brussels, Belgium, 2024; Available online: https://www.frac.info/media/kufnaceb/frac-code-list-2024.pdf (accessed on 6 July 2025).
- Hollomon, D.W. Fungicide resistance: Facing the challenge—A review. Plant Prot. Sci. 2015, 51, 170–176. [Google Scholar] [CrossRef]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathol. 2021, 71, 150–169. [Google Scholar] [CrossRef]
- Fraaije, B.A.; Bayon, C.; Atkins, S.; Cools, H.J.; Lucas, J.A.; Fraaije, M.W. Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Mol. Plant Pathol. 2012, 13, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Miao, S.; Qian, L.; Jiang, J.; Liu, S. Sensitivity of Sclerotinia sclerotiorum to bixafen and its mixtures in Henan Province. Chin. J. Pestic. Sci. 2023, 25, 946–953. [Google Scholar] [CrossRef]
- Hou, Y.-P.; Mao, X.-W.; Wang, J.-X.; Zhan, S.-W.; Zhou, M.-G. Sensitivity of Fusarium asiaticum to a novel succinate dehydrogenase inhibitor fungicide pydiflumetofen. Crop Prot. 2017, 96, 237–244. [Google Scholar] [CrossRef]
- Bolognesi, M.; Zuniga, A.I.; Rebello, C.S.; Marin, M.V.; Peres, N.A. Baseline sensitivity and resistance monitoring of Botrytis cinerea isolates from Florida strawberry to pydiflumetofen. Trop. Plant Pathol. 2023, 49, 147–156. [Google Scholar] [CrossRef]
- Fajemisin, O.; Mazáková, J.; Ryšánek, P. Evaluation of the sensitivity of Leptosphaeria maculans isolates causing phoma stem canker in oilseed rape in the Czech Republic to boscalid and dimoxystrobin fungicides. Plant Prot. Sci. 2022, 58, 305–314. [Google Scholar] [CrossRef]
- Padmathilake, K.R.E.; Parks, P.S.; Gulden, R.H.; Rosset, J.; Zhao, L.; Fernando, W.G.D. Pydiflumetofen: An SDHI seed-applied fungicide, a potential tool for the canola-blackleg management toolbox. Plant Pathol. 2022, 71, 1992–2003. [Google Scholar] [CrossRef]
- Sang, H.; Lee, H.B. Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi. Res. Plant Dis. 2020, 26, 1–7. [Google Scholar] [CrossRef]
- Dorigan, A.F.; Moreira, S.I.; da Silva Costa Guimarães, S.; Cruz-Magalhães, V.; Alves, E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. Pest Manag. Sci. 2023, 79, 4731–4753. [Google Scholar] [CrossRef] [PubMed]
Trade Name | Manufacturer 1 | Active Ingredients/s | FRAC Group/s | Application Rate |
---|---|---|---|---|
Aviator XPro® | Bayer Cropscience | Bixafen + prothioconazole | 7 + 3 | 550 mL ha−1 |
Saltro® | Syngenta | Pydiflumetofen | 7 | 2 mL kg−1 seed |
ILeVO® | BASF | Fluopyram | 7 | 8 mL kg−1 seed |
Prosaro® | Bayer Australia | Prothioconazole + tebuconazole | 3 + 3 | 375 mL ha−1 |
Gene | Primer Name | Primer Sequence | Region | Description |
---|---|---|---|---|
sdhB | LmsdhB-1F | CGGTCCAACTCGATGATTGC | Coding | Sanger sequencing and Deep Amplicon Sequencing |
LmsdhB-1R | TGATGAAAAAGAATTTGTGACTCGC | Coding | Sanger sequencing and Deep Amplicon Sequencing | |
LmsdhBp-1F | TTTTGCCGTTGGTTGTGAGG | Promoter | Sanger sequencing | |
LmsdhBp-1R | CTTCTCCGAGACAGGCTTCC | Promoter | Sanger sequencing | |
sdhC | LmsdhC-1F | CGGGTTGTTCTTTTCTTCCGC | Coding | Sanger sequencing and Deep Amplicon Sequencing |
LmsdhC-1R | ATCGAGACGTGACTAAGCAGC | Coding | Sanger sequencing and Deep Amplicon Sequencing | |
LmsdhCp-1F | GCTTGGCAGGTGCATACCTA | Promoter | Sanger sequencing | |
LmsdhCp-1R | AGGGGTGGGAGAGTTCCAAA | Promoter | Sanger sequencing | |
sdhD | LmsdhD-1F | AAACCATTTTTCAGCGTTGTCG | Coding | Sanger sequencing and Deep Amplicon Sequencing |
LmsdhD-1R | TATCAAGATGCCACGCCTAC | Coding | Sanger sequencing and Deep Amplicon Sequencing | |
LmsdhDp-1F | CAGAATGACATCACGCTCGC | Promoter | Sanger sequencing | |
LmsdhDp-1R | CGGGTAGTAGAGGTGGTGAC | Promoter | Sanger sequencing |
Bixafen | Pydiflumetofen | |||
---|---|---|---|---|
Isolate | EC50 (ng mL−1) | se | EC50 (ng mL−1) | se |
D2 | 1.37 | 0.36 | 5.43 | 2.00 |
D3 | 1.38 | 0.09 | 4.22 | 0.66 |
D4 | 0.66 | 0.07 | 3.2 | 0.31 |
D5 | 2.9 | 0.23 | 2.58 | 0.21 |
D8 | 0.52 | 0.12 | 2.89 | 0.29 |
D9 | 2.69 | 0.55 | 4.12 | 1.58 |
D14 | 2.17 | 0.22 | 6.09 | 0.75 |
D16 | 2.09 | 0.13 | 5.63 | 0.79 |
D17 | 14.69 | 2.14 | 13.59 | 3.79 |
D20 | 2.18 | 0.73 | 7.62 | 1.47 |
D21 | 2.32 | 0.11 | 8.36 | 1.07 |
D22 | 1.92 | 0.42 | 1.79 | 0.66 |
D23 | 1.67 | 0.18 | 3.81 | 0.51 |
D25 | 4.1 | 0.88 | 4.17 | 0.61 |
D26 | 0.96 | 0.08 | 3.39 | 0.47 |
D27 | 1.57 | 0.19 | 3.1 | 0.36 |
15BL997 | 1.2 | 0.26 | 5.38 | 1.17 |
15BL1002 | 2.13 | 0.24 | 5.26 | 0.88 |
18BL151 | 2.31 | 0.27 | 4.12 | 0.80 |
20BL200 | 1.88 | 0.41 | 3.52 | 0.54 |
22BL121 | 7.52 | 1.74 | 4.3 | 0.50 |
22BL123 | 1.39 | 0.14 | 4.61 | 0.62 |
22BL131 | 2.79 | 0.38 | 4.55 | 0.49 |
22BL132 | 2.57 | 1.60 | 5.68 | 2.17 |
Population Details | Resistance Rating | |||||
---|---|---|---|---|---|---|
Number | Locality | State | Saltro® | ILeVO® | Aviator® | Prosaro® |
1 | Edilillie | SA | None | None | None | Moderate |
2 | Karkoo | SA | None | None | None | None |
3 | Kapinnie | SA | None | None | None | None |
4 | Hincks | SA | None | None | None | None |
5 | Hincks | SA | None | None | None | Moderate |
6 | Wangary | SA | None | None | None | Low |
7 | Cockaleechie | SA | None | None | Low | Moderate |
8 | Cockaleechie | SA | None | Moderate | None | Low |
9 | Yeelanna | SA | None | None | None | None |
10 | Wagga Wagga | NSW | None | None | None | Moderate |
11 | Galong | NSW | None | None | None | Moderate |
12 | Young | NSW | None | Low | None | Moderate |
13 | Iandra | NSW | None | None | None | Low |
14 | Greenethorpe | NSW | None | None | None | None |
15 | Berthong | NSW | None | None | None | None |
16 | Young | NSW | None | None | None | Moderate |
17 | Cunningar | NSW | None | None | None | Moderate |
18 | Cowra | NSW | None | None | None | None |
19 | Cudal | NSW | Low | None | None | None |
Genotype | sdhB | sdhC | sdhD |
---|---|---|---|
Ref | 0–0.54 | 0–90.3 | 90.7–100 |
A | 55.3–99.8 | 0.04–90.9 | 0–9.3 |
B | 97.1–100 | 2.7–99.1 | - |
C | - | 3.3–99.3 | - |
D | - | 3.2–99 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCallum, A.J.; Idnurm, A.; Van de Wouw, A.P. Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring. Agriculture 2025, 15, 1591. https://doi.org/10.3390/agriculture15151591
McCallum AJ, Idnurm A, Van de Wouw AP. Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring. Agriculture. 2025; 15(15):1591. https://doi.org/10.3390/agriculture15151591
Chicago/Turabian StyleMcCallum, Alec J., Alexander Idnurm, and Angela P. Van de Wouw. 2025. "Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring" Agriculture 15, no. 15: 1591. https://doi.org/10.3390/agriculture15151591
APA StyleMcCallum, A. J., Idnurm, A., & Van de Wouw, A. P. (2025). Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring. Agriculture, 15(15), 1591. https://doi.org/10.3390/agriculture15151591