Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analytical Framework
2.3. Tools and Visualization
2.4. Thematic Analysis and Theoretical Framing
3. Results
3.1. A Bibliometric Review
3.2. Literature Review
3.2.1. Various Aspects Studied About Shelterbelts and Windbreaks and Agriculture
3.2.2. Ecosystem Services Provided by Shelterbelts and Windbreaks
3.2.3. Beneficial Effects of Shelterbelts and Windbreaks on Agriculture
3.2.4. Tree Species Used for Creating Agricultural Shelterbelts and Windbreaks
3.2.5. Technologies for the Establishment of Agricultural Shelterbelts and Windbreaks
4. Discussion
4.1. Bibliometric Review
4.2. Various Aspects Studied About Shelterbelts and Windbreaks and Agriculture
4.3. Ecosystem Services Provided by Shelterbelts and Windbreaks
4.3.1. Soil Protection and Carbon Sequestration
4.3.2. Biodiversity Conservation
4.3.3. Climate Regulation
4.3.4. Conclusions
4.4. Beneficial Effects of Shelterbelts and Windbreaks on Agriculture
4.5. Tree Species Used for Creating Agricultural Shelterbelts and Windbreaks
4.6. Technologies for the Establishment of Agricultural Shelterbelts and Windbreaks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dolocan, C.; Mușat, M.; Ciceoi, R.; Argatu, G.; Mușat, I.B.; Petcu, M. Aspects regarding the shelterbelts establisment in Bărăgan Plain. Sci. Pap. Ser. A Agron. 2022, 65, 54–60. [Google Scholar]
- Mușat, M.; Vasile, V.M.; Dolocan, C.; Argatu, G. Research on land suitability in Cunești Area, Călărași County, for the establishment of forest plantations on sandy lands. Sci. Pap. Ser. A Agron. 2024, 67, 151–156. [Google Scholar]
- Rogobete, G.; Grozav, A. Arid climate improvement in the Low Plain Aranca with fruit tree and forest shelter-belts. Sci. Pap. Ser. A Agron. 2024, 67, 596–601. [Google Scholar]
- Smith, M.M.; Bentrup, G.; Kellerman, T.; MacFarland, K.; Straight, R.; Ameyaw, L. Windbreaks in the United States: A systematic review of producer-reported benefits, challenges, management activities, and drivers of adoption. Agric. Syst. 2021, 187, 103032. [Google Scholar] [CrossRef]
- Mize, C.W.; Brandle, J.R.; Schoeneberger, M.M.; Bentrup, G. Ecological development and function of shelterbelts in temperate North America. In Toward Agroforestry Design: An Ecological Approach; Springer: Dordrecht, The Netherlands, 2008; pp. 27–54. [Google Scholar]
- Mușat, M.; Ciceoi, R.; Dolocan, C.; Argatu, G.; Mușat, I.B.; Petcu, M. The suitability of southeastern areas of Romania for the establishment of shelterbelts. Sci. Pap. Ser. A Agron. 2022, 65, 111–117. [Google Scholar]
- Popescu, L.; Safta, A.S. How forest management practices affect the amount of carbon stored in the forest. AgroLife Sci. J. 2024, 13, 200–209. [Google Scholar]
- Trifan, D.; Lungu, E.; Ghiorghe, A.I.; Șerban, D.G. The importance of agroforestry curtains for anti-erosion protection and increasing the productivity of agricultural crops. Sci. Pap. Ser. A Agron. 2024, 67, 909–914. [Google Scholar]
- Hess, G.R.; Bay, J.M. A regional assessment of windbreak habitat suitability. Environ. Monit. Assess. 2000, 61, 239–256. [Google Scholar] [CrossRef]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. In New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004; Springer: Dordrecht, The Netherlands, 2004; pp. 65–78. [Google Scholar]
- Grala, R.K.; Colletti, J.P.; Mize, C.W. Willingness of Iowa agricultural landowners to allow fee hunting associated with in-field shelterbelts. In Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2008; pp. 207–218. [Google Scholar]
- Tyndall, J. Characterizing pork producer demand for shelterbelts to mitigate odor: An Iowa case study. Agrofor. Syst. 2009, 77, 205–221. [Google Scholar] [CrossRef]
- Enescu, C.M. Which are the most common non-wood forest products in the case of Ialomița County? AgroLife Sci. J. 2017, 6, 98–103. [Google Scholar]
- Vasile, D.; Dincă, L.; Enescu, C.M. Impact of collecting mushrooms from the spontaneous flora on forest ecosystems in Romania. AgroLife Sci. J. 2017, 6, 268–275. [Google Scholar]
- Ruiz-Gonzalez, M.X.; Vicente, O. Agrobiodiversity: Conservation, threats, challenges, and strategies for the 21st century. AgroLife Sci. J. 2023, 12, 174–185. [Google Scholar] [CrossRef]
- Mihalache, M.; Ilie, L.; Marin, D. Romanian soil resources—“Healthy Soils for a Healthy Life”. AgroLife Sci. J. 2015, 4, 101–110. [Google Scholar]
- Chiper, A.M. Policies to reduce the impact of climate changes on the agriculture and environment—From speech to practice. AgroLife Sci. J. 2015, 4, 22–31. [Google Scholar]
- Constandache, C.; Tudor, C.; Vlad, R.; Dincă, L.; Popovici, L. The productivity of pines on degraded lands. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2021, 10, 76–84. [Google Scholar]
- Constandache, C.; Tudor, C.; Popovici, L.; Vlad, R. The state and behaviour of some forestry cultures installed on degraded lands in the forest-steppe site. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2023, 12, 215–223. [Google Scholar]
- Rempel, J.C.; Kulshreshtha, S.N.; Amichev, B.Y.; Van Rees, K.C. Costs and benefits of shelterbelts: A review of producers’ perceptions and mind map analyses for Saskatchewan, Canada. Can. J. Soil Sci. 2017, 97, 341–352. [Google Scholar] [CrossRef]
- Baker, T.P.; Moroni, M.T.; Mendham, D.; Smith, R.; Hunt, M.A. Impacts of windbreak shelter on crop and livestock production. Crop Pasture Sci. 2018, 69, 785–796. [Google Scholar] [CrossRef]
- Tsuji, O.; Muneoka, T.; Takeda, K.; Tsuchiya, F. The effectiveness of windbreaks using GIS in the Tokachi Region, Hokkaido. J. Agric. Meteorol. 2005, 60, 993–996. [Google Scholar] [CrossRef]
- Lassoie, J.P.; Buck, L.E.; Current, D.; Gordon, A.M.; Thevathasan, N.V.; Nair, P.R.; Flora, C. North American Agroforestry: An Integrated Science and Practice; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Cleugh, H.A. Effects of windbreaks on airflow, microclimates and crop yields. Agrofor. Syst. 1998, 41, 55–84. [Google Scholar] [CrossRef]
- Nuberg, I.K.; Mylius, S.J. Effect of shelter on the yield and water use of wheat. Aust. J. Exp. Agric. 2002, 42, 773–780. [Google Scholar] [CrossRef]
- Kort, J.; Turnock, R. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agrofor. Syst. 1998, 44, 175–186. [Google Scholar] [CrossRef]
- Grace, J. Plant Response to Wind; Department of Forestry & Natural Resources, University of Edinburgh: Edinburgh, UK, 1977; 204p. [Google Scholar]
- Chendev, Y.G.; Sauer, T.J.; Gennadiev, A.N.; Novykh, L.L.; Petin, A.N.; Petina, V.I.; Burras, C.L. Accumulation of organic carbon in chernozems (Mollisols) under shelterbelts in Russia and the United States. Eurasian Soil Sci. 2015, 48, 43–53. [Google Scholar] [CrossRef]
- Dincă, L.; Achim, F. The management of forests situated on fields susceptible to landslides and erosion from the Southern Carpathians. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 183–188. [Google Scholar]
- Enescu, C.M. Perspectives on field protective shelterbelts: An essential component for agroforestry system expansion across Romania. Sci. Pap. Ser. A Agron. 2024, 67, 809–814. [Google Scholar]
- Van Eimern, J.A. Windbreaks and Shelterbelts; Technical note; World Meteorological Organization: Geneva, Switzerland, 1964; Volume 59, p. 30.
- Zheng, X.; Zhu, J. A methodological approach for spatial downscaling of TRMM precipitation data in North China. Int. J. Remote Sens. 2015, 36, 144–169. [Google Scholar] [CrossRef]
- Yonezawa, C.; Miura, Y. Extraction of Igune, a Traditional Japanese Windbreak Forest, Based on K-Means Clustering of Spot6 Imagery. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6232–6235. [Google Scholar]
- Wiseman, G.; Kort, J.; Walker, D. Quantification of shelterbelt characteristics using high-resolution imagery. Agric. Ecosyst. Environ. 2009, 131, 111–117. [Google Scholar] [CrossRef]
- Schroeder, W.R.; Kort, J. Shelterbelts in the Soviet Union. J. Soil Water Conserv. 1989, 44, 130–134. [Google Scholar] [CrossRef]
- Červená, T.; Hušbauer, J.; Jarský, V.; Červený, L.; Herrová, A.; Kupčák, V.; Riedl, M. The importance of windbreaks and their ecosystem services. Zprávy Lesn. Výzk. 2020, 65, 40–49. [Google Scholar]
- Constandache, C.; Peticilă, A.; Dincă, L.; Vasile, D. The usage of Sea Buckthorn (Hippophae rhamnoides L.) for improving Romania’s degraded lands. AgroLife Sci. J. 2016, 5, 50–58. [Google Scholar]
- Ciuvăț, A.L.; Abrudan, I.V.; Ciuvăț, C.G.; Marcu, C.; Lorenț, A.; Dincă, L.; Szilard, B. Black locust (Robinia pseudoacacia L.) in Romanian forestry. Diversity 2022, 14, 780. [Google Scholar] [CrossRef]
- Silvestru-Grigore, C.V.; Dinulică, F.; Spârchez, G.; Hălălișan, A.F.; Dincă, L.C.; Enescu, R.E.; Crișan, V.E. Radial growth behavior of pines on Romanian degraded lands. Forests 2018, 9, 213. [Google Scholar] [CrossRef]
- Bird, P.R.; Bicknell, D.; Bulman, P.A.; Burke, S.J.A.; Leys, J.F.; Parker, J.N.; Voller, P. The role of shelter in Australia for protecting soils, plants and livestock. In The Role of Trees in Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 1993; pp. 59–86. [Google Scholar]
- Clarivate. Web of Science Core Collection. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-core-collection/ (accessed on 19 March 2025).
- Scopus. Available online: https://www.elsevier.com/products/scopus (accessed on 10 January 2025).
- Microsoft.com. Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel?legRedir=true&CorrelationId=3bb60ab0-fe13-41a4-812b-2627667cf346 (accessed on 21 March 2025).
- Geochart. Google Developers. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 21 March 2025).
- VOS Viewer. Available online: https://www.vosviewer.com/ (accessed on 25 March 2025).
- Aftab, A.; Ahmed, A.; Scarpa, R. Farm households’ perception of weather change and flood adaptations in northern Pakistan. Ecol. Econ. 2021, 182, 106882. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Xue, L.L.; Saleem, M.F.; Wang, G.X.; Zou, C.M. Desertification in Pakistan: Causes, impacts and management. J. Food Agric. Environ. 2010, 8, 1203–1208. [Google Scholar]
- Bartus, M.; Barta, K.; Szatmári, J.; Farsang, A. Modeling wind erosion hazard control efficiency with an emphasis on shelterbelt system and plot size planning. Z. Geomorphol. 2017, 61, 123–133. [Google Scholar] [CrossRef]
- Fu, S.; Xiao, Y.; Li, H.Y.; Tu, X.S. Effect of meteorological factor on water consumption of farmland shelterbelt, Northwest China. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 012118. [Google Scholar] [CrossRef]
- Veste, M.; Littmann, T.; Kunneke, A.; Du Toit, B.; Seifert, T. Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa. Plant Soil Environ. 2020, 66, 119–127. [Google Scholar] [CrossRef]
- Campi, P.; Palumbo, A.D.; Mastrorilli, M. Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region. Agric. Water Manag. 2012, 104, 153–162. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Hughes, D.E. Impact of shelter on crop microclimates: A synthesis of results from wind tunnel and field experiments. Aust. J. Exp. Agric. 2002, 42, 679–701. [Google Scholar] [CrossRef]
- Ahmed, A.; Peeva, S.; Raichev, E. The Tree-Shrub Belts in Bulgarian Farmlands: Potential Refuges for Wildlife? Acta Zool. Bulg. 2025, 77, 61–70. [Google Scholar]
- Bian, Z.; Yang, Y.; Guo, X.; Zhang, Y.; Yu, M. The effects of farmland shelterbelts on surface arthropod distribution: A case study in Changtu County, China. Chin. J. Eco-Agric. 2020, 28, 1835–1846. [Google Scholar]
- Carnovale, D.; Baker, G.; Bissett, A.; Thrall, P. Earthworm composition, diversity and biomass under three land use systems in south-eastern Australia. Appl. Soil Ecol. 2015, 88, 32–40. [Google Scholar] [CrossRef]
- Einav, A.; Giladi, I.; Schäckermann, J.; Korine, C. Enhancing insectivorous bat activity through sound manipulation and assessing the contribution of small gaps in windbreaks in the hyper-arid Arava desert. Front. Conserv. Sci. 2024, 5, 1491713. [Google Scholar] [CrossRef]
- Fukuda, Y.; Moller, H.; Burns, B. Effects of organic farming, fencing and vegetation origin on spiders and beetles within shelterbelts on dairy farms. N. Z. J. Agric. Res. 2011, 54, 155–176. [Google Scholar] [CrossRef]
- Bernier-Leduc, M.; Vanasse, A.; Olivier, A.; Bussières, D.; Maisonneuve, C. Avian fauna in windbreaks integrating shrubs that produce non-timber forest products. Agric. Ecosyst. Environ. 2009, 131, 16–24. [Google Scholar] [CrossRef]
- Ghimire, K.; Dulin, M.W.; Atchison, R.L.; Goodin, D.G.; Hutchinson, J.M. Identification of windbreaks in Kansas using object-based image analysis, GIS techniques and field survey. Agrofor. Syst. 2014, 88, 865–875. [Google Scholar] [CrossRef]
- Iwasaki, K.; Shimoda, S.; Nakata, Y.; Hayamizu, M.; Nanko, K.; Torita, H. Remote sensing of soil ridge height to visualize windbreak effectiveness in wind erosion control: A strategy for sustainable agriculture. Comput. Electron. Agric. 2024, 219, 108778. [Google Scholar] [CrossRef]
- Li, F.R.; Liu, J.L.; Sun, T.S.; Ma, L.F.; Liu, L.L.; Yang, K. Impact of established shrub shelterbelts around oases on the diversity of ground beetles in arid ecosystems of Northwestern China. Insect Conserv. Divers. 2016, 9, 135–148. [Google Scholar] [CrossRef]
- Liknes, G.C.; Meneguzzo, D.M.; Kellerman, T.A. Shape indexes for semi-automated detection of windbreaks in thematic tree cover maps from the central United States. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 167–174. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Wang, X.; Sheng, Y.; Tian, W.; Ren, Y. A tree species classification model based on improved YOLOv7 for shelterbelts. Front. Plant Sci. 2024, 14, 1265025. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Kort, J. External economic benefits and social goods from prairie shelterbelts. Agrofor. Syst. 2009, 75, 39–47. [Google Scholar] [CrossRef]
- Bošković, J.; Prijić, Ž.; Ivanc, A. Economical and ecological impact of shelterbelts. Ekon. Poljopriv. 2010, 57, 51–57. [Google Scholar]
- Grala, R.K.; Tyndall, J.C.; Mize, C.W. Willingness to pay for aesthetics associated with field windbreaks in Iowa, United States. Landsc. Urban Plan. 2012, 108, 71–78. [Google Scholar] [CrossRef]
- Huang, B.H.; Zeng, Y.C.; Lü, Y.R.; Yabe, M. Measuring the value of windbreak and sand-fixation in the sandstorm source control project in and around Beijing and Tianjin based on CVM’s different inquiry methods. J. Fac. Agric. Kyushu Univ. 2012, 57, 345–351. [Google Scholar]
- Sudmeyer, R.; Flugge, F. The economics of managing tree–crop competition in windbreak and alley systems. Aust. J. Exp. Agric. 2005, 45, 1403–1414. [Google Scholar] [CrossRef]
- Hand, A.M.; Tyndall, J.C. A qualitative investigation of farmer and rancher perceptions of trees and woody biomass production on marginal agricultural land. Forests 2018, 9, 724. [Google Scholar] [CrossRef]
- Ruppert, D.; Welp, M.; Spies, M.; Thevs, N. Farmers’ perceptions of tree shelterbelts on agricultural land in rural Kyrgyzstan. Sustainability 2020, 12, 1093. [Google Scholar] [CrossRef]
- Hu, M.; Kang, S.; Zhang, J.; Li, F.; Du, T.; Tong, L. Potential use of saline water for irrigating shelterbelt plants in the arid region. Irrig. Drain. 2012, 61, 107–115. [Google Scholar] [CrossRef]
- Ioana, N.; Ancuţa, M.; Silvia, B.C.; Melania, C.G. Forest belts in South-West Romania (Oltenia Region). In Proceedings of the International Multidisciplinary Scientific GeoConference, SGEM, Sofia, Bulgaria, 18–24 June 2015; Volume 5, pp. 309–315. [Google Scholar]
- Lee, J.P.; Lee, S.J. PIV analysis on the shelter effect of a bank of real fir trees. J. Wind Eng. Ind. Aerodyn. 2012, 110, 40–49. [Google Scholar] [CrossRef]
- Tamang, B.; Andreu, M.G.; Staudhammer, C.L.; Rockwood, D.L.; Jose, S. Towards an empirical relationship between root length density and root number in windbreak-grown cadaghi (Corymbia torelliana) trees. Plant Root 2011, 5, 40–45. [Google Scholar] [CrossRef]
- Vacek, Z.; Řeháček, D.; Cukor, J.; Vacek, S.; Khel, T.; Sharma, R.P.; Papaj, V. Windbreak efficiency in agricultural landscapes of Central Europe: Multiple approaches to wind erosion control. Environ. Manag. 2018, 62, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Zaady, E.; Katra, I.; Shuker, S.; Knoll, Y.; Shlomo, S. Tree belts for decreasing aeolian dust-carried pesticides from cultivated areas. Geosciences 2018, 8, 286. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, Y.; Yu, X.; Jia, G.; Wang, Y.; Zheng, P.; Li, Z. Comparative study of seasonal freeze–thaw on soil water transport in farmland and its shelterbelt. Catena 2023, 225, 106982. [Google Scholar] [CrossRef]
- Fukamachi, K.; Miki, Y.; Oku, H.; Miyoshi, I. The biocultural link: Isolated trees and hedges in Satoyama landscapes indicate a strong connection between biodiversity and local cultural features. Landsc. Ecol. Eng. 2011, 7, 195–206. [Google Scholar] [CrossRef]
- Boutin, C.; Jobin, B.; Bélanger, L.; Choinière, L. Plant diversity in three types of hedgerows adjacent to cropfields. Biodivers. Conserv. 2002, 11, 1–25. [Google Scholar] [CrossRef]
- Davis, J.E.; Norman, J.M. 22. Effects of shelter on plant water use. Agric. Ecosyst. Environ. 1988, 22, 393–402. [Google Scholar] [CrossRef]
- Deng, R.X.; Li, Y.; Zhang, S.W.; Wang, W.J.; Shi, X.L. Assessment of the effects of the shelterbelt on the soil temperature at regional scale based on MODIS data. J. For. Res. 2011, 22, 65–70. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.B. Investigation of windbreak systems to control dust generation and dispersion in a reclaimed land: A numerical approach. In Proceedings of the 1st International Symposium on CFD Applications in Agriculture, Valencia, Spain, 9–12 July 2012; Volume 1008, pp. 37–43. [Google Scholar]
- Alam, M.; Olivier, A.; Paquette, A.; Dupras, J.; Revéret, J.P.; Messier, C. A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor. Syst. 2014, 88, 679–691. [Google Scholar] [CrossRef]
- Wojewoda, D.; Russel, S. The impact of a shelterbelt on soil properties and microbial activity in an adjacent crop field. Pol. J. Ecol. 2003, 51, 291–307. [Google Scholar]
- Carnovale, D.; Bissett, A.; Thrall, P.H.; Baker, G. Plant genus (Acacia and Eucalyptus) alters soil microbial community structure and relative abundance within revegetated shelterbelts. Appl. Soil Ecol. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, Y.; Zhao, Y. Diversity and functional potential of soil bacterial communities in different types of farmland shelterbelts in Mid-Western Heilongjiang, China. Forests 2019, 10, 1115. [Google Scholar] [CrossRef]
- Cable, T.T. Nonagricultural benefits of windbreaks in Kansas. Great Plains Res. 1999, 9, 41–53. [Google Scholar]
- Amadi, C.C.; Van Rees, K.C.; Farrell, R.E. Greenhouse gas mitigation potential of shelterbelts: Estimating farm-scale emission reductions using the Holos model. Can. J. Soil Sci. 2016, 97, 353–367. [Google Scholar] [CrossRef]
- Kurose, Y.; Tang, L.; Ohba, K.; Maruyama, A.; Maki, T. Investigations on some meteorological conditions and evaluation of the effects of tree windbreaks on the improvement of meteorological conditions in Turpan Oasis, China. Jpn. Agric. Res. Quart. 2002, 36, 17–23. [Google Scholar] [CrossRef]
- Best, L.B. Bird use of fencerows: Implications of contemporary fencerow management practices. Wildl. Soc. Bull. 1983, 11, 343–347. [Google Scholar]
- Moonen, A.C.; Marshall, E.J.P. The influence of sown margin strips, management, and boundary structure on herbaceous field margin vegetation in two neighbouring farms in southern England. Agric. Ecosyst. Environ. 2001, 86, 187–202. [Google Scholar] [CrossRef]
- Lys, J.A.; Nentwig, W. Augmentation of beneficial arthropods by strip management. Oecologia 1992, 92, 373–382. [Google Scholar] [CrossRef]
- Dennis, P.; Thomas, M.B.; Sotherton, N.W. Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators. J. Appl. Ecol. 1994, 31, 361–370. [Google Scholar] [CrossRef]
- Thomas, C.F.G.; Marshall, E.J.P. Arthropod abundance and diversity in differently vegetated margins of arable fields. Agric. Ecosyst. Environ. 1999, 72, 131–144. [Google Scholar] [CrossRef]
- Holland, J.; Fahrig, L. Effect of woody borders on insect density and diversity in crop fields: A landscape-scale analysis. Agric. Ecosyst. Environ. 2000, 78, 115–122. [Google Scholar] [CrossRef]
- Kujawa, K.; Sobczyk, D.; Kajak, A. Dispersal of Harpalus rufipes (Degeer)(Carabidae) between shelterbelt and cereal field. Pol. J. Ecol. 2006, 54, 243–252. [Google Scholar]
- N’tie, T.B.; Kasseney, B.D.; Gomina, M.; Tozoou, P.; Mollong, E.; Amoudji, A.D.; Glitho, A.I. Role of windbreaks on ants (Hymenoptera, Formicidae) conservation in a cotton-growing agroecosystem of the humid savannah in Togo. J. Asia-Pac. Entomol. 2025, 28, 102349. [Google Scholar] [CrossRef]
- Jose, S.; Holzmueller, E.J. Tree–crop interactions in temperate agroforestry. N. Am. Agrofor. 2021, 67–87. [Google Scholar] [CrossRef]
- Thevathasan, N.V.; Gordon, A.M.; Simpson, J.A.; Reynolds, P.E.; Price, G.; Zhang, P. Biophysical and ecological interactions in a temperate tree-based intercropping system. J. Crop Improv. 2004, 12, 339–363. [Google Scholar] [CrossRef]
- Gonçalves, B.; Morais, M.C.; Pereira, S.; Mosquera-Losada, M.R.; Santos, M. Tree–crop ecological and physiological interactions within climate change contexts: A mini-review. Front. Ecol. Evol. 2021, 9, 661978. [Google Scholar] [CrossRef]
- Lasco, R.D.; Delfino, R.J.P.; Espaldon, M.L.O. Agroforestry systems: Helping smallholders adapt to climate risks while mitigating climate change. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 825–833. [Google Scholar] [CrossRef]
- Huang, H.; Miller, G.Y.; Sherrick, B.J.; Gomez, M.I. Factors influencing Illinois farmland values. Am. J. Agric. Econ. 2006, 88, 458–470. [Google Scholar] [CrossRef]
- Burel, F. Hedgerows and their role in agricultural landscapes. Crit. Rev. Plant Sci. 1996, 15, 169–190. [Google Scholar] [CrossRef]
- Burel, F.; Baudry, J. Structural dynamic of a hedgerow network landscape in Brittany France. Landsc. Ecol. 1990, 4, 197–210. [Google Scholar] [CrossRef]
- Oreszczyn, S.; Lane, A. The meaning of hedgerows in the English landscape: Different stakeholder perspectives and the implications for future hedge management. J. Environ. Manag. 2000, 60, 101–118. [Google Scholar] [CrossRef]
- Brandle, J.R.; Wardle, T.D.; Bratton, G.F. Opportunities to increase tree planting in shelterbelts and the potential impacts on carbon storage and conservation. In Forest and Global Change, Volume 1: Opportunities for Increasing Forest Cover; Sampson, R.N., Hair, D., Eds.; American Forests: Washington, DC, USA, 1992; pp. 157–176. [Google Scholar]
- Little, S.M.; Lindeman, J.; Maclean, K.; Janzen, H.H. Holos—A Tool to Estimate and Reduce GHGs from Farms. Methodology and Algorithms for Version 2.1; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2008.
- Ballesteros-Possu, W.; Brandle, J.R.; Schoeneberger, M. Potential of windbreak trees to reduce carbon emissions by agricultural operations in the US. Forests 2017, 8, 138. [Google Scholar] [CrossRef]
- Cai, X.; Henderson, M.; Wang, L.; Su, Y.; Liu, B. Shelterbelt structure and crop protection from increased typhoon activity in Northeast China. Agriculture 2021, 11, 995. [Google Scholar] [CrossRef]
- Lynch, J.J.; Elwin, R.L.; Mottershead, B.E. The influence of artificial windbreaks on loss of soil water from a continuously grazed pasture during a dry period. Aust. J. Exp. Agric. 1980, 20, 170–174. [Google Scholar] [CrossRef]
- Eastham, J.; Rose, C.W.; Charles-Edwards, D.A.; Cameron, D.M.; Rance, S.J. Planting density effects on water use efficiency of trees and pasture in an agroforestry experiment. N. Z. J. For. Sci. 1990, 20, 39–53. [Google Scholar]
- Baldwin, C.S. The influence of field windbreaks on vegetable and specialty crops. Agric. Ecosyst. Environ. 1988, 22, 191–203. [Google Scholar] [CrossRef]
- Norton, R.L. Windbreaks: Benefits to orchard and vineyard crops. Agric. Ecosyst. Environ. 1988, 22, 205–213. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Quam, V.; Johnson, L.; Wight, B.; Brandle, J.R. Windbreaks for livestock operations. Papers Nat. Resour. 1994, 123. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1124&context=natrespapers (accessed on 25 March 2025).
- Easterling, W.E.; Hays, C.J.; Easterling, M.M.; Brandle, J.R. Modelling the effect of shelterbelts on maize productivity under climate change: An application of the EPIC model. Agric. Ecosyst. Environ. 1997, 61, 163–176. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, J.; Xing, Z. Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China. Agric. Syst. 2016, 143, 49–60. [Google Scholar] [CrossRef]
- Rivest, D.; Vézina, A. Maize yield patterns on the leeward side of tree windbreaks are site-specific and depend on rainfall conditions in eastern Canada. Agrofor. Syst. 2015, 89, 237–246. [Google Scholar] [CrossRef]
- Souza, R.D.; Uribe-Opazo, M.A.; Hosokawa, R.T.; Johann, J.A.; Guedes, L.P.C. Influence of the eucalyptus windbreaks aerodynamic system on the soybean crop in West of Parana, Brazil. Agric. For. Meteorol. 2013, 176, 171–177. [Google Scholar]
- Barbeau, C.D.; Wilton, M.J.; Oelbermann, M.; Karagatzides, J.D.; Tsuji, L.J. Local food production in a subarctic Indigenous community: The use of willow (Salix spp.) windbreaks to increase the yield of intercropped potatoes (Solanum tuberosum) and bush beans (Phaseolus vulgaris). Int. J. Agric. Sustain. 2018, 16, 29–39. [Google Scholar] [CrossRef]
- Nguyen, T.B.A.; Henao, L.A.; Li, Z.; Cheng, L.; Hu, H.W. Impacts of shelterbelt systems on pasture production and soil bacterial and fungal communities in agricultural fields. J. Sustain. Agric. Environ. 2023, 2, 301–313. [Google Scholar] [CrossRef]
- Qiao, Y.; Fan, J.; Wang, Q. Effects of farmland shelterbelts on accumulation of soil nitrate in agro-ecosystems of an oasis in the Heihe River Basin, China. Agric. Ecosyst. Environ. 2016, 235, 182–192. [Google Scholar] [CrossRef]
- Szigeti, N.; Frank, N.; Vityi, A. The multifunctional role of shelterbelts in intensively managed agricultural land–Silvoarable agroforestry in Hungary. Acta Silv. Lignaria Hung. Int. J. For. Wood Environ. Sci. 2020, 16, 19–38. [Google Scholar] [CrossRef]
- Davis, E.L.; Laroque, C.P.; Van Rees, K. Evaluating the suitability of nine shelterbelt species for dendrochronological purposes in the Canadian Prairies. Agrofor. Syst. 2013, 87, 713–727. [Google Scholar] [CrossRef]
- Rudd, L.; Kulshreshtha, S.; Belcher, K.; Amichev, B. Carbon life cycle assessment of shelterbelts in Saskatchewan, Canada. J. Environ. Manag. 2021, 297, 113400. [Google Scholar] [CrossRef]
- Chernodubov, A.I.; Gribacheva, O.V. Distribution of English Oak (Quercus robur L.) and Norway Maple (Acer platanoides L.) with Height in a Shelterbelt. Lesn. Zhurnal (Russ. For. J.) 2020, 6, 111–119. [Google Scholar]
- Amadi, C.C.; Van Rees, K.C.; Farrell, R.E. Soil–atmosphere exchange of carbon dioxide, methane and nitrous oxide in shelterbelts compared with adjacent cropped fields. Agric. Ecosyst. Environ. 2016, 223, 123–134. [Google Scholar] [CrossRef]
- Hansen, S.M.; Gunnell, J.; Whaley, A.; Dai, X.; Harding, C.; Black, B.L. Adaptability of tree species as windbreaks for urban farms in the US Intermountain West. Horticulturae 2020, 6, 17. [Google Scholar] [CrossRef]
- Kohli, R.K.; Singh, D.; Verma, R.C. Influence of eucalypt shelterbelt on winter season agroecosystems. Agric. Ecosyst. Environ. 1990, 33, 23–31. [Google Scholar] [CrossRef]
- Sauer, T.J.; Cambardella, C.A.; Brandle, J.R. Soil carbon and tree litter dynamics in a red cedar–scotch pine shelterbelt. Agrofor. Syst. 2007, 71, 163–174. [Google Scholar] [CrossRef]
- Thevs, N.; Aliev, K. Agro-economy of tree wind break systems in Kyrgyzstan, Central Asia. Agrofor. Syst. 2023, 97, 319–334. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Larysch, E.; Cuaranhua, C.J.; Schindler, Z.; Du Toit, B.; Malherbe, G.F.; Kahle, H.P. Assessment of biomass and carbon storage of a Populus simonii windbreak located in the Western Cape Province, South Africa. Agrofor. Syst. 2024, 98, 697–714. [Google Scholar] [CrossRef]
- Dłużniewska, J.; Mazurek, R. Impact of the distance from black locust (Robinia pseudoacacia L.) shelterbelts on soil microflora. Ecol. Chem. Eng. A 2011, 18, 341–346. [Google Scholar]
- Tsognamsrai, D.; Dugarjav, C. Effectiveness of some methods for restoration of degraded pastures in the desert–steppe zone of Mongolia. Arid Ecosyst. 2016, 6, 189–194. [Google Scholar] [CrossRef]
- Pablo, L.P.; Mark, B. Windbreaks in southern Patagonia, Argentina: A review of research on growth models, windspeed reduction, and effects on crops. Agrofor. Syst. 2002, 56, 129–144. [Google Scholar]
- Tang, Y.L.; An, Z.S.; Zhang, K.C.; Tan, L.H. Wind Tunnel Simulation of Windbreak Effect of Single-row Shelter Belts of Different Structure. J. Desert Res. 2012, 32, 647–654. [Google Scholar]
- Li, X.; Liu, L.; Xie, J.; Wang, Z.; Yang, S.; Zhang, Z.; Qi, S.; Li, Y. Optimizing the quantity and spatial patterns of farmland shelter forests increases cotton productivity in arid lands. Agric. Ecosyst. Environ. 2020, 292, 106832. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, X.; Fu, M.; Zhu, J.; Lin, H. Shelterbelt porosity model and its application. Chin. J. Appl. Ecol. 1994, 5, 251. [Google Scholar]
- Mohammed, A.E.; Stigter, C.J.; Adam, H.S. On shelterbelt design for combating sand invasion. Agric. Ecosyst. Environ. 1996, 57, 81–90. [Google Scholar] [CrossRef]
- Zhu, J.J.; Jiang, F.Q.; Matsuzaki, T. Spacing interval between principal tree windbreaks: Based on the relationship between windbreak structure and wind reduction. J. For. Res. 2002, 13, 83–89. [Google Scholar]
- Guan, W.; Li, C.; Li, S.; Fan, Z.; Xie, C. Improvement and application of digitized measure on shelterbelt porosity. Chin. J. Appl. Ecol. 2002, 13, 651–665. [Google Scholar]
- Yang, X.; Li, F.; Fan, W.; Liu, G.; Yu, Y. Evaluating the efficiency of wind protection by windbreaks based on remote sensing and geographic information systems. Agrofor. Syst. 2021, 95, 353–365. [Google Scholar] [CrossRef]
- Zhu, J.J. Wind shelterbelts. In Encyclopedia of Ecology; Fath, B.D., Ed.; Academic Press: Oxford, UK, 2008; pp. 3803–3812. [Google Scholar]
- Liu, C.; Zheng, Z.; Cheng, H.; Zou, X. Airflow around single and multiple plants. Agric. For. Meteorol. 2018, 252, 27–38. [Google Scholar] [CrossRef]
- Gardiner, S.M. Ethics and global climate change. Ethics 2004, 114, 555–600. [Google Scholar] [CrossRef]
- Helmers, G.; Brandle, J.R. Optimum windbreak spacing in Great Plains agriculture. Great Plains Res. 2005, 15, 179–198. [Google Scholar]
- Heisler, G.M.; Dewalle, D.R. Effects of windbreak structure on wind flow. Agric. Ecosyst. Environ. 1988, 22, 41–69. [Google Scholar] [CrossRef]
- Vigiak, O.; Sterk, G.; Warren, A.; Hagen, L.J. Spatial modeling of wind speed around windbreaks. Catena 2003, 52, 273–288. [Google Scholar] [CrossRef]
- Středa, T.; Malenová, P.; Pokladníková, H.; Rožnovský, J. The efficiency of windbreaks on the basis of wind field and optical porosity measurement. Acta Univ. Agric. Silvicult. Mendel. Brun. 2008, 56, 281–288. [Google Scholar] [CrossRef]
- Řeháček, D.; Khel, T.; Kučera, J.; Vopravil, J.; Petera, M. Effect of windbreaks on wind speed reduction and soil protection against wind erosion. Soil Water Res. 2017, 12, 128–135. [Google Scholar] [CrossRef]
- Dinca, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Timis-Gânsac, V.; Dinca, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation Biodiversity in Arid Areas: A Review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Gregory, N.G. The role of shelterbelts in protecting livestock: A review. N. Z. J. Agric. Res. 1995, 38, 423–450. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, S.; Askar, A.; Wang, H. Shelter efficiency of various shelterbelt configurations: A wind tunnel study. Atmosphere 2022, 13, 1022. [Google Scholar] [CrossRef]
- Bradley, E.F.; Mulhearn, P.J. Development of velocity and shear stress distribution in the wake of a porous shelter fence. J. Wind Eng. Ind. Aerodyn. 1983, 15, 145–156. [Google Scholar] [CrossRef]
- Judd, M.J.; Raupach, M.R.; Finnigan, J.J. A wind tunnel study of turbulent flow around single and multiple windbreaks, part I: Velocity fields. Bound.Layer Meteorol. 1996, 80, 127–165. [Google Scholar] [CrossRef]
- Cook, P.S.; Cable, T.T. The scenic beauty of shelterbelts on the Great Plains. Landsc. Urban Plan. 1995, 32, 63–69. [Google Scholar] [CrossRef]
- Workman, S.W.; Bannister, M.E.; Nair, P.K.R. Agroforestry potential in the southeastern United States: Perceptions of landowners and extension professionals. Agrofor. Syst. 2003, 59, 73–83. [Google Scholar] [CrossRef]
- Schoeneberger, M.M.; Bentrup, G. Agroforestry: Enhancing Resiliency in US Agricultural Landscapes Under Changing Conditions; Gen. Tech. Rep. WO-96; US Department of Agriculture, Forest Service: Washington, DC, USA, 2017; p. 96.
- Brandle, J.R.; Hodges, L.; Tyndall, J.; Sudmeyer, R.A. Windbreak practices. In North American Agroforestry: An Integrated Science and Practice, 2nd ed.; Garrett, H.E., Ed.; American Society of Agronomy: Madison, WI, USA, 2009; pp. 75–104. [Google Scholar]
- Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005.
- Evers, A.K.; Bambrick, A.; Lacombe, S.; Dougherty, M.C.; Peichl, M.; Gordon, A.M.; Bradley, R.L. Potential greenhouse gas mitigation through temperate tree-based intercropping systems. Open Agric. J. 2010, 4, 49–57. [Google Scholar] [CrossRef]
- Kohútová, A.; Štykar, J. Soil temperature dynamics in the forest shelterbelt and in the field. J. For. Sci. 2024, 70, 545–559. [Google Scholar] [CrossRef]
- Dix, M.E.; Johnson, R.J.; Harrell, M.O.; Case, R.M.; Wright, R.J.; Hodges, L.; Hubbard, K.G. Influences of trees on abundance of natural enemies of insect pests: A review. Agrofor. Syst. 1995, 29, 303–311. [Google Scholar] [CrossRef]
- Bentrup, G.; Hopwood, J.; Adamson, N.L.; Vaughan, M. Temperate agroforestry systems and insect pollinators: A review. Forests 2019, 10, 981. [Google Scholar] [CrossRef]
- Simons, J.N. Effects of insecticides and physical barriers on field spread of pepper veinbanding mosaic virus. J. Econ. Entomol. 1957, 50, 123–128. [Google Scholar]
- Arnold, G.W. Bird species richness and abundance in wandoo woodland and in tree plantations on farmland at Baker’s Hill, Western Australia. Emu 2003, 103, 259–269. [Google Scholar] [CrossRef]
- Kinross, D.C. Avian use of farm habitats, including windbreaks, on the New South Wales Tablelands. Pac. Conserv. Biol. 2004, 10, 180–192. [Google Scholar] [CrossRef]
- Sreekar, R.; Mohan, A.; Das, S.; Agarwal, P.; Vivek, R. Natural windbreaks sustain bird diversity in a tea-dominated landscape. PLoS ONE 2013, 8, e70379. [Google Scholar] [CrossRef]
- Brownson, K.; Cox, C.; Padgett-Vasquez, S. The impacts of agricultural windbreaks on avian communities and ecosystem services provisioning in the Bellbird Biological Corridor, Costa Rica. Agroecol. Sustain. Food Syst. 2021, 45, 592–629. [Google Scholar] [CrossRef]
- Sorribas, J.; González, S.; Domínguez-Gento, A.; Vercher, R. Abundance, movements, and biodiversity of flying predatory insects in crop and non-crop agroecosystems. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Silva, F.W.S.; Leite, G.L.D.; Guañabens, R.E.M.; Sampaio, R.A.; Gusmão, C.A.G.; Serrão, J.E.; Zanuncio, J.C. Seasonal abundance and diversity of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the Cerrado. Florida Entomol. 2015, 98, 170–174. [Google Scholar] [CrossRef]
- Pasek, J.E. Influence of wind and windbreaks on local dispersal of insects. Agric. Ecosyst. Environ. 1988, 22, 539–554. [Google Scholar] [CrossRef]
- Kort, J. Benefits of windbreaks to field and forage crops. Agric. Ecosyst. Environ. 1988, 22, 165–190. [Google Scholar] [CrossRef]
- Sun, D.; Dickinson, G.R. Wind effect on windbreak establishment in Northern Australia. Tree Plant. Notes 1994, 45, 72–75. [Google Scholar]
- Hodges, L.; Suratman, M.N.; Brandle, J.R.; Hubbard, K.G. Growth and yield of snap beans as affected by wind protection and microclimate changes due to shelterbelts and planting dates. HortSciece 2004, 39, 966–1004. [Google Scholar] [CrossRef]
- Raine, J.K.; Stevenson, D.C. Wind protection by model fences in a simulated atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 1977, 2, 159–180. [Google Scholar] [CrossRef]
- Tamang, B.; Andreu, M.G.; Friedman, M.H.; Rockwood, D.L. Windbreak Designs and Planting for Florida Agricultural Fields; FOR227; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2015. [Google Scholar]
- Yuan, F.; Wu, J.; Wang, A.; Guan, D.; Zhang, Y.; Rajah-Boyer, K.I.; Xu, X. A semiempirical model for horizontal distribution of surface wind speed leeward windbreaks. Agrofor. Syst. 2020, 94, 499–516. [Google Scholar] [CrossRef]
- Loeffler, A.E.; Gordon, A.M.; Gillespie, T.J. Optical porosity and windspeed reduction by coniferous windbreaks in Southern Ontario. Agrofor. Syst. 1992, 17, 119–133. [Google Scholar] [CrossRef]
- Percival, D.C.; Eaton, L.J.; Stevens, D.E.; Privé, J.P. Use of windbreaks in lowbush blueberry (Vaccinium angustifolium Ait.) production. In Proceedings of the VII International Symposium on Vaccinium Culture, Chillan, Chile, 4–9 December 2000; International Society for Horticultural Science: Leuven, Belgium, 2000; pp. 309–316. [Google Scholar]
- Perry, C. Crandall. The management and marketing of raspberries and blackberry. Food Prod. Press 1994, 35, 7–8. [Google Scholar]
- Wenneker, M.; Heijne, B.; Van de Zande, J.C. Effect of natural windbreaks on drift reduction in orchard spraying. Commun. Agric. Appl. Biol. Sci. 2005, 70, 961–969. [Google Scholar]
- Abel, N.; Baxter, J.; Campbell, A.; Cleugh, H.; Fargher, J.; Lambeck, R.; Thorburn, P. Design Principles for Farm Forestry: A Guide to Assist Farmers to Decide Where to Place Trees and Farm Plantations on Farms; RIRDC: Barton, Australia, 1997; p. 102.
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Dragu, M.D.; Rosu, B.; Mocanu, G.D. Structural Characteristics of the Main Resinous Stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
Crt. No. | Journal | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Agroforestry Systems | 48 | 1434 | 212 |
2 | Agriculture Ecosystem and Environment | 26 | 718 | 116 |
3 | Agricultural and Forest Meteorology | 21 | 595 | 100 |
4 | Forests | 32 | 261 | 95 |
5 | Remote Sensing | 10 | 66 | 45 |
6 | Catena | 9 | 124 | 41 |
7 | Ecological Indicators | 7 | 413 | 35 |
8 | Canadian Journal of Soil Science | 6 | 103 | 34 |
9 | Agricultural Water Management | 5 | 60 | 27 |
10 | Forest Ecology and management | 9 | 278 | 23 |
11 | Frontiers in Plant Science | 8 | 76 | 22 |
12 | Science of the Total Environment | 7 | 261 | 22 |
13 | Sustainability | 10 | 91 | 10 |
14 | Land Degradation & Development | 8 | 121 | 10 |
Crt. No. | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1 | shelterbelt(s) | 180 | 481 |
2 | forest | 61 | 330 |
3 | agroforestry | 56 | 286 |
4 | windbreak(s) | 82 | 272 |
5 | dynamics | 43 | 238 |
6 | vegetation | 45 | 229 |
7 | biodiversity | 39 | 222 |
8 | management | 35 | 191 |
9 | climate change | 31 | 178 |
10 | biomass | 31 | 172 |
11 | afforestation | 31 | 166 |
12 | land use | 28 | 154 |
13 | growth | 33 | 153 |
14 | conservation | 29 | 149 |
15 | diversity | 27 | 144 |
16 | farmland | 21 | 138 |
Cur. No. | Studied Aspect | Location | Cited by |
---|---|---|---|
Climatic elements | |||
1 | Households’ adaptations to climate change-driven monsoon floods | Pakistan | Aftab et al., 2021 [46] |
2 | Reducing desertification | Pakistan | Anjum et al., 2010 [47] |
3 | Reducing wind erosion by shelterbelts | Hungary | Bartus et al., 2017 [48] |
4 | Effect of meteorological factors on water consumption of farmland shelterbelt | China | Fu et al., 2019 [49] |
5 | Windbreaks reduce evapotranspiration in vineyards | South Africa | Veste et al., 2020 [50] |
6 | Evapotranspiration estimation of crops protected by windbreak | Italy | Campi et al., 2012 [51] |
7 | Impact of shelter on crop microclimates | general | Cleugh et al., 2002 [52] |
Wildlife | |||
8 | Estimate the potential value of windbreaks as wildlife habitat | USA | Hess and Bay, 2000 [9] |
9 | Tree-shrub belts farmlands: potential refuges for wildlife | Bulgaria | Ahmed et al., 2025 [53] |
10 | Effects of farmland shelterbelts on surface arthropod distribution | China | Bian et al., 2020 [54] |
11 | Earthworm composition, diversity and biomass under three land use | Australia | Carnovale et al., 2015 [55] |
12 | Insectivorous bat activity assessing the contribution of small gaps in windbreaks | Israel | Einav et al., 2024 [56] |
13 | Spiders and beetles within shelterbelts on dairy farms | New Zealand | Fukuda et al., 2011 [57] |
14 | Avian fauna in windbreaks | Canada | Bernier-Leduc et al., 2009 [58] |
GIS, remote sensing | |||
15 | Identification of windbreaks using object-based image analysis and GIS techniques | USA | Ghimire et al., 2014 [59] |
16 | Visualize the benefits of windbreaks using remote sensing techniques | Japan | Iwasaki et al., 2024 [60] |
17 | Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images | China | Li et al., 2016 [61] |
18 | Shape indexes for semi-automated detection of windbreaks in thematic tree cover maps | USA | Liknes et al., 2017 [62] |
19 | A tree species classification model based on improved YOLOv7 for shelterbelts | China | Liu et al., 2024 [63] |
20 | Quantification of shelterbelt characteristics using high-resolution imagery | Canada | Wiseman et al., 2009 [34] |
Economic importance | |||
21 | External economic benefits and social goods of shelterbelts | Canada | Kulshreshtha and Kort, 2009 [64] |
22 | Economic and ecological impact of shelterbelts | Serbia | Bošković et al., 2010 [65] |
23 | Willingness to pay for aesthetics associated with field windbreaks | USA | Grala et al., 2012 [66] |
24 | Willingness to pay for the value of windbreak | China | Huang et al., 2012 [67] |
25 | The economics of managing tree–crop competition in windbreak | Australia | Sudmeyer and Flugge, 2005 [68] |
Farmer perceptions | |||
26 | Farmer and rancher perceptions of trees and woody biomass production on marginal agricultural land | USA | Hand and Tyndall, 2018 [69] |
27 | Farmers’ Perceptions of Tree Shelterbelts on Agricultural Land | Kyrgyzstan | Ruppert et al., 2020 [70] |
Various | |||
28 | Potential use of saline water for irrigating shelterbelt plants in the arid region | China | Hu et al., 2012 [71] |
29 | Forest belts in South-West of Romania | Romania | Ioana et al., 2015 [72] |
30 | The effect of windbreak on the flow structure | China | Lee and Lee, 2012 [73] |
31 | Relationship between root length density and root number in windbreak | USA | Tamang et al., 2011 [74] |
32 | Windbreak efficiency in Agricultural Landscape | Czech Republic | Vacek et al., 2018 [75] |
33 | Tree Belts for Decreasing Aeolian Dust-Carried Pesticides from Cultivated Areas | China | Zaady et al., 2018 [76] |
34 | Freeze–thaw processes between farmland and shelterbelt | China | Ding et al., 2023 [77] |
35 | Connection between biodiversity and local cultural features | Japan | Fukamachi et al., 2011 [78] |
36 | Plant diversity in hedgerows adjacent to cropfields | Canada | Boutin et al., 2002 [79] |
37 | Effects of shelter on plant water use | General | Davis et al., 1988 [80] |
38 | Effects of the shelterbelt on the soil temperature | China | Deng et al., 2011 [81] |
Cur. No. | Species | Location | Cited by |
---|---|---|---|
1 | Acacia spp. | Australia | Carnovale et al., 2015 [51] |
2 | Acer negundo (Manitoba maple) | Canada | Davis et al., 2013; Rudd et al., 2021 [124,125] |
3 | Acer platanoides (Norway maple) | Russia | Chernodubov and Gribacheva, 2020 [126] |
4 | Berberis glaucocarpa (barberry) | New Zealand | Fukuda et al., 2011 [55] |
5 | Caragana arborescens (caragana, or Siberian pea shrub) | Canada | Davis et al., 2013; Rudd et al., 2021; Amadi et al., 2016; [124,125,127] |
6 | Caragana karshiskii Kom | China | Hu et al., 2012 [67] |
7 | Carpinus betulus (Hornbeam) | USA | Hansen et al., 2020 [128] |
8 | Celtis occidentalis (Hackberry) | USA | Hansen et al., 2020 [128] |
9 | Ceratonia siliqua (carob) | China | Zaady et al., 2018 [72] |
10 | Corymbia torelliana (cadaghi) | USA | Tamang et al., 2011 [70] |
11 | Cupressus spp. (cypress) | USA | Hansen et al., 2020 [128] |
12 | Eucaliptus spp. | Australia, Brazil, India | Carnovale et al., 2015; Souza et al., 2013; Kohli et al., 1990 [51,115,129] |
13 | Eucalyptus camaldulensis | China | Zaady et al., 2018 [72] |
14 | Fraxinus pennsylvanica Marsh. (green ash) or Fraxinus americana | Canada | Bernier-Leduc et al., 2009; Davis et al., 2013; Rudd et al., 2021 [54,124,125] |
15 | Haloxylon ammodendron Bunge | China | Hu et al., 2012 [67] |
16 | Juniperus virginiana (red cedar) | USA | Sauer et al., 2007 [130] |
17 | Larix laricina (Du Roi) Koch. | Canada | Bernier-Leduc et al., 2009 [54] |
18 | Picea glauca (white spruce) | Canada | Amadi et al., 2016; Davis et al., 2013; Rudd et al., 2021 [124,125,127] |
19 | Picea pungens (Colorado spruce) | Canada | Davis et al., 2013 [124] |
20 | Pinus halepensis (pine) | China | Zaady et al., 2018 [72] |
21 | Pinus radiata | Australia | Sudmeyer and Flugge, 2005 [64] |
22 | Pinus sylvestris (Scots pine) | Canada, USA | Davis et al., 2013; Rudd et al., 2021; Sauer et al., 2007 [124,125,130] |
23 | Populus sp. (hybrid poplar) | Canada; Kyrgyzstan | Amadi et al., 2016; Davis et al., 2013; Rudd et al., 2021; Thevs and Aliev, 2023 [124,125,127,131] |
24 | Populus nigra “Afghanica” (“Theves” columnar poplar) | USA | Hansen et al., 2020 [128] |
25 | Populus simonii (Carrière) Wesm. | South Africa | Sheppard et al., 2024 [132] |
26 | Populus tremula “Erecta” (columnar Swedish Aspen) | USA | Hansen et al., 2020 [128] |
27 | Quercus robur L. (English oak) | Russia | Chernodubov and Gribacheva, 2020 [128] |
28 | Robinia pseudoacacia (black locust) | Poland; Australia | Carnovale et al., 2019; Dłużniewska and Mazurek, 2011 [80,133] |
29 | Salix spp. (willow) | Canada | Barbeau et al., 2018 [122] |
30 | Salix acutifolia (Acute willow) | Canada | Davis et al., 2013 [124] |
31 | Sambucus canadensis L. (American elderberries) | Canada | Bernier-Leduc et al., 2009 [54] |
32 | Ulmus pumila (Siberian elm) | Canada | Davis et al., 2013 [124] |
33 | Tamarix spp. | Israel | Einav et al., 2024 [52] |
34 | Viburnum trilobum Marsh. (highbush cranberries) | Canada | Bernier-Leduc et al., 2009 [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enescu, C.M.; Mihalache, M.; Ilie, L.; Dinca, L.; Constandache, C.; Murariu, G. Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis. Agriculture 2025, 15, 1204. https://doi.org/10.3390/agriculture15111204
Enescu CM, Mihalache M, Ilie L, Dinca L, Constandache C, Murariu G. Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis. Agriculture. 2025; 15(11):1204. https://doi.org/10.3390/agriculture15111204
Chicago/Turabian StyleEnescu, Cristian Mihai, Mircea Mihalache, Leonard Ilie, Lucian Dinca, Cristinel Constandache, and Gabriel Murariu. 2025. "Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis" Agriculture 15, no. 11: 1204. https://doi.org/10.3390/agriculture15111204
APA StyleEnescu, C. M., Mihalache, M., Ilie, L., Dinca, L., Constandache, C., & Murariu, G. (2025). Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis. Agriculture, 15(11), 1204. https://doi.org/10.3390/agriculture15111204