Optimization of Phenolic Compound Extraction from Pineapple Leaf Fiber: Stability Enhancement and Application in Mango Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Extraction of PLFPs by Different Extraction Media
2.3. Determination of Polyphenols Content
2.4. Single Factor Test of Acidified Ethanol Solution Extraction of PLFPs
2.5. Box–Behnken (B–B) Central Composite Experimental Design on Acidic Ethanol Solution Extraction of PLFPs
2.6. Stability Test of PLFPs
2.6.1. Effect of pH on Stability of PLFPs
2.6.2. Effect of Illumination on Stability of PLFPs
2.7. Application of PLFPs in Mango Preservation
2.7.1. Preparation of Composite Membrane Solution
2.7.2. Smearing Experiment
2.7.3. Calculation of WLR
2.8. Statistical Analysis
3. Result and Discussion
3.1. Effects of the Extraction Method on the ER of PLFPs
3.2. Influences of Single Factors on ER of PLFPs
3.3. Results of Response Surface Test
3.3.1. B–B Design Experiment and Regression Model
3.3.2. Response Surface Analysis of ER of PLFPs
3.4. Stability Analysis of PLFPs
3.5. Effect Analysis of PLFPs on Mango Preservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.J.; Qian, Y.Y.; Wang, C.Y.; He, Y.Y.; Zhu, C.X.; Chen, G.; Lin, L.J.; Chen, Y.L. Study of the metabolite changes in Ganoderma lucidum under pineapple leaf residue stress via LC-MS/MS coupled with a non-targeted metabolomics approach. Metabolites 2023, 13, 487. [Google Scholar] [CrossRef] [PubMed]
- Du, J.H.; Zhang, J.; Han, J.C.; Gong, P.; Lian, W.W.; Li, M.F. Analysis on change of nutritional ingredients in ensiling process of pineapple leaf residue. Adv. Mater. Res. 2014, 3514, 1033–1034. [Google Scholar] [CrossRef]
- Sajjanshetty, R.; Kulkarni, S.; Shankar, K.; Jayalakshmi, S.K.; Sreeramulu, K. Enhanced production and in-situ removal of butanol during the fermentation of lignocellulosic hydrolysate of pineapple leaves. Ind. Crops Prod. 2021, 173, 114147. [Google Scholar] [CrossRef]
- Nashiruddin, N.I.; Abd, R.N.H.; Rahman, R.; IIlias, R.; Ghazali, N.F.; Abomoelak, B.; Enshasy, H.A. Improved sugar recovery of alkaline pre-treated pineapple leaf fibres via enzymatic hydrolysis and its enzymatic kinetics. Fermentation 2022, 8, 640. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Liu, J.; Zhu, L.; Lin, L.; Zhuang, Z.; He, J.; Li, T.; Chen, G.; Yao, S. Separation and identification of terpenoids in three pineapple fibers using ultra-high performance liquid chromatography-tandem mass spectrometry. J. Nat. Fibers 2024, 21, 2315596. [Google Scholar] [CrossRef]
- Wang, J.L.; Jiang, J.M.; Lian, W.W.; Huang, T.; Zhang, J.; Deng, Y.G. Bacteria resistant property of pineapple leaf fiber. Chin. J. Trop. Crops 2009, 30, 1694–1697. [Google Scholar]
- Zhuang, Z.K.; Du, J.H.; Qian, Y.Y.; Wang, Y.H.; Jiao, J.; Liu, Y.J.; Chen, G. Composition, distribution, and bioactivity of polyphenols in pineapple fibers: Insights from UHPLC-MS analysis for the development of antibacterial materials. Curr. Res. Food. Sci. 2025, 10, 101069. [Google Scholar] [CrossRef]
- Huang, Y.J.; Ji, M.H.; Shu, H.M.; Guo, F.Y.; Dong, L.W.; Zhai, F.R. Antibacterial activities and stability of the ethanolic extract from the leaves of Ananas comosus. Sci. Technol. Food Ind. 2014, 35, 166–169. Available online: https://api.semanticscholar.org/CorpusID:88220706 (accessed on 24 December 2024).
- Sangita, D.; Debasish, B. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J. Ethnopharmacol. 2013, 150, 451–457. [Google Scholar] [CrossRef]
- Santosh, S.T.; Suresh, A.P. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B 2019, 174, 106927. [Google Scholar] [CrossRef]
- Ridzuan, M.J.M.; Abdul Majid, M.S.; Khasri, A.; Gan, E.H.D.; Razlan, Z.M.; Syahrullail, S. Effect of pineapple leaf (PALF), napier, and hemp fibres as filler on the scratch resistance of epoxy composites. J. Mater. Res. Technol. 2019, 8, 5384–5395. [Google Scholar] [CrossRef]
- Kueh, A.; Razali, A.W.; Hamdan, S.; Yakub, L.; Suhaili, N. Acoustical and mechanical characteristics of mortars with pineapple leaf fiber and silica aerogel infills—Measurement and modeling. Mater. Today Commun. 2023, 35, 105540. [Google Scholar] [CrossRef]
- Liao, S.Y.; Chen, J.M.; Li, L.; Li, P.W.; Wang, X.G. Stepwise degumming of pineapple leaf fibers with tunable fineness and excellent antibacterial property. Ind. Crops Prod. 2025, 225, 120490. [Google Scholar] [CrossRef]
- Najeeb, M.I.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Jawaid, M.; Abu, T.; Basri, A.A. Flexural, dynamic and thermo-mechanical analysis of pineapple leaf fiber/epoxy composites. J. Nat. Fibers 2022, 19, 15930–15947. [Google Scholar] [CrossRef]
- Zeleke, Y.; Feleke, T.; Tegegn, W.; Atinaf, Y. Design and development of false ceiling board composite material using pineapple leaf fibre reinforcement in unsaturated polyester matrix. Int. J. Sustain. Eng. 2022, 15, 144–152. [Google Scholar] [CrossRef]
- Huang, Y.J.; Chen, W.H.; Ji, M.H.; Guo, F.Y.; Shu, H.M.; Zheng, C.J. Chemical constituents from leaves of Ananas comosus and their biological activities. Chin. Tradit. Herb. Drugs 2015, 46, 949–954. [Google Scholar] [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha, M.M.; Chaudhry, K.; Elboughdiri, N.; Asmari, M.; Uddin, J. Extraction and evaluation of the antimicrobial activity of polyphenols from banana peels employing different extraction techniques. Separations 2022, 9, 165. [Google Scholar] [CrossRef]
- Fendri, L.B.; Chaari, F.; Kallel, F.; Koubaa, M.; Zouari, E.S.; Kacem, I.; Chaabouni, S.E.; Ghribi, A.D. Antioxidant and antimicrobial activities of polyphenols extracted from pea and broad bean pods wastes. J. Food Meas. Charact. 2022, 16, 4822–4832. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, Z.G.; Wu, Y.L.; Xiao, L.P.; Zhuang, Y.H.; Ding, N.S.; Huang, B.Q. non-radical synthesis of amide chitosan with p-coumaric acid and caffeic acid and its application in pork preservation. Int. J. Biol. Macromol. 2022, 222, 1778–1788. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, Y.; Hao, W.; Zhang, W.; Lu, J.; Zhou, J.; Du, L.; Xie, W. Pineapple leaf phenols attenuate dss-induced colitis in mice and inhibit inflammatory damage by targeting the NF-κB pathway. Molecules 2021, 26, 7656. [Google Scholar] [CrossRef]
- Xie, W.D.; Zhang, S.B.; Lei, F.; Ouyang, X.X.; Du, L.J. Ananas comosus L. Leaf Phenols and p-coumaric acid regulate liver fat metabolism by upregulating cpt-1 expression. Evid. Based Complement. Altern. Med. eCAM 2014, 2014, 903258. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Sahar, A.; Usman, M.; Sameen, A.; Azhar, M.; Tahir, R.; Younas, R.; Issa, K. Extraction of dietary fiber and polyphenols from mango peel and its therapeutic potential to improve gut health. Food Biosci. 2023, 53, 102669. [Google Scholar] [CrossRef]
- Huang, W.J.; Tian, F.L.; Wang, H.; Wu, S.; Jin, W.P.; Shen, W.Y.; Hu, Z.Z.; Cai, Q.Y.; Liu, G. Comparative assessment of extraction, composition, and in vitro antioxidative properties of wheat bran polyphenols. LWT 2023, 180, 114706. [Google Scholar] [CrossRef]
- Zhang, X.J.; Liu, Z.T.; Chen, X.Q.; Zhang, T.T.; Zhang, Y. Deep eutectic solvent combined with ultrasound technology: A promising integrated extraction strategy for anthocyanins and polyphenols from blueberry pomace. Food Chem. 2023, 422, 136224. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, X.; Chen, X.; Rao, S.; Ju, T.; Li, J.; Yang, Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. LWT 2023, 173, 114337. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, L.; Zhou, L.; Cang, S.; Liu, Y.; Liu, R.; Liu, J.; Feng, X.; Fan, R. The research progress of extraction, purification and analysis methods of phenolic compounds from blueberry: A comprehensive review. Molecules 2023, 28, 3610. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumda, A.S.; Wang, H. Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in hawthorn pomace: A comparison of different extraction methods. Food Chem. 2022, 393, 133344. [Google Scholar] [CrossRef]
- Zheng, M.; Su, H.; Xiao, R.; Chen, J.; Chen, H.; Tan, K.B.; Zhu, Y. Effects of Polygonatum cyrtonema extracts on the antioxidant ability, physical and structure properties of carboxymethyl cellulose-xanthan gum-flaxseed gum active packaging films. Food Chem. 2023, 403, 134320. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, L.H.; Tang, B.; Wei, X.Y.; Fu, T.K.; Zhang, J. Optimization of extraction process for polyphenols from pineapple leaves fiber by response surface methodology. Sci. Technol. Food Ind. 2017, 38, 219–223. [Google Scholar] [CrossRef]
- Xiang, B.P.; Geng, X.L.; Zhu, P. Extraction of polyphenols from pineapple leaf. Sichuan Chem. Ind. 2014, 17, 1–4. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.A.; Haris, S.; Baba, W.N.; Akhter, R.; AlMarzouqi, A.H.; Masoodi, F.A. Supercritical fluid extraction tandem responsive polarity modifier separation of hydroxytyrosol rich phenolic raffinates from olive oil. Int. J. Food Sci. Technol. 2023, 58, 5701–5710. [Google Scholar] [CrossRef]
- Gan, J. Purification, antioxidation and stability of eleocharis tuberosa peel polyphenols. Food Res. Dev. 2022, 43, 27–33. [Google Scholar] [CrossRef]
- Yu, S.S.; Xie, H.; Xin, T.; Wang, S.P.; Wu, Y.C.; Duan, Y.Z. Stability and bioactivity of polyphenols purified from mallotus oblongifolius. Food Sci. Technol. 2023, 48, 173–179. [Google Scholar] [CrossRef]
- Yuan, Y.; Tian, H.; Huang, R.; Liu, H.; Wu, H.; Guo, G.; Xiao, J. Fabrication and characterization of natural polyphenol and ZnO nanoparticles loaded protein-based biopolymer multifunction electrospun nanofiber films, and application in fruit preservation. Food Chem. 2023, 418, 135851. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Tan, K.B.; Lin, J.; Chen, M.; Zhu, Y. Development of xanthan gum/hydroxypropyl methyl cellulose composite films incorporating tea polyphenol and its application on fresh-cut green bell peppers preservation. Int. J. Biol. Macromol. 2022, 211, 198–206. [Google Scholar] [CrossRef]
No. | A/% | B/°C | C/g/mL | D/min | Y/(mg/g) |
---|---|---|---|---|---|
1 | −1 (60) | 0 (70) | −1 (1:30) | 0 (50) | 10.50 |
2 | −1 | 1 (80) | 0 (1:40) | 0 | 11.38 |
3 | 0 (70) | 1 | 0 | 1 (60) | 11.33 |
4 | 0 | 0 | 0 | 0 | 10.33 |
5 | 0 | −1 (60) | −1 | 0 | 9.96 |
6 | 0 | 0 | 1 (1:50) | −1 (40) | 10.42 |
7 | 0 | −1 | 0 | −1 | 10.17 |
8 | 1 (80) | 0 | 0 | −1 | 10.18 |
9 | 0 | 1 | −1 | 0 | 11.08 |
10 | 0 | 1 | 0 | −1 | 11.20 |
11 | 1 | 0 | 0 | 1 | 9.58 |
12 | 0 | 0 | 0 | 0 | 10.30 |
13 | 0 | −1 | 0 | 1 | 10.25 |
14 | 0 | 0 | −1 | −1 | 10.52 |
15 | 0 | 0 | 0 | 0 | 10.32 |
16 | 1 | −1 | 0 | 0 | 10.18 |
17 | 1 | 1 | 0 | 0 | 11.33 |
18 | 0 | 0 | 0 | 0 | 10.29 |
19 | 0 | 0 | 0 | 0 | 10.34 |
20 | −1 | 0 | 0 | −1 | 10.12 |
21 | 0 | 1 | 1 | 0 | 11.31 |
22 | 0 | −1 | 1 | 0 | 9.82 |
23 | 1 | 0 | 1 | 0 | 9.83 |
24 | 1 | 0 | −1 | 0 | 9.96 |
25 | −1 | −1 | 0 | 0 | 10.25 |
26 | 0 | 0 | 1 | 1 | 10.43 |
27 | −1 | 0 | 1 | 0 | 10.52 |
28 | 0 | 0 | −1 | 1 | 10.06 |
29 | −1 | 0 | 0 | 1 | 10.70 |
Source of Variation | Sum of Squares | df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 6.36 | 14 | 0.4546 | 12.86 | <0.0001 | significant |
A | 0.484 | 1 | 0.484 | 13.69 | 0.0024 | ** |
B | 4.08 | 1 | 4.08 | 115.54 | <0.0001 | ** |
C | 0.0052 | 1 | 0.0052 | 0.1474 | 0.7068 | |
D | 0.0056 | 1 | 0.0056 | 0.1594 | 0.6957 | |
AB | 0.0001 | 1 | 0.0001 | 0.0028 | 0.9583 | |
AC | 0.0056 | 1 | 0.0056 | 0.1592 | 0.696 | |
AD | 0.3481 | 1 | 0.3481 | 9.85 | 0.0073 | ** |
BC | 0.0342 | 1 | 0.0342 | 0.9684 | 0.3418 | |
BD | 0.0006 | 1 | 0.0006 | 0.0177 | 0.8961 | |
CD | 0.0552 | 1 | 0.0552 | 1.56 | 0.2318 | |
A2 | 0.0185 | 1 | 0.0185 | 0.5237 | 0.4812 | |
B2 | 1.11 | 1 | 1.11 | 31.28 | <0.0001 | ** |
C2 | 0.0304 | 1 | 0.0304 | 0.8591 | 0.3697 | |
D2 | 7.21 × 10−7 | 1 | 7.21 × 10−7 | 0 | 0.9965 | |
Residual | 0.4948 | 14 | 0.0353 | |||
Lack of Fit | 0.4931 | 10 | 0.0493 | 114.67 | 0.0002 | significant |
Pure Error | 0.0017 | 4 | 0.0004 | |||
Cor Total | 6.86 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ma, H.; Wang, Y.; Li, Q.; Shi, M.; Chen, G. Optimization of Phenolic Compound Extraction from Pineapple Leaf Fiber: Stability Enhancement and Application in Mango Preservation. Agriculture 2025, 15, 1203. https://doi.org/10.3390/agriculture15111203
Liu Y, Ma H, Wang Y, Li Q, Shi M, Chen G. Optimization of Phenolic Compound Extraction from Pineapple Leaf Fiber: Stability Enhancement and Application in Mango Preservation. Agriculture. 2025; 15(11):1203. https://doi.org/10.3390/agriculture15111203
Chicago/Turabian StyleLiu, Yijun, Huifang Ma, Yuhan Wang, Qiangyou Li, Mingyang Shi, and Gang Chen. 2025. "Optimization of Phenolic Compound Extraction from Pineapple Leaf Fiber: Stability Enhancement and Application in Mango Preservation" Agriculture 15, no. 11: 1203. https://doi.org/10.3390/agriculture15111203
APA StyleLiu, Y., Ma, H., Wang, Y., Li, Q., Shi, M., & Chen, G. (2025). Optimization of Phenolic Compound Extraction from Pineapple Leaf Fiber: Stability Enhancement and Application in Mango Preservation. Agriculture, 15(11), 1203. https://doi.org/10.3390/agriculture15111203