Properties of Grassland Habitats in Organic and Conventional Farms Located in Mountainous Areas—A Case Study from the Western Sudetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Farms Included in the Study
2.3. Soil Sampling and Analysis
2.4. Botanical Analysis in the Field and Collection of Plant Samples
2.5. Biodiversity Indices and the Assessment of Sward Forage Utility
2.6. Chemical Analysis of Plant Samples
2.7. Statistical Analysis
3. Results
3.1. Basic Soil Properties: Texture, Organic Matter, and pH
3.2. Plant-Available Nutrients in Soils
3.3. Potentially Toxic Metals in Soils
3.4. Botanical Characteristics of the Sward
3.5. Sward Biodiversity Indices
3.6. Sward Chemical Composition
4. Discussion
4.1. Soil Differentiation in Organic vs. Conventionally Managed Grasslands
4.2. Biodiversity and Forage Value in Organic vs. Conventionally Managed Grasslands
4.3. Sward Chemical Composition in Organic vs. Conventionally Managed Grasslands
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Project
References
- Duelli, P.; Obrist, M.K. Regional biodiversity in an agricultural landscape: The contribution of seminatural habitat islands. Basic Appl. Ecol. 2003, 4, 129–138. [Google Scholar] [CrossRef]
- Bonari, G.; Fajmon, K.; Malenovský, I.; Zelený, D.; Holuša, J.; Jongepierová, I.; Kočárek, P.; Uřičář, J.; Chytrý, M. Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agric. Ecosyst. Environ. 2017, 246, 243–252. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal; COM/2019/640 Final; European Commission: Brussels, Belgium, 2019.
- European Commission. Communication: Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; COM(2020)381; European Commission: Brussels, Belgium, 2020.
- Kowalska, A.; Bieniek, M. Meeting the European Green Deal objective of expanding organic farming. Equilib. Q. J. Econ. Econ. Policy 2022, 17, 607–633. [Google Scholar] [CrossRef]
- Ziętara, W.; Mirkowska, Z. Rolnictwo ekologiczne w Polsce–uwarunkowania i kierunki rozwoju. Wieś Rol. 2024, 1, 69–93. [Google Scholar] [CrossRef]
- Zieliński, M.; Koza, P.; Łopatka, A. Agriculture from Areas Facing Natural or Other Specific Constraints (ANCs) in Poland, Its Characteristics, Directions of Changes and Challenges in the Context of the European Green Deal. Sustainability 2022, 14, 11828. [Google Scholar] [CrossRef]
- Jankowska-Huflejt, H.; Wróbel, B.; Twardy, S. Current role of grasslands in development of agriculture and rural areas in Poland-An example of mountain voivodships małopolskie and podkarpackie. J. Water Land Dev. 2011, 15, 3–18. [Google Scholar] [CrossRef]
- Reddy, B.S. Organic farming: Status, issues and prospects—A review. Agric. Econ. Res. Rev. 2010, 23, 343–358. [Google Scholar]
- Merrigan, K.; Giraud, E.G.; Scialabba, N.E.H.; Brook, L.; Johnson, A.; Aird, N.S. Grow organic. In The Climate, Health, and Economic Case for Expanding Organic Agriculture; Report; US Natural Resources Defense Council: New York, NY, USA, 2022. [Google Scholar]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Kareem, A.; Farooqi, Z.U.R.; Kalsom, A.; Mohy-Ud-Din, W.; Hussain, M.M.; Raza, M.; Khursheed, M.M. Organic farming for sustainable soil use, management, food production and climate change mitigation. In Sustainable Agriculture; Bandh, S.A., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Angerer, V.; Sabia, E.; von Borstel, U.K.; Gauly, M. Environmental and biodiversity effects of different beef production systems. J. Environ. Manag. 2021, 289, 112523. [Google Scholar] [CrossRef]
- Parizad, S.; Bera, S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. Environ. Sci. Pollut. Res. 2023, 30, 71665–71676. [Google Scholar] [CrossRef]
- Spoolder, H.A. Animal welfare in organic farming systems. J. Sci. Food Agric. 2007, 87, 2741–2746. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative economics of conventional, organic, and alternative agricultural production systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Watson, C.A. Risks and opportunities of increasing yields in organic farming: A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- Hajdys, D. The European Green Deal and the opportunities and risks of organic farming in Poland. Financ. Financ. Law 2024, 2, 171–190. [Google Scholar] [CrossRef]
- Kacprzak, A.; Migoń, P.; Musielok, Ł. Using soils as indicators of past slope instability in forested terrain, Kamienne Mts., SW Poland. Geomorphology 2013, 194, 65–75. [Google Scholar] [CrossRef]
- Migoń, P.; Kacprzak, A. Lateral diversity of regolith and soils under a mountain slope—Implications for interpretation of hillslope materials and processes, Central Sudetes, SW Poland. Geomorphology 2014, 221, 69–82. [Google Scholar] [CrossRef]
- Jankowska-Huflejt, H. The need of protecting permanent grasslands as a premise for the development of organic meadow farms. J. Res. Appl. Agric. Eng. 2016, 61, 3. [Google Scholar]
- Sumberg, J.; Giller, K.E. What is ‘conventional’ agriculture? Glob. Food Sec. 2022, 32, 100617. [Google Scholar] [CrossRef]
- Tal, A. Making conventional agriculture environmentally friendly: Moving beyond the glorification of organic agriculture and the demonization of conventional agriculture. Sustainability 2018, 10, 1078. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Raport Końcowy Dolnośląskiego Partnerstwa ds. Wody w Powiecie Kamiennogórskim, w Ramach Operacji “Dolnośląskie Partnerstwo ds. Wody (DPW)”. Available online: https://www.dodr.pl/wszystkie-relacje/raport-koncowy-dolnoslaskiego-partnerstwa-ds-wody-w-powiecie-kamiennogorskim-w (accessed on 5 January 2021). (In Polish).
- Papuga, K.; Kaszubkiewicz, J.; Wilczewski, W.; Staś, M.; BelowskiI, J.; Kawałko, D. Soil grain size analysis by the dynamometer method—A comparison to the pipette and hydrometer method. Soil Sci. Annu. 2018, 69, 1. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanisławska-Glubiak, E. Evaluation of the Egner–Riehm DL and Mehlich 3 Tests for the Determination of Phosphorus: The Influence of Soil Properties on Extraction Efficiency and Test Conversion. Agronomy 2024, 14, 2921. [Google Scholar] [CrossRef]
- Egner, H.; Kohler, G.; Nydahl, F. Die Laktatmethode zur Bestimmung leicht-löslicher Phosphorsäure in Ackerboden. Lantbrukshögsk. Ann. 1938, 6, 1227–1234. [Google Scholar]
- Riehm, H. Bestimmung der laktatloslichen Phosphorsaure in karbonathaltigen Boden. Phosphorsaure 1943, 1, 167–178. [Google Scholar]
- Mencel, J.; Futa, B.; Mocek-Płóciniak, A.; Mendyk, Ł.; Piernik, A.; Kaczmarek, T.; Glina, B. Interplay between selected chemical and biochemical soil properties in the humus horizons of grassland soils with low water table depth. Sustainability 2022, 14, 16890. [Google Scholar] [CrossRef]
- Schachtschabel, P. Plant-available magnesium in soil and its determination. Phosphorsäure 1954, 1, 167–178. [Google Scholar]
- Euro+Med. The Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 10 December 2024).
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 2012; 536p. (In Polish) [Google Scholar]
- Tichý, L.; Chytrý, M.; Hájek, M.; Talbot, S.S.; Botta-Dukát, Z. OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. J. Veg. Sci. 2010, 21, 287–299. [Google Scholar] [CrossRef]
- Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 2002, 13, 451–453. [Google Scholar] [CrossRef]
- JUICE Program for Management, Analysis and Classification of Ecological Data, Version 7.1. Available online: http://www.sci.muni.cz/botany/juice (accessed on 31 October 2023).
- Kącki, Z.; Michalska-Hejduk, D. Assessment of biodiversity in Molinia meadows in Kampinoski National Park based on biocenotic indicators. Pol. J. Environ. Stud. 2010, 19, 351–362. [Google Scholar]
- Wójcik, T.; Kostrakiewicz-Gierałt, K.; Makuch-Pietraś, I. The effect of accidental burning on habitat conditions and species composition of Molinion caeruleae meadows. J. Nat. Conserv. 2022, 70, 126294. [Google Scholar] [CrossRef]
- Filipek, J. Projekt klasyfikacji roślin łąkowych i pastwiskowych na podstawie liczb wartości użytkowej. Postępy Nauk. Rol. 1973, 4, 59–68. (In Polish) [Google Scholar]
- Szymura, M.; Świerszcz, S.; Szymura, T.H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a 6-year experiment. Land Degrad. Dev. 2022, 33, 1985–1998. [Google Scholar] [CrossRef]
- Klapp, E.; Boeker, P.; König, F.; Stählin, A. Wertzahlen der Grünlandpflanzen. In Das Grünland; Schaper-Verlag: Alfeld, Germany, 1953; Volume 2, pp. 203–225. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International; No. 1–2; Oxford Academic: Oxford, UK, 2000; Volume 17, Available online: https://academic.oup.com/officialmethodsofanalysis-aoac (accessed on 1 December 2024).
- Katoch, R. General scheme for forage quality analysis. In Techniques in Forage Quality Analysis; Springer Nature: Singapore, 2022; pp. 39–45. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, D.; Dong, X.; Li, X.; Cheng, L.; Liu, H.; Liu, G. Amino acid composition, protein content and accurate nitrogen-to-protein conversion factor for sheepgrass (Leymus chinensis). Botany 2020, 98, 137–146. [Google Scholar] [CrossRef]
- Krełowska-Kułas, M. Badanie Jakości Produktów Spożywczych; PWE: Warszawa, Poland, 1993; pp. 24–146. (In Polish) [Google Scholar]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine-affected soils—Findings from the field and greenhouse studies. Chemosphere 2020, 248, 126045. [Google Scholar] [CrossRef]
- Roleček, J.; Tichý, L.; Zelený, D.; Chytrý, M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J. Veg. Sci. 2009, 20, 596–602. [Google Scholar] [CrossRef]
- Waroszewski, J.; Pietranik, A.; Sprafke, T.; Kabała, C.; Frechen, M.; Jary, Z.; Kochergina, Y.V.E. Provenance and paleoenvironmental context of the Late Pleistocene thin aeolian silt mantles in southwestern Poland–A widespread parent material for soils. Catena 2021, 204, 105377. [Google Scholar] [CrossRef]
- Stuczyński, T.; Jadczysun, J. Numeryczna Mapa Glebowo-Rolnicza w Skali 1:25 000 dla Województwa Dolnośląskiego; IUNG: Puławy, Poland, 2004. (In Polish) [Google Scholar]
- Sobik, M. Klimat; Fabiszewski, J., Ed.; Przyroda Dolnego Śląska, Polska Akademia Nauk—Oddział we Wrocławiu: Wrocław, Poland, 2005; pp. 39–57. [Google Scholar]
- Musielok, Ł.; Kacprzak, A.; Opyrchat, J. Właściwości i pozycja systematyczna gleb rozwiniętych na ryolitach w Górach Kamiennych. Pr. Geogr. 2013, 135, 21–40. [Google Scholar] [CrossRef]
- Lai, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Holuša, J.; Hanáček, M.; Nývlt, D.; Woronko, B.; Stuchlík, R. Evolution of Weichselian aeolian strata on a coarse-grained substrate in a rugged piedmont topography: A case study from the foothills of the eastern Sudetes Mts., Czechia. Aeolian Res. 2024, 67, 100927. [Google Scholar] [CrossRef]
- Kabała, C. (Ed.) Soils of Lower Silesia: Origins, Diversity and Protection; Polish Society of Soil Science: Wrocław, Poland, 2015. [Google Scholar]
- Loba, A.; Sykuła, M.; Kierczak, J.; Łabaz, b.; Bogacz, A.; Waroszewski, J. In Situ weathering of rocks or aeolian silt deposition: Key parameters for verifying parent material and pedogenesis in the Opawskie Mountains—A case study from SW Poland. J. Soils Sediments 2020, 20, 435–451. [Google Scholar] [CrossRef]
- Czyż, E.; Kukier, U. The effects of soil bulk density and water content on soil aeration, nitrogen form and spring barley yield. Bibl. Fragm. Agron. 1997, 2, 163–166. [Google Scholar]
- Błaś, M.; Ojrzyńska, H. The climate of Poland. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 33–51. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Peake, L.; Baxter, H.; Cornelissen, G.; Grotkiewicz, K.; Hale, S.; Królczyk, J.B.; Kubon, M.; Łopatka, A.; Medynska-Juraszek, A.; et al. A reconnaissance-scale GIS-based multicriteria decision analysis to support sustainable biochar use: Poland as a case study. J. Environ. Eng. Landsc. Manag. 2017, 25, 208–222. [Google Scholar] [CrossRef]
- Regulation of the Minister for the Environment of 1 September 2016 on the method how to carry out the assessment of soil contamination. Pol. J. Laws 2016, 1395. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395 (accessed on 26 May 2025). (In Polish).
- Karczewska, A.; Kabała, C. Environmental risk assessment as a new basis for evaluation of soil contamination in Polish law. Soil Sci. Annu. 2017, 68, 67–80. [Google Scholar] [CrossRef]
- Karczewska, A.; Bogda, A.; Gałka, B.; Szulc, A.; Czwarkiel, D.; Duszyńska, D. Natural and anthropogenic soil enrichment in heavy metals in areas of former metallic ore mining in the Sudety Mts. Pol. J. Soil Sci. 2006, 39, 131–142. [Google Scholar]
- Mueller, C.; de Baan, L.; Koellner, T. Comparing direct land use impacts on biodiversity of conventional and organic milk—Based on a Swedish case study. Int. J. Life Cycle Assess 2014, 19, 52–68. [Google Scholar] [CrossRef]
- Pornaro, C.; Spigarelli, C.; Pasut, D.; Ramanzin, M.; Bovolenta, S.; Sturaro, E.; Macolino, S. Plant biodiversity of mountain grasslands as influenced by dairy farm management in the Eastern Alps. Agric. Ecosyst. Environ. 2021, 320, 107583. [Google Scholar] [CrossRef]
- Vogl, C.R.; Vogl-Lukasser, B.; Walkenhorst, M. Local knowledge held by farmers in Eastern Tyrol (Austria) about the use of plants to maintain and improve animal health and welfare. J. Ethnobiol. Ethnomed. 2016, 12, 40. [Google Scholar] [CrossRef]
- Sowiński, J.; Adamczewska-Sowińska, K. Forage legumes for human, animals, and environment. In Advances in Legumes for Sustainable Intensification; Academic Press: Cambridge, MA, USA, 2022; pp. 205–226. [Google Scholar] [CrossRef]
- Kotowski, M.; Kotowska, D.; Biró, M.; Babai, D.; Sharifian, A.; Szentes, S.; Łuczaj, Ł.; Molnár, Z. Change in European forage and fodder plant indicator sets over the past 250 years. Rangeland Ecol. Manag. 2023, 88, 159–173. [Google Scholar] [CrossRef]
- Kulik, M. Effect of different factors on chemical composition of grass-legumes sward. J. Elementol. 2009, 14, 91–99. [Google Scholar] [CrossRef]
- Martens, H. Diseases of dairy animals: Non-infectious diseases: Grass tetany. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–7. [Google Scholar]
- Rahman, M.H.; Islam, K.R.; Chiba, S.; Komuro, A.; Kawakami, T.; Tsuiki, M.; Saiga, S. Forage nutrient variability associated with hypomagnesemia and hypocalcemia. Open Access Libr. J. 2022, 9, 1–24. [Google Scholar] [CrossRef]
- Kozłowski, S. Trawy–Właściwości, Występowanie i Wykorzystanie; Powszechne Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2012. (In Polish) [Google Scholar]
- Van, S.; Peter, J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Mayland, H.F.; Hankins, J.L. Mineral imbalances and animal health: A management puzzle. In Anti-Quality Factors in Rangeland and Pastureland Forages, Idaho Forest, Wildlife and Range Experiment Station; University of Idaho: Moscow, Russia, 2001. [Google Scholar]
- Jankowska-Huflejt, H.; Wróbel, B.; Barszczewski, J. Evaluation of nutritive value of forages from grasslands on the background of soil richness and N, P, K balances in chosen organic farms. J. Res. Appl. Agric. Eng. 2009, 54, 95–102. (In Polish) [Google Scholar]
- Smith, J.; Wolfe, M.; Woodward, L.; Pearce, B.; Lampkin, N.; Marshall, H. Organic Farming and Biodiversity: A Review of the Literature; Organic Center Wales, Aberystwyth: Ceredigion, UK, 2011. [Google Scholar]
- Horbowy, K.; Gawlikowska, E.; Sobol, L.; Ordzik, K.; Lis, J.; Kóźma, J.; Pasieczna, A.; Wołkowicz, S. Objaśnienia do Mapy Geośrodowiskowej Polski 1:50 000, Arkusz Kamienna Góra (833); Państwowy Instytut Geologiczny: Warszawa, Poland, 2024; pp. 7–11. (In Polish) [Google Scholar]
- Fang, K.; Kou, D.; Wang, G.; Chen, L.; Ding, J.; Li, F.; Yang, Y. Decreased Soil Cation Exchange Capacity Across Northern China’s Grassland Over the Last Three Decades. J. Geophys. Res. Biogeosci. 2017, 122, 3088–3097. [Google Scholar] [CrossRef]
No. | Farming System | Village and Local Farm Number | Altitude, m asl | Soil Quality Class | Slope, % | Exposition | Grazing Period | Fertilizers | Duration of the Farming System |
---|---|---|---|---|---|---|---|---|---|
1 | Organic | Świdnik, 270 | 460 | average | 11 | W | Daytime | Manure | since 2020 |
2 | Organic | Czarnów, 188 | 665 | poor | 30 | NE | Daytime | Manure | since 1995 |
3 | Organic | Raszów, 145/1 | 506 | average | 3 | SW | 24 h | Manure | since 2005 |
4 | Organic | Krzeszów, 816 | 466 | average | 2 | E | Daytime | Manure | since 1980 |
5 | Organic | Kochanów, 3/12 | 567 | average | 15 | SE | 24 h | Manure, PGPB * | since 1996 |
6 | Organic | Golińsk, 217/2 | 454 | average | 1 | SE | 24 h | None | since 2021 |
7 | Organic | Niedamirów, 289/1 | 625 | average | 10 | SE | Daytime | None | since 1987 |
8 | Conventional | Ciechanowice, 423 | 428 | average | 10 | SW | Daytime | Manure + mineral fertilizers | since 2005 |
9 | Conventional | Marciszów, 540/3 | 422 | average | 1 | NE | Daytime | Mineral fertilizers | since 2005 |
10 | Conventional | Pisarzowice, 693 | 512 | average | 5 | NE | Daytime | N mineral fertilizers | since 1997 |
11 | Conventional | Lubawka, 125 | 517 | good | 6 | NW | Daytime | N + Ca mineral fertilizers | since 2019 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
clay | 3 | 2.5 | 141 | 0.59 |
silt | 37 | 43.2 | 109 | 0.54 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
SOC | 3.41 | 3.16 | 150 | 0.385 |
pH | 4.91 | 4.93 | 134 | 0.793 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
K | 180 | 85 | 223 | 0.0003 |
Mg | 17.4 | 14.7 | 143 | 0.3987 |
P | 39.3 | 25.6 | 156 | 0.2741 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
Cd | 0.92 | 0.80 | 123 | 0.911 |
Cu | 28.6 | 24.8 | 147 | 0.455 |
Pb | 26.5 | 28.9 | 116 | 0.733 |
Zn | 97.3 | 92.6 | 150 | 0.384 |
Group Number | 1 | 2 |
---|---|---|
Releve number | 20 | 13 |
Plant species | F-fidelity index values | |
Phleum pratense | 63.9 | --- |
Poa annua | 53.9 | --- |
Veronica serpyllifolia | 46.1 | --- |
Lolium multiflorum | 37.8 | --- |
Lolium perenne | 35.1 | --- |
Plantago media | 33.3 | --- |
Agrostis capillaris | --- | 77.5 |
Cirsium arvense | --- | 48.8 |
Chaerophyllum aromaticum | --- | 48.8 |
Galium mollugo | --- | 48.8 |
Aegopodium podagraria | --- | 48.8 |
Vicia sepium | --- | 48.8 |
Crepis biennis | --- | 47.9 |
Cynosurus cristatus | --- | 47.9 |
Festuca rubra | --- | 47 |
Achillea millefolium | --- | 46 |
Hypericum maculatum | --- | 42.6 |
Lathyrus pratensis | --- | 42.6 |
Anthriscus sylvestris | --- | 42.6 |
Holcus lanatus | --- | 40.9 |
Hypochoeris radicata | --- | 36.1 |
Symphytum officinale | --- | 36.1 |
Urtica dioica | --- | 36.1 |
Campanula patula | --- | 36.1 |
Rumex crispus | --- | 33.2 |
Trifolium pratense | --- | 32.3 |
Ranunculus acris | --- | 31.7 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
richness of all species | 20 | 15 | 191 | 0.01 |
richness of grasses | 6 | 5.5 | 148 | 0.40 |
richness of legumes | 2 | 2 | 174 | 0.06 |
richness of others | 12 | 7.5 | 178 | 0.05 |
Feature | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
FUV | 7.33 | 8.24 | 74 | 0.53 |
Component | Median | W | p | |
---|---|---|---|---|
Eco | Conv | |||
protein | 17.5 | 15.0 | 149 | 0.405 |
fat | 3.16 | 3.46 | 76 | 0.063 |
fiber | 25.8 | 26.6 | 130 | 0.909 |
Component | Median | W | p | |
---|---|---|---|---|
Org | Conv | |||
Ca | 0.34 | 0.38 | 85 | 0.1715 |
K | 1.89 | 1.79 | 178 | 0.0537 |
Mg | 0.40 | 0.40 | 122 | 0.8956 |
P | 0.18 | 0.13 | 228 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solarz, K.; Dradrach, A.; Czarniecka-Wiera, M.; Bogacz, A.; Karczewska, A. Properties of Grassland Habitats in Organic and Conventional Farms Located in Mountainous Areas—A Case Study from the Western Sudetes. Agriculture 2025, 15, 1159. https://doi.org/10.3390/agriculture15111159
Solarz K, Dradrach A, Czarniecka-Wiera M, Bogacz A, Karczewska A. Properties of Grassland Habitats in Organic and Conventional Farms Located in Mountainous Areas—A Case Study from the Western Sudetes. Agriculture. 2025; 15(11):1159. https://doi.org/10.3390/agriculture15111159
Chicago/Turabian StyleSolarz, Krzysztof, Agnieszka Dradrach, Marta Czarniecka-Wiera, Adam Bogacz, and Anna Karczewska. 2025. "Properties of Grassland Habitats in Organic and Conventional Farms Located in Mountainous Areas—A Case Study from the Western Sudetes" Agriculture 15, no. 11: 1159. https://doi.org/10.3390/agriculture15111159
APA StyleSolarz, K., Dradrach, A., Czarniecka-Wiera, M., Bogacz, A., & Karczewska, A. (2025). Properties of Grassland Habitats in Organic and Conventional Farms Located in Mountainous Areas—A Case Study from the Western Sudetes. Agriculture, 15(11), 1159. https://doi.org/10.3390/agriculture15111159