Variation in Fruit and Seed Morphology of Selected Biotypes and Cultivars of Elaeagnus multiflora Thunb. in North-Eastern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Quantity and Quality of Yield
2.3. Climatic Conditions
2.4. Statistical Analysis of the Data
3. Results and Discussion
3.1. Climatic Conditions
3.2. Fruit Quality
3.2.1. Fruit Weight
3.2.2. Shape Parameters
3.2.3. Fruit-to-Seed Weight Ratio
3.2.4. Total Soluble Solids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewiston, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional Climate Projections. In The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.L., Eds.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2007. [Google Scholar]
- Sun, W.; Yuan, X.; Liu, Z.-J.; Lan, S.; Tsai, W.-c.; Zou, S.-Q. Multivariate analysis reveals phenotypic diversity of Euscaphis japonica population. PLoS ONE 2019, 14, e0219046. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, A.; Dragańska, E.; Pranckietis, V. Assesment of climatic conditions for Actinidia arguta cultivation in north-eastern Poland. Zemdirb.-Agric. 2016, 103, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ren, Z.; Li, D.; Liu, X. Phenotypic techniques and applications in fruit trees: A review. Plant Methods 2020, 16, 107. [Google Scholar] [CrossRef]
- Alcàntara-Ayala, O.; Oyama, K.; Rios-Muñoz, C.A.; Rivas, G.; Remirez-Barahona, S.; Luna-Vega, I. Morphological variation of leaf traits in the Ternstroemia lineta species complex (Ericales: Penthaphylacaceae) in response to geographic and climatic variation. PeerJ 2020, 8, e8307. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wang, B.; Liu, F.; Zhao, J.; Yuan, J.; Xiao, S.; Masabni, J.; Zou, F.; Yuan, D. Variation in fruit Morphology and seed oil fatty acid composition of Camellia oleifera collected from diverse region in Southern China. Horticulturae 2022, 8, 818. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.Q.; Yu, M.K.; Han, Y.Z.; Wu, T.G. Variation in seed size and seed mass related to tree growth over 5 years for 23 provenances of Quercus acutissima from across China. J. For. Res. 2017, 28, 917–923. [Google Scholar] [CrossRef]
- Chetty, K.; Govender, M.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa 2007, 33, 145–151. [Google Scholar]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, K. Detection of diseases, identification and diversity of viruses: A review. J. Biol. Agric. Health 2015, 5, 204–213. [Google Scholar]
- Ali, M.M.; Bachik, N.A.; Bachik, N.A.; Muhadi, N.A.; Yusof, T.N.T.; Gomes, C. Non-destructive techniques of detecting plant diseases: A review. Physiol. Mol. Plant Pathol. 2019, 108, 101426. [Google Scholar] [CrossRef]
- Szpadzik, E.; Krupa, T.; Niemiec, W.; Jadczuk-Tobjas, E. Yielding and fruit quality of selected sweet cherry (Prunus avium) cultivars in the conditions of central Poland. Acta Sci. Pol. Hortorum Cultus 2019, 18, 117–126. [Google Scholar] [CrossRef]
- Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Bogdał, S.; Bieniasz, M.; Błaszczyk, J.; Knaga, J.; Nawrocki, J.; Pniak, M. Variability of nutrients in the leachates from everbearing strawberry cultivated in soilless conditions on gutters. Acta Sci. Pol. Form. Circumiectus 2019, 18, 13–23. [Google Scholar] [CrossRef]
- Sitarek, M. Evaluation of selected apricot cultivars based on many years of research in the collection of RIH in Skierniewice, Poland. Acta Hortic. 2020, 1290, 155–158. [Google Scholar] [CrossRef]
- Bieniek, A.; Lachowicz-Wiśniewska, S.; Bojarska, J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules 2022, 27, 2719. [Google Scholar] [CrossRef]
- Krupa, T.; Tomala, K. Effect of Oxygen and Carbon Dioxide Concentration on the Quality of Minikiwi Fruits after Storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Lachowicz, S.; Bieniek, A.; Gil, Z.; Bielska, N.; Markuszewski, B. Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes (Elaeagnus multiflora Thunb.). Eur. Food Res. Technol. 2019, 245, 1997–2005. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, A.A.; Grygorieva, O.; Bielska, N. Biological Properties of Honeysuckle (Lonicera caerulea L.): A Review: The nutrition, health properties of honeysuckle. Agrobiodiversity Improv. Nutr. Health Life Qual. 2021, 5, 287–295. [Google Scholar] [CrossRef]
- Mech-Nowak, A.; Kruczek, M.; Kaszycki, P.; Bieniasz, M.; Kostecka-Gugała, A. Polyphenols, carboxylic hydroxyacids and carotenoids in berries of blue honeysuckle (Lonicera coerulea var. kamtschatica) Polifenole, hydroksykwasy karboksylowe i karotenoidy w owocach suchodrzewu jadalnego (Lonicera coerulea var. kamtschatica). Przemysł Chem. 2014, 93, 948–953. [Google Scholar] [CrossRef]
- Sosna, I. Evaluation of several Asian pear cultivars in the climatic conditions of lower Silesia. Acta Sci. Pol. Hortorum Cultus 2018, 17, 107–114. [Google Scholar] [CrossRef]
- Szot, I.; Łysiak, G.P. Effect of the Climatic Conditions in Central Europe on the growth and Yield of Cornelian Cherry Cultivars. Agriculture 2022, 12, 1295. [Google Scholar] [CrossRef]
- Antoniewska-Krzeska, A.; Ivanišová, E.; Klymenko, S.; Bieniek, A.A.; Fatrcová-Šramková, K.; Brindza, J. Nutrients content and composition in different morphological parts of Cornelian cherry (Cornus mas L.). Agrobiodiversity Improv. Nutr. Health Life Qual. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Bienisz, M.; Konieczny, A.; Błaszczyk, J.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hereszek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Pniak, M. Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions. Agriculture 2022, 12, 1795. [Google Scholar] [CrossRef]
- Bieniek, A.; Dragańska, E. Content of macroelements in fruits of Ukrainian cultivars of hardy kiwifruit and Actinidia charta depending on the weather conditions during the phonological phases. J. Elem. 2013, 18, 23–38. [Google Scholar] [CrossRef]
- Lachowicz, S.; Kapusta, I.; Świeca, M.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A. In vitro Antioxidant and Antidiabetic potency of fruits and leaves of Elaeagnus multiflora Thunb. and their isoprenoids and polyphenolics profile. Antioxidants 2020, 9, 436. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, Y.K.; Park, O.J. Cherry silverberry (Elaeagnus multiflora) extracts exere anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci. Biotechnol. 2010, 19, 1673–1677. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, W.T.; Cho, K.M. Determination of phytochemical contents and biological activities from the fruits of Elaeagnus multiflora. Int. J. Food Sci. Nutr. 2011, 16, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Nowak, K.W.; Mielnik, P.; Sięda, M.; Staniszewska, I.; Bieniek, A. The effect of ultrasound treatment on the extraction of lycopene and β-carotene from cherry silverberry fruits. AIMS Agric. Food 2021, 6, 247–254. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S.; Lu, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Chwil, M.; Wereszko-Chmielewska, E. Micromorphology of the floral elements, the structure of nectary, and the apicultural value of Elaeagnus commutata Bernh. Ex. Rydb. Acta Agrobot. 2011, 64, 27–34. [Google Scholar] [CrossRef]
- Caru, M.; Mosquera, G.; Bravo, L.; Guevara, R.; Sepulveda, D.; Cabello, A. Infectivity and effectivity of Frankia strains from the Rhamnaceae family on different actinorhizal plants. Plant Soil 2003, 251, 219–225. [Google Scholar] [CrossRef]
- Clawson, M.L.; Bourret, A.; Bensona, D.R. Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol. Phylogenetics Evol. 2004, 31, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Khamzina, A.; Lamers, J.P.A.; Martius, C.h.; Worbes, M.; Vlek, P.L.G. Potential of nine multipurpose tree species to reduce saline groundwater tables in the lower Amu Darya River region of Uzbekistan. Agrofor. Syst. 2006, 68, 151–165. [Google Scholar] [CrossRef]
- Follstad Shah, J.J.; Harner, M.J.; Tibbets, T.M. Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems 2010, 13, 46–61. [Google Scholar] [CrossRef]
- Bieniek, A.; Piłat, B.; Szałkiewicz, M.; Markuszewski, B.; Gojło, E. Evaluation of yield, morphology and quality of (Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland. Pol. J. Nat. Sci. 2017, 32, 61–70. [Google Scholar]
- Grygorieva, O.; Klymenko, S.; Ilinska, A.; Brindza, J. Variation of fruits morphometric parameters of Elaeagnus multiflora Thunb. germplasm collection. Potravin. Slovak J. Food Sci. 2018, 12, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.H.; Kim, K.B.; An, C.S.; Kim, J.H.; Song, S.D. Geographical Distribution and Soil Characteristics of Elaeagnus Plants in Korea. Korean J. Ecol. 1994, 17, 159–170. [Google Scholar]
- Lachowicz-Wiśniewska, S.; Kapusta, I.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A.; Ochmian, I.; Gil, Z. Distribution of Polyphenolic and Isoprenoid Compounds and Biological Activity Differences between in the Fruit Skin+ Pulp. Seeds. and Leaves of New Biotypes of Elaeagnus multiflora Thunb. Antioxidants 2021, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Hussain, M.; Mahar, S.; Iqbal, S. Investigation on Total Phenolic Contents of Elaeagnus multiflora. Asian J. Chem. 2015, 27, 4587–4590. [Google Scholar] [CrossRef]
- Shin, S.R.; Hong, J.Y.; Yoon, K.Y. Antioxidant properties and total phenolic contents of cherry Elaeagnus (Elaeagnus multiflora Thunb.) leaf extracts. Food Sci. Biotechnol. 2008, 17, 608–612. [Google Scholar]
- Kim, S.A.; Oh, S.I.; Lee, M.S. Antioxidative and cytotoxic effects of solvent fractions from Elaeagnus multiflora. Korean J. Food Nutr. 2007, 20, 134–142. [Google Scholar]
- Kim, S.T.; Kim, S.W.; Ha, J.; Gal, S.W. Elaeagnus multiflora fruit extract inhibits melanin biosynthesis via regulation of tyrosinase gene on translational level. Res. J. Biotechnol. 2014, 9, 1–6. [Google Scholar]
- Lee, Y.S.; Chang, Z.Q.; Oh, B.C.; Park, S.C.; Shin, S.R.; Kim, N.W. Antioxidant activity, anti-inflammatory activity, and whitening effects of extracts of Elaeagnus multiflora Thunb. J. Med. Food 2007, 10, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; OH, S.; Lee, M. Antioxidative and Cytoxic Effects of Ethanol Extracts from Elaeagnus multiflora. Korean J. Food Nutr. 2008, 21, 403–409. [Google Scholar]
- Houng, J.Y.; Nam, H.S.; Lee, Y.S.; Yoon, K.Y.; Kim, N.W.; Shin, S.R. Study on the antioxidant activity of extracts from the fruit of Elaeagnus multiflora Thunb. Korean J. Food Preserv. 2006, 13, 413–419. [Google Scholar]
- Chang, Z.Q.; Park, S.C.; Oh, B.C.; Lee, Y.S.; Shin, S.R.; Kim, N. Antiplatet aggregation and antiinflammatory activity for extracts of Elaeagnus multiflora. Korean J. Med. Crop Sci. 2006, 51, 516–517. [Google Scholar]
- Chinnici, F.; Spinabelli, U.; Riponi, C.; Amati, A. Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. J. Food Compos. Anal. 2005, 18, 121–130. [Google Scholar] [CrossRef]
- Patel, S. Plant genus Elaeagnus: Underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits 2015, 70, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Kurlus, R.; Rutkowski, K.; Łysiak, G.P. Improving of Cherry Fruit Quality and earing Regularity by Chemical Thinning with Fertilizer. Agronomy 2020, 10, 1281. [Google Scholar] [CrossRef]
- Figiel-Korczyńska, M.; Ochmian, I.; Lachowicz, S.; Krupa-Małkiewicz, M.; Wróbel, J.; Gamrat, R. Actinidia (Mini Kiwi) Fruit uality in Relation to Summer Cutting. Agronomy 2021, 11, 964. [Google Scholar] [CrossRef]
- Łysiak, G.; Kurlus, R.; Zydlik, Z.; Walkowiak-Tomczak, D. Apple Skin Colour Changes during Harvest as An Indicator of Maturity. Acta Sci. Pol. Hortorum Cultus 2014, 13, 71–83. [Google Scholar]
- Kolniak-Ostek, J.; Kłopotowska, D.; Rutkowski, K.P.; Skorupińska, A.; Kruczyńska, D.E. Bioactive Compounds and Health-Promoting Properties of Pear (Pyrus communis L.) Fruits. Molecules 2020, 25, 4444. [Google Scholar] [CrossRef]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The Effects of Preharvest 1-Methylcyclopropene (1-MCP) Treatment on the Fruit Quality Parameters of Cold-Stored ‘Szampion’ Cultivar Apples. Agriculture 2020, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Szot, I.; Szot, P.; Lipa, T.; Sosnowska, B.; Dobrzański, B. Determination of physical and chemical properties of Cornelian cherry (Cornus mas L.) fruits depending on degree of ripening and ecotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 251–262. [Google Scholar] [CrossRef]
- Bokszczanin, K.Ł.; Wrona, D.; Przybyłko, S. Influence of an Alternative Soil Management System to Herbicide Use on Tree Vigor, Yield, and Quality of Apple Fruit. Agronomy 2021, 11, 58. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019, 63, e1801045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin carotenoids in public health and nutricosmetics: The emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Ahmadiani, A.; Hosseiny, J.; Semnanian, S.; Javan, M.; Saeedi, F.; Kamalinejad, M.; Saremi, S. Antinociceptive and antiflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol. 2000, 72, 287–292. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Ilinska, A.; Ivanišová, E.; Bieniek, A.A.; Antoniewska, A. Morphometric analysis of fruits and seeds of Elaeagnus multiflora Thunb. In Proceedings of the Global consequences of plant introduction in conditions of climate change, Proceedings of the International Scientific Conference Is Dedicated to the 30-th Anniversary of Independence of Ukraine, Kyiv, Ukraine, 5–7 October 2021; pp. 81–82, ISBN 978-617-520-173-2. [Google Scholar]
- World reference base for soil resources 2014. In World Soil Resources Reports; IUSS Working Group WRB, FAO: Rome, Italy, 2014; Volume 106, p. 6.
- Faust, M. Physiology of Temperate Zone Fruit Trees; John Wiley & Sons, Inc.: New York, NY, USA, 1989; p. 338. ISBN 0-471-81781-3. [Google Scholar]
- Heide, O.M.; Rivero, R.; Sønsteby, A. Temperature control of shoot growth and foral initiation in apple (Malus × domestica Borkh.). CABI Agric. Biosci. 2020, 1, 8. [Google Scholar] [CrossRef]
- Grygorieva, O.; Ilyniska, A.; Zhurba, M.; Klymenko, S.; Kalista, M. Phenological growth stages according to BBCH scale Elaeagnus multiflora Thunb. Agrobiodiversity Improv. Nutr. Health Life Qual. 2022, 2, 229–241. [Google Scholar] [CrossRef]
- Westwood, M.N. Temperate-Zone Pomology: Physiology and Culture; Timber Press, Inc.: Portland, OR, USA, 1993; p. 552. ISBN 0-88192-253-6. [Google Scholar]
- Rodrigo, J.; Herrero, M. The onset of fruiting in apricot (Prunus armeniaca L.). J. Appl. Bot. 2002, 76, 13–19. [Google Scholar]
- Proebsting, E.L.; Mills, H.H. Low Temperature Resistance of Developing Flower Buds of Six Deciduous Fruit Species. J. Amer. Soc. Hortic. Sci. 1978, 103, 192–198. [Google Scholar] [CrossRef]
- Ashworth, E.N.; Wisniewski, M.E. Response of fruit tree tissues to freezing temperatures. HortScience 1991, 26, 501–504. [Google Scholar] [CrossRef]
- Rodrigo, J. Spring frosts in deciduous fruit trees—Morphological damage and flower hardiness. Sci. Hortic. 2000, 85, 155–173. [Google Scholar] [CrossRef]
- Chawla, R.; Sheokand, A.; Rai, M.; Sadawarti, R.K. Impact of climate change on fruit production and various approaches to mitigate these impacts. Pharma Innov. J. 2021, 10, 564–571. [Google Scholar]
- Tomala, K. Orchard factors affecting fruit storage quality and prediction of harvest date of apples. Acta Hortic. 1999, 485, 373–382. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Weather Conditions, Orchard Age and Nitrogen Fertilization Influences Yield and Quality of ‘Łutówka’ Sour Cherry Fruit. Agriculture 2022, 12, 2008. [Google Scholar] [CrossRef]
- Lipa, T.; Szot, I. Effect of Fertilization Methods on Growth of Pear Trees, Yielding and Fruit Quality. Mod. Phytomorphology 2013, 4, 55–58. [Google Scholar]
- Rutkowski, K.; Łysiak, G. Thinning methods to regulate sweet cherry crops—A review. Appl. Sci. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Kawecki, Z.; Bieniek, A. Influance of climatic conditions of northeastern Poland on growth of bower actinidia. Sci. Work. Lith. Inst. Hortic. Lith. Univ. Agriculture. Sodininkystè Daržininkystè 2008, 27, 307–318. [Google Scholar]
- Łysiak, G.P. Degree Days as a Method to Estimate the Optimal Harvest Date of ‘Conference’ Pears. Agriculture 2022, 12, 1803. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Adelina, R.; Suliansyah, I.; Syarif, A.; Warnita. Phenology of Flowering and Fruit Set in Snake Fruit (Salacca Sumatrana Becc.). Acta Agrobot. 2021, 74, 742. [Google Scholar] [CrossRef]
- Hong, J.Y.; Cha, H.S.; Shin, S.R.; Jeong, Y.J.; Youn, K.S.; Kim, M.H.; Kim, N.W. Optimization of manufacturing condition and physicochemical properties for mixing beverage added extract of Elaeagnus multiflora Thunb. fruits. Korean J. Food Preserv. 2007, 14, 269–275. [Google Scholar]
- Gamba, G.; Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Randriamampionona, D.; Beccaro, G.L. Phytochemical Characterization and Bioactivity Evaluation of Autumn Olive (Elaeagnus umbellata Thunb.) Pseudodrupes as Potential Sources of Health-Promoting Compounds. Appl. Sci. 2020, 10, 4354. [Google Scholar] [CrossRef]
- Hussain, I. Physiochemical and sensory characteristics of Elaeagnus umbellata (Thunb) fruit from Rawalakot (Azad Kashmir) Pakistan. Afr. J. Food Sci. 2011, 2, 151–156. [Google Scholar]
- Wang, S.Y.; Fordham, I.M. Differences in chemical composition and antioxidant capacity among different genotypes of Autumn Olive (Elaeagnus umbellate Thunb.). Food Technol. Biotechnol. 2007, 45, 402. [Google Scholar]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81. [Google Scholar] [CrossRef]
Month | Mean Daily Temperatures (°C) Experimental Years | Multiannual Mean of 1981–2010 | Total Precipitation (mm) Experimental Years | Total Precipitation of 1981–2010 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 | |||
January | −0.3 | −2.4 | 2.6 | −2.1 | 0.8 | −2.3 | 40.6 | 52.7 | 44.9 | 41.4 | 64.2 | 42.7 |
February | −4.4 | 2.2 | 3.2 | −3.2 | 2.4 | −1.4 | 6.6 | 35.5 | 64.7 | 19.3 | 62.7 | 30.0 |
March | −0.8 | 4.8 | 3.8 | 2.4 | 2.6 | 1.8 | 18.3 | 51.4 | 39.7 | 35.6 | 0.0 | 39.6 |
April | 11.6 | 9.3 | 7.5 | 5.9 | 6.5 | 7.3 | 34.8 | 0.0 | 4.5 | 40.6 | 22.2 | 35.2 |
May | 16.6 | 11.9 | 10.2 | 11.8 | 12.1 | 12.8 | 30.4 | 134.8 | 104.8 | 80.9 | 35.5 | 57.9 |
June | 17.8 | 20.9 | 17.9 | 19.4 | 17.9 | 15.5 | 42.0 | 93.0 | 101.8 | 30.3 | 92.5 | 76.9 |
July | 19.9 | 17.3 | 17.7 | 21.2 | 18.0 | 17.9 | 129.1 | 47.1 | 79.8 | 151.3 | 55.9 | 74.9 |
August | 19.4 | 18.7 | 18.9 | 16.6 | 20.9 | 17.3 | 61.8 | 70.0 | 62.5 | 182.9 | 40.5 | 65.1 |
September | 15.1 | 13.8 | 15.1 | 13.0 | 11.5 | 12.7 | 38.2 | 87.2 | 25.2 | 19.3 | 52.7 | 56.1 |
October | 9.3 | 10.0 | 10.2 | 8.9 | 10.8 | 8.0 | 95.0 | 35.6 | 89.0 | 22.1 | 16.2 | 48.9 |
November | 3.9 | 5.4 | 5.7 | 4.8 | 4.0 | 2.7 | 19.4 | 29.3 | 19.1 | 39.2 | 6.3 | 51.2 |
December | 1.0 | 2.9 | 1.4 | −1.6 | −0.5 | −1.0 | 63.5 | 35.6 | 31.4 | 14.4 | 38.2 | 47.2 |
Mean/Total of season (April–July) | 14.2 | 14.8 | 13.3 | 14.6 | 13.6 | 13.4 | 236.3 | 274.9 | 290.9 | 303.1 | 206.1 | 244.9 |
Mean/Total of the year | 9.1 | 9.6 | 9.5 | 8.1 | 8.9 | 7.6 | 672.2 | 672.2 | 677.3 | 486.9 | 625.7 |
Year (2019) | Year (2020) | Year (2021) | Year (2022) | ||||
---|---|---|---|---|---|---|---|
Day | °C | Day | °C | Day | °C | Day | °C |
April | |||||||
01 | −7.5 | 01 | −3.1 | 01 | −2.0 | 01 | −1.8 |
02 | −7.8 | 04 | −1.4 | 02 | −0.5 | 02 | −2.2 |
07 | −3.8 | 05 | −7.5 | 04 | −2.4 | 03 | −5.6 |
08 | −3.0 | 06 | −5.9 | 06 | −2.0 | 04 | −7.5 |
10 | −7.8 | 07 | −2.3 | 07 | −4.7 | 06 | −2.1 |
11 | −5.1 | 08 | −4.2 | 08 | −1.9 | 09 | −1.1 |
12 | −3.9 | 10 | −5.4 | 09 | −1.0 | 11 | −2.3 |
13 | −5.7 | 11 | −8.1 | 14 | −0.5 | 12 | −6.2 |
14 | −2.3 | 12 | −0.9 | 19 | −0.1 | 13 | −5.5 |
15 | −7.5 | 14 | −5.6 | 21 | −0.8 | 16 | −0.4 |
16 | −5.7 | 15 | −5.5 | 24 | −4.7 | 17 | −0.1 |
17 | −5 | 17 | −2.5 | 25 | −7.6 | 18 | −5.7 |
18 | −4.3 | 18 | −8.2 | 26 | −1.8 | 27 | −3.0 |
19 | −3.2 | 19 | −5.8 | 27 | −3.6 | 29 | −4.6 |
20 | −3 | 20 | −5.9 | 28 | −5.9 | ||
22 | −2.8 | 21 | −6.3 | 29 | −0.9 | ||
23 | −2.9 | 22 | −3.3 | ||||
30 | −1.1 | 23 | −4.4 | ||||
24 | −1.7 | ||||||
27 | −5.4 | ||||||
May | |||||||
06 | −5.1 | 04 | −1.3 | 01 | −2.8 | 03 | −0.5 |
07 | −2.8 | 08 | −1.6 | 04 | −0.1 | 04 | −1.3 |
08 | −3.4 | 14 | −2.2 | 07 | −0.4 | 05 | −0.6 |
30 | −1.0 | 15 | −4.5 | 09 | −3.9 | 10 | −2.5 |
22 | −0.7 | 16 | −0.6 | ||||
23 | −0.4 | 18 | −0.7 | ||||
19 | −1.1 |
Traits | Mean Temperature (°C) | ||||
---|---|---|---|---|---|
April | May | June | July | Mean for Season | |
Yield | −0.18 | 0.18 | −0.56 *** | −0.39 ** | −0.56 *** |
Length of fruit | −0.17 | 0.32 * | 0.28 | 0.43 ** | 0.42 ** |
Width of fruit | −0.11 | 0.09 | 0.28 | 0.42 ** | 0.37 * |
Fruit length to width ratio | −0.14 | 0.36 * | 0.11 | 0.18 | 0.21 |
Traits | Total Precipitation (mm) | ||||
---|---|---|---|---|---|
April | May | June | July | Mean for Season | |
Yield | −0.05 | −0.65 *** | 0.46 ** | −0.49 ** | −0.84 *** |
Fruit weight | 0.22 | 0.04 | −0.30 * | 0.30 | 0.22 |
Length of fruit | 0.37 * | 0.00 | −0.48 ** | 0.36 * | 0.18 |
Width of fruit | 0.28 | 0.15 | −0.45 ** | 0.42 ** | 0.38 * |
Width of seed | −0.17 | 0.31 * | 0.03 | 0.06 | 0.32 * |
Seed length to width ratio | 0.32 * | −0.22 | −0.27 | 0.19 | −0.08 |
Weather Factors | Months | ||||||||
---|---|---|---|---|---|---|---|---|---|
VIII | IX | X | XI | XII | I | II | III | I–XII | |
Temperature | −0.84 * | −0.82 * | −0.68 * | ns | −0.68 * | −0.62 * | −0.42 * | 1 ns | −0.78 * |
Precipitation | 0.85 * | −0.19 * | −0.75 * | 0.85 * | −0.58 * | −0.19 * | −0.40 * | ns | 0.36 * |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 2.25 * | ±1.64 a ** | 2.80 | ±0.98 de | 0.60 | ±1.07 b | 7.40 | ±1.88 g | 3.26 | ±1.30 a |
B 1 | 1.70 | ±0.44 a | 2.70 | ±0.96 d | 0.27 | ±0.95 a | 9.00 | ±0.95 h | 3.42 | ±1.46 ab |
B 2 | 1.40 | ±0.90 a | 2.60 | ±1.32 cd | 0.40 | ±1.01 ab | 8.80 | ±1.43 h | 3.30 | ±1.31 ab |
B 3 | 1.10 | ±0.71 a | 2.20 | ±0.58 ab | 0.25 | ±1.25 a | 7.40 | ±0.98 g | 2.74 | ±1.56 a |
B 4 | 1.30 | ±1.66 a | 2.50 | ±1.63 b–d | 0.40 | ±1.58 ab | 6.80 | ±3.04 e | 2.75 | ±2.50 a |
B 5 | 1.10 | ±2.62 a | 2.20 | ±1.12 d | 0.15 | ±0.85 a | 4.50 | ±0.67 c | 2.00 | ±2.20 a |
B 7 | 1.30 | ±0.42 a | 2.30 | ±0.61 a–c | 0.20 | ±1.62 a | 6.20 | ±0.44 d | 2.50 | ±1.22 a |
B 8 | 1.05 | ±1.53 a | 2.10 | ±1.04 a | 0.24 | ±2.89 a | 7.10 | ±0.86 f | 2.62 | ±1.74 a |
B 11 | 2.30 | ±0.39 a | 3.10 | ±0.52 ef | 1.20 | ±1.67 c | 9.50 | ±0.87 i | 4.02 | ±1.28 b |
J 2 | 2.03 | ±2.91 a | 3.15 | ±0.81 f | 1.30 | ±1.04 c | 3.90 | ±0.80 b | 2.59 | ±2.36 a |
SS 3 | 0.61 | ±0.40 a | 2.00 | ±0.59 a | 0.40 | ±2.65 ab | 1.50 | ±0.26 a | 1.13 | ±2.84 a |
Mean | 1.47 | ±2.36 b | 2.51 | ±1.46 c | 0.49 | ±2.30 a | 6.55 | ±2.16 d | - | - |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 1.12 * | ±0.10 c | 0.93 | ±0.07 b | 1.07 | ±0.06 ab | 1.00 | ±0.09 bc | 1.05 | ±0.09 a–c |
B 1 | 1.07 | ±0.04 bc | 1.06 | ±0.04 b | 1.17 | ±0.04 ab | 1.20 | ±0.10 cd | 1.13 | ±0.08 cd |
B 2 | 1.08 | ±0.08 bc | 1.02 | ±0.04 b | 1.13 | ±0.10 ab | 0.98 | ±0.09 bc | 1.05 | ±0.09 bc |
B 3 | 0.93 | ±0.05 a–c | 0.95 | ±0.06 ab | 1.18 | ±0.09 ab | 0.94 | ±0.14 bc | 1.00 | ±0.13 bc |
B 4 | 0.77 | ±0.09 ab | 1.05 | ±0.03 b | 1.14 | ±0.06 ab | 0.81 | ±0.13 ab | 0.94 | ±0.18 ab |
B 5 | 0.60 | ±0.01 a | 0.81 | ±0.05 a | 0.92 | ±0.10 a | 1.03 | ±0.11 bc | 0.84 | ±0.18 a |
B 7 | 1.05 | ±0.13 bc | 1.06 | ±0.08 b | 1.17 | ±0.16 ab | 1.12 | ±0.08 c | 1.10 | ±0.11 cd |
B 8 | 1.22 | ±0.06 cd | 1.04 | ±0.03 b | 1.08 | ±0.12 ab | 1.01 | ±0.04 bc | 1.09 | ±0.10 cd |
B 11 | 1.22 | ±0.06 cd | 1.11 | ±0.02 b | 1.24 | ±0.23 ab | 1.09 | ±0.08 c | 1.16 | ±0.12 d |
J 2 | 1.53 | ±0.31 d | 1.49 | ±0.11 c | 1.82 | ±0.05 c | 1.45 | ±0.05 d | 1.57 | ±0.21 e |
SS 3 | 1.21 | ±0.04 cd | 1.10 | ±0.01 b | 1.36 | ±0.18 b | 0.67 | ±0.05 a | 1.08 | ±0.28 cd |
Mean | 1.07 | ±0.26 a | 1.06 | ±0.17 a | 1.21 | ±0.25 b | 1.03 | ±0.21 a | - | - |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 1.33 * | ±0.01 a | 1.28 | ±0.05 a–c | 1.40 | ±0.04 a–c | 1.40 | ±0.09 ab | 1.35 | ±0.07 bc |
B 1 | 1.32 | ±0.09 a | 1.28 | ±0.03 a–c | 1.34 | ±0.09 a–c | 1.33 | ±0.11 a | 1.32 | ±0.08 a–c |
B 2 | 1.31 | ±0.03 a | 1.23 | ±0.04 ab | 1.35 | ±0.04 a–c | 1.25 | ±0.02 a | 1.28 | ±0.06 ab |
B 3 | 1.29 | ±0.01 a | 1.18 | ±0.05 ab | 1.38 | ±0.02 a–c | 1.31 | ±0.09 a | 1.29 | ±0.09 ab |
B 4 | 1.20 | ±0.14 a | 1.20 | ±0.06 ab | 1.27 | ±0.03 ab | 1.27 | ±0.10 a | 1.25 | ±0.09 a |
B 5 | 1.28 | ±0.03 a | 1.21 | ±0.15 ab | 1.22 | ±0.01 a | 1.22 | ±0.03 a | 1.23 | ±0.07 a |
B 7 | 1.42 | ±0.09 a | 1.13 | ±0.07 a | 1.25 | ±0.05 ab | 1.25 | ±0.04 a | 1.26 | ±0.12 ab |
B 8 | 1.27 | ±0.02 a | 1.31 | ±0.08 a–c | 1.33 | ±0.03 ab | 1.34 | ±0.02 a | 1.31 | ±0.05 a–c |
B 11 | 1.37 | ±0.02 a | 1.46 | ±0.02 c | 1.54 | ±0.12 c | 1.63 | ±0.08 b | 1.50 | ±0.12 d |
J 2 | 1.46 | ±0.24 a | 1.34 | ±0.08 bc | 1.44 | ±0.09 bc | 1.39 | ±0.13 ab | 1.41 | ±0.14 cd |
SS 3 | 1.27 | ±0.04 a | 1.20 | ±0.03 ab | 1.29 | ±0.13 ab | 1.40 | ±0.09 ab | 1.29 | ±0.10 ab |
Mean | 1.32 | ±0.11 b | 1.26 | ±0.11 a | 1.35 | ±0.11 b | 1.34 | ±0.13 b | - | - |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 2.94 * | ±0.12 bc | 2.65 | ±0.10 ab | 3.26 | ±0.18 cd | 2.86 | ±0.19 ab | 2.93 | ±0.26 d |
B 1 | 2.87 | ±0.03 b | 2.63 | ±0.04 ab | 2.95 | ±0.11 ab | 2.96 | ±0.24 ab | 2.85 | ±0.18 cd |
B 2 | 2.91 | ±0.18 bc | 2.70 | ±0.10 ab | 2.98 | ±0.09 a–c | 2.80 | ±0.17 ab | 2.85 | ±0.16 cd |
B 3 | 2.75 | ±0.10 ab | 2.64 | ±0.12 ab | 2.87 | ±0.06 ab | 2.65 | ±0.07 a | 2.73 | ±0.13 a–c |
B 4 | 2.65 | ±0.15 ab | 2.37 | ±0.06 a | 2.73 | ±0.09 a | 2.80 | ±0.18 ab | 2.64 | ±0.20 ab |
B 5 | 2.82 | ±0.10 b | 2.68 | ±0.06 ab | 2.69 | ±0.11 a | 3.00 | ±0.13 ab | 2.80 | ±0.16 b–d |
B 7 | 2.41 | ±0.08 a | 2.62 | ±0.06 ab | 2.78 | ±0.04 ab | 2.62 | ±0.17 a | 2.61 | ±0.16 a |
B 8 | 2.70 | ±0.29 ab | 2.71 | ±0.17 b | 2.82 | ±0.11 ab | 2.67 | ±0.20 a | 2.72 | ±0.18 a–c |
B 11 | 3.29 | ±0.18 c | 3.10 | ±0.09 c | 3.55 | ±0.12 d | 4.20 | ±0.12 c | 3.54 | ±0.45 f |
J 2 | 2.85 | ±0.02 b | 3.19 | ±0.16 c | 3.56 | ±0.09 d | 3.18 | ±0.08 b | 3.14 | ±0.21 e |
SS 3 | 2.79 | ±0.05 ab | 2.48 | ±0.17 ab | 3.03 | ±0.04 bc | 2.61 | ±0.19 a | 2.73 | ±0.24 a–c |
Mean | 2.82 | ±0.24 b | 2.71 | ±0.25 a | 3.00 | ±0.28 c | 2.94 | ±0.46 c | - | - |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 9.15 * | ±1.64 a | 9.34 | ±0.98 a–c | 9.81 | ±1.07 a–c | 10.12 | ±1.88 a–d | 9.61 | ±1.30 a |
B 1 | 10.70 | ±0.44 a | 8.68 | ±0.96 ab | 9.83 | ±0.95 a–c | 12.00 | ±0.95 b–d | 10.30 | ±1.46 ab |
B 2 | 9.91 | ±0.90 a | 9.97 | ±1.32 a–c | 10.95 | ±1.01 a–c | 8.70 | ±1.43 ab | 9.88 | ±1.31 a |
B 3 | 8.06 | ±0.71 a | 8.67 | ±0.58 ab | 11.42 | ±1.25 a–c | 10.01 | ±0.98 a–d | 9.54 | ±1.56 a |
B 4 | 9.32 | ±1.66 a | 11.46 | ±1.63 bc | 13.71 | ±1.58 bc | 13.08 | ±3.04 d | 11.89 | ±2.50 bc |
B 5 | 9.54 | ±2.62 a | 8.46 | ±1.12 a | 9.19 | ±0.85 ab | 12.87 | ±0.67 cd | 10.01 | ±2.20 a |
B 7 | 11.70 | ±0.42 ab | 9.66 | ±0.61 a–c | 11.67 | ±1.62 a–c | 10.23 | ±0.44 a–d | 10.81 | ±1.22 ab |
B 8 | 11.21 | ±1.53 a | 9.55 | ±1.04 a–c | 10.12 | ±2.89 a–c | 8.99 | ±0.86 a–c | 9.97 | ±1.74 a |
B 11 | 10.19 | ±0.39 a | 8.31 | ±0.52 a | 8.46 | ±1.67 a | 10.27 | ±0.87 a–d | 9.31 | ±1.28 a |
J 2 | 15.78 | ±2.91 b | 12.14 | ±0.81 c | 14.40 | ±1.04 c | 11.16 | ±0.80 b–d | 13.37 | ±2.36 c |
SS 3 | 12.07 | ±0.40 ab | 10.67 | ±0.59 a–c | 12.94 | ±2.65 a–c | 6.50 | ±0.26 a | 10.54 | ±2.84 ab |
Mean | 10.69 | ±2.36 b | 9.72 | ±1.46 a | 11.14 | ±2.30 b | 10.36 | ±2.16 ab | - | - |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B/C 1 | 2019 | 2020 | 2021 | 2022 | Mean | |||||
B 0 | 17.73 * | ±0.40 d | 17.27 | ±0.55 c | 15.97 | ±0.79 a–d | 18.57 | ±1.56 g | 17.27 | ±1.81 de |
B 1 | 16.77 | ±0.21 cd | 17.43 | ±1.12 c | 18.13 | ±0.49 d | 16.73 | ±2.05 h | 17.43 | ±1.54 e |
B 2 | 15.10 | ±0.10 a–c | 15.70 | ±0.70 a-c | 17.92 | ±1.35 d | 13.45 | ±0.17 h | 15.68 | ±2.59 a–c |
B 3 | 14.13 | ±1.00 ab | 14.77 | ±0.49 ab | 16.75 | ±0.98 b–d | 12.83 | ±0.44 g | 14.79 | ±2.25 ab |
B 4 | 14.17 | ±0.75 ab | 14.83 | ±0.60 a–c | 17.37 | ±1.01 d | 12.29 | ±0.93 e | 14.83 | ±2.91 ab |
B 5 | 13.67 | ±0.86 ab | 14.33 | ±0.74 a | 13.60 | ±0.10 a | 15.03 | ±1.52 c | 14.31 | ±1.24 a |
B 7 | 15.57 | ±0.31 b–c | 15.90 | ±0.40 a–c | 17.30 | ±0.48 cd | 14.52 | ±1.12 d | 15.91 | ±1.70 b–d |
B 8 | 15.47 | ±0.75 b–c | 16.83 | ±1.03 bc | 17.42 | ±1.48 d | 16.30 | ±2.37 f | 16.86 | ±1.87 c–e |
B 11 | 14.33 | ±0.74 ab | 14.23 | ±0.55 a | 14.32 | ±0.79 a–c | 14.18 | ±0.41 i | 14.25 | ±0.57 a |
J 2 | 13.30 | ±0.78 a | 14.47 | ±0.86 a | 13.97 | ±1.00 ab | 14.97 | ±1.11 b | 14.47 | ±1.09 a |
SS 3 | 14.87 | ±1.12 a–c | 15.97 | ±1.05 a–c | 17.51 | ±1.75 d | 13.43 | ±0.96 a | 15.92 | ±2.15 a–c |
Mean | 15.01 | ±0.81 a | 15.61 | ± 0.74 ab | 16.38 | ±1.87 b | 14.84 | ±2.07 a | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Bieniek, A.; Bielska, N. Variation in Fruit and Seed Morphology of Selected Biotypes and Cultivars of Elaeagnus multiflora Thunb. in North-Eastern Europe. Agriculture 2023, 13, 495. https://doi.org/10.3390/agriculture13020495
Bieniek A, Bieniek A, Bielska N. Variation in Fruit and Seed Morphology of Selected Biotypes and Cultivars of Elaeagnus multiflora Thunb. in North-Eastern Europe. Agriculture. 2023; 13(2):495. https://doi.org/10.3390/agriculture13020495
Chicago/Turabian StyleBieniek, Anna, Arkadiusz Bieniek, and Natalia Bielska. 2023. "Variation in Fruit and Seed Morphology of Selected Biotypes and Cultivars of Elaeagnus multiflora Thunb. in North-Eastern Europe" Agriculture 13, no. 2: 495. https://doi.org/10.3390/agriculture13020495