A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes
Abstract
:1. Introduction
2. Endophytic Fungi Occurring in Selected Plants
2.1. Acacia
2.2. Albizia
2.3. Bauhinia
2.4. Berberis
2.5. Caesalpinia
2.6. Cassia
2.7. Cornus
2.8. Hamamelis
2.9. Jasminum
2.10. Ligustrum
2.11. Lonicera
2.12. Nerium
2.13. Robinia
3. An Overview of Fungal Diversity and Frequency
4. The Most Common Plant Pathogens
5. Emerging and Potential Threats Due to Commercial Trade
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, J.H.; Hirano, S.S. Microbial Ecology of Leaves; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991; pp. 467–479. [Google Scholar]
- Ragozzino, A.; d’Errico, G. Interactions between nematodes and fungi: A concise review. Redia 2011, 94, 123–125. [Google Scholar]
- d’Errico, G.; Mormile, P.; Malinconico, M.; Bolletti Censi, S.; Lanzuise, S.; Crasto, A.; Woo, S.L.; Marra, R.; Lorito, M.; Vinale, F. Trichoderma spp. and a carob (Ceratonia siliqua) galactomannan to control the root-knot nematode Meloidogyne incognita on tomato plants. Can. J. Plant. Pathol. 2020, 1–8. [Google Scholar] [CrossRef]
- Vinale, F.; Nicoletti, R.; Lacatena, F.; Marra, R.; Sacco, A.; Lombardi, N.; d’Errico, G.; Digilio, M.C.; Lorito, M.; Woo, S.L. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res. 2017, 31, 1778–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- d’Errico, G.; Aloj, V.; Flematti, G.R.; Sivasithamparam, K.; Worth, C.M.; Lombardi, N.; Ritini, A.; Marra, R.; Lorito, M.; Vinale, F. Metabolites of a Drechslera sp. endophyte with potential as biocontrol and bioremediation agent. Nat. Prod. Res. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.K.; Bacon, C.W.; White, J.F. An overview of endophytic microbes: Endophytism defined. Microb. Endophytes. 2000, 3, 29–33. [Google Scholar]
- Wilson, D. Fungal endophytes which invade insect galls: Insect pathogens, benign saprophytes, or fungal inquilines? Oecologia 1995, 103, 255–260. [Google Scholar] [CrossRef]
- Petrini, O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Osono, T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 2006, 52, 701–716. [Google Scholar] [CrossRef]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.M.; Hatcher, M.J. Parasites and biological invasions: Parallels, interactions, and control. Trends Parasit. 2015, 31, 189–199. [Google Scholar] [CrossRef]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant. Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef]
- Slippers, B.; Smit, W.A.; Crous, P.W.; Coutinho, T.A.; Wingfield, B.D.; Wingfield, M.J. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant. Pathol. 2007, 56, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Facon, B.; Genton, B.J.; Shykoff, J.; Jarne, P.; Estoup, A.; David, P. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 2006, 21, 130–135. [Google Scholar] [CrossRef]
- Saul, W.C.; Jeschke, J.; Heger, T. The role of eco-evolutionary experience in invasion success. NeoBiota 2013, 17, 57. [Google Scholar] [CrossRef] [Green Version]
- Pautasso, M.; Schlegel, M.; Holdenrieder, O. Forest health in a changing world. Microb. Ecol. 2015, 69, 826–842. [Google Scholar] [CrossRef] [PubMed]
- Grünwald, N.J. Genome sequences of Phytophthora enable translational plant disease management and accelerate research. Can. J. Plant Pathol. 2012, 34, 13–19. [Google Scholar] [CrossRef]
- Cleary, M.; Nguyen, D.; Marčiulynienė, D.; Berlin, A.; Vasaitis, R.; Stenlid, J. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Sci. Rep. 2016, 6, 21895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickie, I.A.; Bolstridge, N.; Cooper, J.A.; Peltzer, D.A. Co-invasion by Pinus and its mycorrhizal fungi. New Phytol. 2010, 187, 475–484. [Google Scholar] [CrossRef] [PubMed]
- McNeely, J.A. An introduction of human dimensions of invasive alien species. In The Great Reshuffling: Human Dimensions of Invasive Alien Species; McNeely, J.A., Ed.; IUCN: Cambridge, UK, 2001; pp. 5–20. [Google Scholar]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Olden, J.D.; Rooney, T.P. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeog. 2006, 15, 113–120. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, L.; Mazza, G.; d’Errico, G.; Fabiani, A.; Giuliani, C.; Inghilesi, A.F.; Lagomarsino, A.; Landi, S.; Lastrucci, L.; Pastorelli, R.; et al. How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci. Total Environ. 2018, 622, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Jeger, M.; Schans, J.; Lövei, G.L.; van Lenteren, J.; Navajas, M.; Makowski, D.B.; Ceglarska, E. Risk assessment in support of plant health. Efsa J. 2012, 10, s1012. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending Regulations (EU) No 228/2013,(EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC. Off. J. Eur. Union 2016, 317, 4–104. [Google Scholar]
- European Union. Commission Implementing Regulation (EU) 2018/2019 of 18 December 2018 establishing a provisional list of high risk plants, plant products or other objects, within the meaning of Article 42 of Regulation (EU) 2016/2031 and a list of plants for which phytosanitary certificates are not required for introduction into the Union, within the meaning of Article 73 of that Regulation. Off. J. Eur. Union 2018, 323, 10–15. [Google Scholar]
- Directive, C. Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community (Annex II). Off. J. Eur. Union. 2000, 169, 60. [Google Scholar]
- European Food Safety Authority, (EFSA); Dehnen-Schmutz, K.; Jaques Miret, J.A.; Jeger, M.; Potting, R.; Corini, A.; Simone, G.; Kozelska, S.; Munoz Guajardo, I.; Stancanelli, G.; et al. Information required for dossiers to support demands for import of high risk plants, plant products and other objects as foreseen in Article 42 of Regulation (EU) 2016/2031. EFSA Support Publ 2018, 15, 1492E. [Google Scholar] [CrossRef]
- European Food Safety Authority, (EFSA); Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Miret, J.A.J.; Justesen, A.F.; MacLeod., A.; et al. Guidance on commodity risk assessment for the evaluation of high risk plants dossiers. Efsa J 2019, 17, e05668. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; González, L.; Reigosa, M.J. The genus Acacia as invader: The characteristic case of Acacia dealbata Link in Europe. Ann. For. Sci. 2010, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, K.; Joyce, D. Native Australian acacias: Unrealised ornamental potential. Chron. Horticult. 2010, 50, 19–22. [Google Scholar]
- Suryanarayanan, T.S.; Devarajan, P.T.; Girivasan, K.P.; Govindarajulu, M.B.; Kumaresan, V.; Murali, T.S.; Venkatesan, G. The host range of multi-host endophytic fungi. Curr. Sci. 2018, 115, 1963–1969. [Google Scholar] [CrossRef]
- Kaur, T.; Kaur, J.; Kaur, A.; Kaur, S. Larvicidal and growth inhibitory effects of endophytic Aspergillus niger on a polyphagous pest, Spodoptera litura. Phytoparasitica 2016, 44, 465–476. [Google Scholar] [CrossRef]
- Jiang, M.; Cao, L.; Zhang, R. Effects of Acacia (Acacia auriculaeformis A. Cunn) associated fungi on mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) growth in Cd- and Ni-contaminated soils. Lett. Appl. Microbiol. 2008, 47, 561–565. [Google Scholar] [CrossRef]
- Tran, H.B.Q.; Mcrae, J.M.; Lynch, F.; Palombo, E.A. Identification and bioactive properties of endophytic fungi isolated from phyllodes of Acacia species. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; Volume 1, pp. 377–382. [Google Scholar]
- Li, H.Y.; Li, D.W.; He, C.M.; Zhou, Z.P.; Mei, T.; Xu, H.M. Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol. 2012, 5, 309–315. [Google Scholar] [CrossRef]
- Jami, F.; Marincowitz, S.; Slippers, B.; Crous, P.W.; Le Roux, J.J.; Richardson, D.M.; Wingfield, M.J. Botryosphaeriaceae associated with Acacia heterophylla (La Réunion) and Acacia koa (Hawaii). Fungal Biol. 2019, 123, 783–790. [Google Scholar] [CrossRef] [PubMed]
- González-Teuber, M.; Jiménez-Alemán, G.H.; Boland, W. Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants. Commun. Integr. Biol. 2014, 7, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Jami, F.; Slippers, B.; Wingfield, M.J.; Loots, M.T.; Gryzenhout, M. Temporal and spatial variation of Botryosphaeriaceae associated with Acacia karroo in South Africa. Fungal Ecol. 2015, 15, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Jami, F.; Slippers, B.; Wingfield, M.J.; Gryzenhout, M. Greater Botryosphaeriaceae diversity in healthy than associated diseased Acacia karroo tree tissues. Australas. Plant Pathol. 2013, 42, 421–430. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Moustafa, A.H.; Hussein, H.A.; El-Sheikh, A.A.; El-Shafey, S.N.; Fathy, N.A.M.; Enan, G.A. Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynanchum acutum, against Spodoptera littoralis, a polyphagous insect pest. Biocat. Agric. Biotechnol. 2020, 24, 101524. [Google Scholar] [CrossRef]
- McCabe, E.S. Endophytic Symbionts of Acacia Victoriae: Diversity and Potential for Antibiotic Production. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2019. [Google Scholar]
- Kokila, K.; Priyadharshini, S.D.; Sujatha, V. Phytopharmacological properties of Albizia species: A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 70–73. [Google Scholar]
- CABI. Available online: https://www.cabi.org/isc/datasheet/4008#005AE80D-6260-41E0-A2DA-0B4BD78D5383 (accessed on 20 October 2020).
- Wulandari, R.S.; Suryantini, R. Growth of Albizia in Vitro: Endophytic Fungi as Plant Growth Promote of Albizia. Int. Sch. Sci. Res. Inn. 2018, 12, 8. [Google Scholar]
- Ali, B.Z.; Alfayed, A.A. Endophytic Fungi from Leaves and Twigs of Albizia lebbeck and Their Antifungal Activity. Ibn AL Haitham J. For. Pure Appl. Sci. 2017, 27, 24–33. [Google Scholar]
- Gill, D.L. Fusarium wilt infection of apparently healthy mimosa tree. Plant. Dis. Rep. 1967, 35, 111–128. [Google Scholar]
- Sharma, N.; Kushwaha, M.; Arora, D.; Jain, S.; Singamaneni, V.; Sharma, S.; Shankar, R.; Bhushan, S.; Gupta, P.; Jaglan, S. New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J. Appl. Microb. 2018, 125, 111–120. [Google Scholar] [CrossRef] [PubMed]
- da Silva, K.L.; Biavatti, M.W.; Leite, S.N.; Yunes, R.A.; Delle Monache, F.; Cechinel Filho, V. Phytochemical and pharmacognostic investigation of Bauhinia forficata Link (Leguminosae). Z. Naturforsch. C. 2000, 55, 478–480. [Google Scholar] [CrossRef]
- Silva, K.L.D.; Cechinel Filho, V. Plantas do gênero Bauhinia: Composição química e potencial farmacológico. Quím. Nova 2002, 25, 449–454. [Google Scholar] [CrossRef]
- Bezerra, J.D.P.; da Silva, L.F.; de Souza-Motta, C.M. The Explosion of Brazilian Endophytic Fungal Diversity: Taxonomy and Biotechnological Potentials. In Advancing Frontiers in Mycology & Mycotechnology; Satyanarayana, T., Deshmukh, S., Deshpande, M., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Hilarino, M.P.A.; de Silveira, F.A.O.; Oki, Y.; Rodrigues, L.; Santos, J.C.; Corrêa, A.; Fernandes, G.W.; Rosa, C.A. Distribuição da comunidade de fungos endofiticos em folhas de Bauhinia brevipes (Fabaceae). Acta Bot. Bras. 2011, 25, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, J.D.; Nascimento, C.C.; Barbosa, R.D.N.; da Silva, D.C.; Svedese, V.M.; Silva-Nogueira, E.B.; Gomes, B.S.; Paiva, L.M.; Souza-Motta, C.M. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz. J. Microbiol. 2015, 46, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.P.; Madhan Kumar, D.; Ramya, P.R.; Madhu Nika, S.; Meenatchi, G.; Sowmya, A.N.; Bhuvaneswari, S. Diversity of endophytic fungi from salt tolerant plants. Int. J. ChemTech Res. 2014, 6, 4084–4088. [Google Scholar]
- Murali, T.S.; Suryanarayanan, T.S.; Venkatesan, G. Fungal endophyte communities in two tropical forests of southern India: Diversity and host affiliation. Mycol. Progs. 2007, 6, 191–199. [Google Scholar] [CrossRef]
- Araujo-Melo, R.; Souza, I.; Oliveira, C.; Araújo, J.; Sena, K.; Coelho, L. Isolation and Identification of Endophyte Microorganisms from Bauhinia monandra Leaves, Mainly Actinobacteria. Biotechnol. J. Int. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- de Feitosa, A.O.; Dias, A.C.S.; da Ramos, G.C.; Bitencourt, H.R.; Siqueira, J.E.S.; Marinho, P.S.B.; Barison, A.; Ocampos, F.M.M.; do Marinho, A.M.R. Letalidad de citocalasina B y otros compuestos aislados del hongo Aspergillus spp. (Trichocomaceae) endófito de Bauhinia guianensis (Fabaceae). Rev. Argent. Microbiol. 2016, 48, 259–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, E.A.A.; Carvalho, J.M.; Dos Santos, D.C.P.; Feitosa, A.O.; Marinho, P.S.B.; Guilhon, G.M.S.P.; Santos, L.S.; De Souza, A.L.D.; Marinho, A.M.R. Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An. Acad. Bras. Cien. 2013, 85, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, B. A relative study of endophytic fungi during winter and monsoon in Bauhinia vahlii from chilkigarh. J. Glob. Biosci. 2019, 8, 6257–6265. [Google Scholar]
- Pinheiro, E.A.A.; Pina, J.R.S.; Feitosa, A.O.; Carvalho, J.M.; Borges, F.C.; Marinho, P.S.B.; Marinho, A.M.R. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Rev. Argent. Microbiol. 2017, 49, 3–6. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S.; Murali, T.S.; Venkatesan, G. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can. J. Bot. 2002, 80, 818–826. [Google Scholar] [CrossRef]
- Ravijara, N.S. Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J. Basic Microbiol. 2005, 45, 230–235. [Google Scholar]
- Kandasamy, P.; Manogaran, S.; Dhakshinamoorthy, M.; Kannan, K.P. Evaluation of antioxidant and antibacterial activities of endophytic fungi isolated from Bauhinia racemosa Lam. and Phyllanthus amarus Schum. and Thonn. J. Chem. Pharm. 2015, 7, 366–379. [Google Scholar]
- Pinheiro, E.A.A.; Borges, F.C.; Pina, J.R.S.; Ferreira, L.R.S.; Cordeiro, J.S.; Carvalho, J.M.; Feitosa, A.O.; Campos, F.R.; Barison, A.; Souza, A.D.L.; et al. Annularins I and J: New metabolites isolated from endophytic fungus Exserohilum rostratum. J. Braz. Chem. Soc. 2016, 27, 1432–1436. [Google Scholar] [CrossRef]
- Kim, Y.D.; Kim, S.H.; Landrum, L.R. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). J. Plant Res. 2004, 117, 175–182. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, S.; Dhar, M.K.; Kaul, S. Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC: A First Report. Mycobiology 2018, 46, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhber-Dezfuli, N.; Saeidnia, S.; Gohari, A.R.; Kurepaz-Mahmoodabadi, M. Phytochemistry and pharmacology of Berberis species. Pharmacogn. Rev. 2014, 8, 8. [Google Scholar] [PubMed] [Green Version]
- Sun, J.; Guo, L.; Zang, W.; Ping, W.; Chi, D. Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci. China Life Sci. 2008, 51, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Sati, S.C.; Belwal, M.; Pargaein, N. Diversity of water borne conidial fungi as root endophytes in temperate forest plants of western Himalaya. Nat. Sci. 2008, 6, 59–65. [Google Scholar]
- Erick, T.K.; Kiplimo, J.; Matasyoh, J. Two New Aliphatic Alkenol Geometric Isomers and a Phenolic Derivate from Endophytic Fungus Diaporthe sp. Host to Syzygium cordatum (Myrtaceae). Sci. Lett. 2019, 7, 108–118. [Google Scholar]
- Yang, R.; Chen, G.; Chen, R. Screening and identification of endophytic fungi with antifungal activities on pathogenic fungi from Berberis thunbergii cv. atropurpurea. Acta Bot. Boreali Occident. Sin. 2013, 33, 401–406. [Google Scholar]
- Wang, M.N.; Wan, A.M.; Chen, X.M. Barberry as alternate host is important for Puccinia graminis f. sp tritici but not for Puccinia striiformis f. sp. tritici in the US Pacific Northwest. Plant. Dis. 2015, 99, 1507–1516. [Google Scholar]
- Zanin, J.L.B.; De Carvalho, B.A.; Salles Martineli, P.; Dos Santos, M.H.; Lago, J.H.G.; Sartorelli, P.; Viegas, C.; Soares, M.G. The genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and pharmacological characteristics. Molecules 2012, 17, 7887–7902. [Google Scholar] [CrossRef] [Green Version]
- Uma Maheswari, N.; Saranya, P. Isolation and identification and phytochemical screening of endophytes from medicinal plants. Int. J. Biol. Res. 2018, 3, 16–24. [Google Scholar]
- Campos, F.F.; Sales Junior, P.A.; Romanha, A.J.; Araújo, M.S.; Siqueira, E.P.; Resende, J.M.; Zani, C.L. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam.(Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem. Inst. Oswaldo Cruz. 2015, 110, 65–74. [Google Scholar] [CrossRef]
- Hafsan, H.; Sukmawaty, S.; Masri, M.; Aziz, I.R.; Wulandari, S.L. Antioxidant Activities of Ethyl Acetic Extract of Endophytic Fungi from Caesalpinia sappan L. and Eucheuma sp. Int. J. Pharm. Res. 2018, 11, 1–6. [Google Scholar]
- de Lima, T.E.F.; Cavalcanti, M.D.S. Endophytes and phylloplane fungi of Caesalpinia echinata Lam. of estação ecológica de Tapacurá, PE. Agrotrópica 2014, 26, 43–50. [Google Scholar] [CrossRef]
- Cota, B.B.; Tunes, L.G.; Maia, D.N.B.; Ramos, J.P.; de Oliveira, D.M.; Kohlhoff, M.; Alves, T.M.A.; Souza-Fagundes, E.M.; Campos, F.F.; Zani, C.L. Leishmanicidal compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood). Mem. Inst. Oswaldo Cruz. 2018, 113, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, J.T.; Trocoli, R.O.; Monteiro, F.P. Plants from the Caatinga biome harbor endophytic Trichoderma species active in the biocontrol of pineapple fusariosis. Biol. Control 2016, 94, 25–32. [Google Scholar] [CrossRef]
- Ali, M.S.; Azhar, I.; Amtul, Z.; Ahmad, V.U.; Usmanghani, K. Antimicrobial screening of some Caesalpiniaceae. Fitoterapia 1999, 70, 299–304. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Yadav, A. A review on Cassia species: Pharmacological, traditional and medicinal aspects in various countries. Am. J. Phytomedicine Clin. Ther. 2013, 1, 291–312. [Google Scholar]
- Parsons, W.T.; Cuthbertson, E.G. Noxious Weeds of Australia, 2nd ed.; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2001. [Google Scholar]
- Jang, D.S.; Lee, G.Y.; Kim, Y.S.; Lee, Y.M.; Kim, C.S.; Yoo, J.L.; Kim, J.S. Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull. 2007, 30, 2207–2210. [Google Scholar] [CrossRef] [Green Version]
- Hatano, T.; Uebayashi, H.; Ito, H.; Shiota, S.; Tsuchiya, T.; Yoshida, T. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistent Staphylococcus aureus. Chem. Pharm. Bull. 1999, 47, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, D.; Nurhaida, L.S.H. Anti-candidal activity of Aspergillus flavus IBRL-C8, an endophytic fungus isolated from Cassia siamea Lamk leaf. J. Appl. Pharm. Sci. 2018, 8, 083–087. [Google Scholar]
- Pundir, R.K.; Yadav, D.; Jain, P. Production, optimization and partial purification of l-asparaginase from endophytic fungus Aspergillus sp., isolated from Cassia fistula. Appl. Biol. Res 2020, 22, 26–33. [Google Scholar] [CrossRef]
- Ruchikachorn, N. Endophytic Fungi of Cassia Fistula L. Ph.D. Thesis, Liverpool John Moores University, Liverpool, UK, 2005. [Google Scholar]
- Nigg, J.; Strobel, G.; Knighton, W.B.; Hilmer, J.; Geary, B.; Riyaz-Ul-Hassan, S.; Harper, J.K.; Valenti, D.; Wang, Y. Functionalized para-substituted benzenes as 1, 8-cineole production modulators in an endophytic Nodulisporium species. Microbiology 2014, 160, 1772–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapwal, A.; Pandey, P.; Chandra, S. Antimicrobial activity and phytochemical screening of endophytic fungi associated with Cassia fistula. Int. J. Chem. Biol. Sci. 2015, 2, 15–21. [Google Scholar]
- Kuriakose, G.C.; Lakshmanan, D.M.; Arathi, B.P.; Kuriakose, G.C.; Kumar, R.S.; Anantha Krishna, A.; Ananthaswamy, K.; Jayabhaskaran, C. Extract of Penicillium sclerotiorum an endophytic fungus isolated from Cassia fistula L. induces cell cycle arrest leading to apoptosis through mitochondrial membrane depolarization in human cervical cancer cells. Biomed. Pharm. 2018, 105, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Call, A.; Sun, Y.X.; Yu, Y.; Pearman, P.B.; Thomas, D.T.; Trigiano, R.N.; Carbone, I.; Xiang, Q.-Y. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): Integrative evidence from phylogeography, population demographic history, and species distribution modeling. J. Syst. Evol. 2016, 54, 136–151. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Dong, L.; Gao, Q.; Yin, L.; Quan, H.; Chen, R.; Gu, X.; Lin, D. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J. Ethnopharmacol. 2018, 213, 280–301. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Masuya, H.; Zhang, J.; Walsh, E.; Zhang, N. Real-Time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia. PLoS ONE 2016, 11, e0154030. [Google Scholar] [CrossRef]
- Osono, T. Endophytic and epiphytic phyllosphere fungi of red-osier dogwood (Cornus stolonifera) in British Columbia. Mycoscience 2007, 48, 47–52. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Z.; Hou, D.; Xu, H.; Song, P. Biodiversity and antifungal potential of endophytic fungi from the medicinal plant Cornus officinalis. Symbiosis 2020, 81, 223–233. [Google Scholar] [CrossRef]
- Andrés, M.F.; Diaz, C.E.; Giménez, C.; Cabrera, R.; González-Coloma, A. Endophytic fungi as novel sources of biopesticides: The Macaronesian Laurel forest, a case study. Phytochem. Rev. 2017, 16, 1009–1022. [Google Scholar] [CrossRef]
- Redlin, S.C.; Rossman, A.Y. Cryptodiaporthe corni (Diaporthales), cause of Cryptodiaporthe canker of pagoda dogwood. Mycologia 1991, 83, 200–209. [Google Scholar] [CrossRef]
- Beier, G.L.; Hokanson, S.C.; Bates, S.T.; Blanchette, R.A. Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 2015, 107, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Redlin, S.C. Discula destructiva sp. nov., cause of dogwood anthracnose. Mycologia 1991, 83, 633–642. [Google Scholar] [CrossRef]
- Stinzing, A.; Lang, K.J. Dogwood anthracnose. First detection of Discula destructiva on Cornus florida in Germany. Nachr. Des. Dtsch. Pflanzenschutzd. 2003, 55, 1–5. [Google Scholar]
- Tantardini, A.; Calvi, M.; Cavagna, B.; Zhang, N.; Geiser, D. First report in Italy of dogwood anthracnose on Cornus florida and C. nuttallii caused by Discula destructiva [Lombardy]. Inf. Fitopatol. 2004, 54, 44–47. [Google Scholar]
- Yun, H.Y.; Lee, Y.W.; Kim, Y.H. Stem canker of giant dogwood (Cornus controversa) caused by Fusarium lateritium in Korea. Plant. Dis. 2013, 97, 1378. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Mmbaga, M.; Quick, Q. Nigrospora sphaerica products from the flowering dogwood exhibit antitumorigenic effects via the translational regulator, pS6 ribosomal protein. Proc. Anticancer. Res. 2018, 2, 8–15. [Google Scholar] [CrossRef]
- Hagan, A.; Mullen, J. Controlling Powdery Mildew on Ornamentals, Alabama Coop. Ext. Sys. Circular ANR-407; Auburn University: Auburn, AL, USA, 1995. [Google Scholar]
- Erdelmeier, C.A.J.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Biber, A.; Koch, E. Antiviral and antiphlogistic activities of Hamamelis virginiana bark. Planta Med. 1996, 62, 241–245. [Google Scholar] [CrossRef]
- Gloor, M.; Reichling, J.; Wasik, B.; Holzgang, H.E. Antiseptic effect of a topical dermatological formulation that contains Hamamelis distillate and urea. J. Complement. Med. Res. 2002, 9, 153–159. [Google Scholar] [CrossRef]
- Marcelino, J.A.P.; Gouli, S.; Parker, B.L.; Skinner, M.; Giordano, R. Entomopathogenic activity of a variety of the fungus, Colletotrichum acutatum, recovered from the elongate hemlock scale, Fiorinia externa. J. Insect Sci. 2009, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 2017, 39, 118. [Google Scholar] [CrossRef]
- Chen, C.; Verkley, G.J.M.; Sun, G.; Groenewald, J.Z.; Crous, P.W. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016, 120, 1291–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeln, E.C.A.; De Pagter, M.A.; Verkley, G.J.M. Phylogeny of Pezicula, Dermea and Neofabraea inferred from partial sequences of the nuclear ribosomal RNA gene cluster. Mycologia 2000, 92, 685–693. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, Q.; Carroll, G.; Zhang, N.; Shivas, R.G.; Cai, L. Polyphasic characterization of four new plant pathogenic Phyllosticta species from China, Japan, and the United States. Fungal Biol. 2015, 119, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Liu, Y.X.; Yuan, J.; Wang, Y.; Hyde, K.D.; Liu, Z.Y. Phyllosticta species from banana (Musa sp.) in Chongqing and Guizhou Provinces, China. Phytotaxa 2014, 188, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Mahasneh, A.M.; Al-Hussaini, R. Antibacterial and antifungal activity of ethanol extract of different parts of medicinal plants in Jordan. Jordan J. Pharm. Sci. 2011, 108, 1–26. [Google Scholar]
- Abdoul-Latif, F.; Edou, P.; Mohamed, N.; Ali, A.; Djama, S.; Obame, L.C.; Bassolé, I.; Dicko, M. Antimicrobial and antioxidant activities of essential oil and methanol extract of Jasminum sambac from Djibouti. Afr. J. Plant Scie 2010, 4, 038–043. [Google Scholar]
- Rambabu, B.; Patnaik, K.S.K. Anti diabetic and anti ulcer activity of ethanolic flower extract of Jasminum sambac in rats. Asian J. Res. Chem. 2014, 7, 580–585. [Google Scholar]
- Zhao, G.; Yin, Z.; Dong, J. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J. Ethnopharmacol. 2009, 125, 265–268. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasan, M.S.; Hossain, M.A.; Biswas, N.N. Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton. Pharmacologyonline 2011, 1, 124–131. [Google Scholar]
- Agarwal, G.P.; Sahni, V.P. Fungi causing plant diseases at Jabalpur (MP) XI. Mycopathol. Mycol. Appl. 1965, 27, 136–144. [Google Scholar] [CrossRef]
- Wikee, S.; Cai, L.; Pairin, N.; McKenzie, E.H.; Su, Y.Y.; Chukeatirote, E.; Thi, H.N.; Moslem, M.A.; Abdelsalam, K.; Hyde, K.D. Colletotrichum species from Jasmine (Jasminum sambac). Fungal Divers. 2011, 46, 171–182. [Google Scholar] [CrossRef]
- Starr, F.; Starr, K.; Loope, L. Ligustrum spp.: Privet, Oleaceae. Maui: United States Geological Survey-Biological Resources Division, Haleakala Field Station. 2003. Available online: http://www.hear.org/pier/pdf/pohreports/ligustrum_spp.pdf (accessed on 15 October 2020).
- Fernandez, R.D.; Ceballos, S.J.; Aragón, R.; Malizia, A.; Montti, L.; Whitworth-Hulse, J.I.; Castro-Diez, P.; Grau, H.R. A Global Review of Ligustrum Lucidum (Oleaceae) Invasion. Bot. Rev. 2020, 86, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Che, C.T.; Wong, M.S. Ligustrum lucidum and its constituents: A mini-review on the anti-osteoporosis potential. Nat. Prod. Commun. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lee, S.J.; Hwang, J.W.; Kim, E.H.; Park, P.J.; Jeong, J.H. Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW264. 7 macrophages. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1205–1210. [Google Scholar] [CrossRef]
- Novas, M.V.; Carmarán, C.C. Studies on diversity of foliar fungal endophytes of naturalised trees from Argentina, with a description of Haplotrichum minutissimum sp. nov. Flora: Morphol. Distrib. Funct. Ecol. Plants 2008, 203, 610–616. [Google Scholar] [CrossRef]
- De errasti, A.; Carmarán, C.C.; Novas, M.V. Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. Fungal Divers. 2010, 41, 29–40. [Google Scholar] [CrossRef]
- Liu, C.; Liu, T.; Yuan, F.; Gu, Y. Isolating endophytic fungi from evergreen plants and determining their antifungal activities. Afr. J. Microbiol. Res. 2010, 4, 2243–2248. [Google Scholar]
- Okane, I.; Lumyong, S.; Nakagiri, A.; Ito, T. Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 2003, 44, 353–363. [Google Scholar] [CrossRef]
- De Errasti, A.; Novas, M.V.; Carmarán, C.C. Plant-fungal association in trees: Insights into changes in ecological strategies of Peroneutypa scoparia (Diatrypaceae). Flora 2014, 209, 704–710. [Google Scholar] [CrossRef]
- Xu, F.; Cao, H.; Cui, X.; Guo, H.; Han, C. Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology. Molecules 2018, 23, 2586. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.S.; Murali, T.S.; Suryanarayanan, T.S.; Govinda Rajulu, M.B.; Thirunavukkarasu, N. Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecol. 2016, 24, 70–75. [Google Scholar] [CrossRef]
- Krohn, K.; Farooq, U.; Hussain, H.; Ahmed, I.; Rheinheimer, J.; Draeger, S.; Schulz, B.; van Ree, T. Phomosines H–J, novel highly substituted biaryl ethers, isolated from the endophytic fungus Phomopsis sp. from Ligustrum vulgare. Nat. Prod. Commun. 2011, 6, 1907–1912. [Google Scholar] [PubMed] [Green Version]
- Schierenbeck, K.A. Japanese honeysuckle (Lonicera japonica) as an invasive species; history, ecology, and context. Crit. Rev. Plant Sci. 2004, 23, 391–400. [Google Scholar] [CrossRef]
- Merriam, R.W. The abundance, distribution and edge associations of six non-indigenous, harmful plants across North Carolina. J. Torrey Bot. Soc. 2003, 2003, 283–291. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Xu, C. Antimicrobial activity of endophytic fungus Fusarium sp. isolated from medicinal honeysuckle plant. Arch. Biol. Sci. 2016, 68, 25–30. [Google Scholar] [CrossRef]
- Herrera, J. The reproductive biology of a riparian Mediterranean shrub, Nerium oleander L. (Apocynaceae). Bot. J. Lin. Soc. 1991, 106, 147–172. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, S.; Li, N.; Wang, J.; Zhao, M.; Sakai, J.; Haseqawa, T.; Mitsu, T.; Kataoka, T.; Oka, S.; et al. Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. Nat. Prod. 2005, 68, 198–206. [Google Scholar] [CrossRef]
- El-Shazly, M.M.; El-Zayat, E.M.; Hermersdörfer, H. Insecticidal activity, mammalian cytotoxicity and mutagenicity of an ethanolic extract from Nerium oleander (Apocynaceae). Ann. Appl. Biol. 2000, 136, 153–157. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Fu, L.; Li, N.; Bai, J.; Sakai, J.; Kataoka, T.; Oka, S.; Kiuch, M.; Hirose, K.; et al. Taraxasterane-and Ursane-Type Triterpenes from Nerium oleander and Their Biological Activities. J. Nat. Prod. 2006, 69, 1164–1167. [Google Scholar] [CrossRef]
- Ramesha, A.; Sunitha, V.H.; Srinivas, C. Antimicrobial activity of secondary metabolites from endophytic fungi isolated from Nerium oleander L. Int. J. Pharma Bio Sci. 2013, 4, B683–B693. [Google Scholar]
- Shankar Naik, B.; Shashikala, J.; Krishnamurthy, Y.L. Diversity of fungal endophytes in shrubby medicinal plants of Malnad region, Western Ghats, Southern India. Fungal Ecol. 2008, 1, 89–93. [Google Scholar] [CrossRef]
- Kannan, K.; Madhankumar, D.; Prakash, N.U.; Muthezilan, R.; Jamuna, G.; Parthasarathy, N.; Bhuvaneshwari, S. Fungal endophytes: A preliminary report from marketed flowers. Int. J. Appl. Biol. 2011, 2, 14–18. [Google Scholar]
- Na, R.; Jiajia, L.; Dongliang, Y.; Yingzi, P.; Juan, H.; Xiong, L.; Nana, Z.; Jing, Z.; Yitian, L. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol. Res. 2016, 192, 114–121. [Google Scholar] [CrossRef]
- Huang, W.Y.; Cai, Y.Z.; Hyde, K.D.; Corke, H.; Sun, M. Endophytic fungi from Nerium oleander L. (Apocynaceae): Main constituents and antioxidant activity. World J. Microbiol. Biotechnol. 2007, 23, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.M.; Qiao, K.; Kong, Y.; Li, M.Y.; Guo, L.X.; Miao, Z.; Fan, C. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Nat. Prod. Res. 2017, 31, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation No 1143/2014 of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 57, 35–55. [Google Scholar]
- European Commission. Commission Implementing Regulation No 1141/2016 of 13 July 2016 adopting a list of invasive alien species of Union concern pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. Off. J. Eur. Union 2016, 59, 4–8. [Google Scholar]
- Ferus, P.; Barta, M.; Konôpková, J. Endophytic fungus Beauveria bassiana can enhance drought tolerance in red oak seedlings. Trees Struct. Funct. 2019, 33, 1179–1186. [Google Scholar] [CrossRef]
- Vajna, L. Diaporthe oncostoma causing stem canker of black locust in Hungary. Plant. Pathol. 2002, 51, 393. [Google Scholar] [CrossRef]
- Krohn, K.; John, M.; Aust, H.J.; Draeger, S.; Schulz, B. Biologically active metabolites from fungi 131 Stemphytriol, a new perylene derivative from Monodictys fluctuata. Nat. Prod. Lett. 1999, 14, 31–34. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.Y.; Han, Y.F.; Chen, W.H.; Liang, Z.Q. Community composition and ecological functional structural analysis of the endophytic fungi in Robinia Pseudoacacia. Mycosystema 2018, 2, 13. [Google Scholar]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants Annu. Rev. Ecol. Evol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Stone, J.K.; Polishook, J.D.; White, J.F. Endophytic fungi. In Biodiversity of 25 Fungi. Inventory and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2004; pp. 241–270. [Google Scholar]
- Busby, P.E.; Ridout, M.; Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol. 2016, 90, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, A.R.A. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Scannerini, S.; Bertea, C.; Maffei, M. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol. 2003, 158, 579–591. [Google Scholar] [CrossRef]
- Wearn, J.A.; Sutton, B.C.; Morley, N.J.; Gange, A.C. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J. Ecol. 2012, 100, 1085–1092. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Cho, R. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol. 2003, 158, 183–191. [Google Scholar] [CrossRef]
- Geisen, S.; Kostenko, O.; Cnossen, M.C.; ten Hooven, F.C.; Vreš, B.; van Der Putten, W.H. Seed and root endophytic fungi in a range expanding and a related plant species. Front. Microbiol. 2017, 8, 1645. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Arnold, A.E. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol. Res. 2008, 112, 331–344. [Google Scholar] [CrossRef]
- Davis, E.C.; Franklin, J.B.; Shaw, A.J.; Vilgalys, R. Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. Am. J. Bot. 2003, 90, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.; Kehr, R. Fungal endophytes of living branch bases in several European tree species. In Endophytic Fungi in Grasses an Woody Plants; Redlin, S.C., Carris, L.M., Eds.; American Phytopathological Society (APS): St Paul, MN, USA, 1996; pp. 67–86. [Google Scholar]
- Peláez, F.; Collado, J.; Arenal, F.; Basilio, A.; Cabello, A.; Matas, M.D.; Garcia, J.B.; Del Val, A.G.; González, V.; Gorrochategui, J.; et al. Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol. Res. 1998, 102, 755–761. [Google Scholar] [CrossRef]
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant. Pathol. 2009, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Samson, A.R.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food and Airborne Fungi, 6th ed.; The Dutch Centraalbureau Voor Schimmelcultures: Utrecht, The Netherlands, 2000; pp. 64–97. [Google Scholar]
- Gautam, A.K.; Sharma, S.; Avasthi, S.; Bhadauria, R. Diversity, Pathogenicity and Toxicology of A. niger: An important spoilage fungi. Res. J. Microbiol. 2011, 6, 270–280. [Google Scholar] [CrossRef]
- Phoulivong, S.; Cai, L.; Chen, H.; McKenzie, E.H.C.; Abdelsalam, K.; Chukeatirote, E.; Hyde, K.D. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers. 2010, 44, 33–43. [Google Scholar] [CrossRef]
- Bisht, S.; Kumar, P.; Purohit, J. In Vitro Management of Curvularia Leaf Spot of Maize Using Botanicals, Essential Oils and Bio-Control Agents. Bioscan 2013, 8, 731–733. [Google Scholar]
- Vitale, S.; Santori, A.; Wajnberg, E.; Castagnone-Sereno, P.; Luongo, L.; Belisario, A. Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Phytopathology 2011, 101, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Yaghmour, M.A.; Bostock, R.M.; Adaskaveg, J.E.; Michailides, T.J. Propiconazole sensitivity in populations of Geotrichum candidum, the cause of sour rot of peach and nectarine, in California. Plant. Dis. 2012, 96, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Nam, M.H.; Park, M.S.; Kim, H.S.; Kim, T.I.; Kim, H.G. Cladosporium cladosporioides and C. tenuissimum cause blossom blight in strawberry in Korea. Mycobiology 2015, 43, 354–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manca, D.; Bregant, C.; Maddau, L.; Pinna, C.; Montecchio, L.; Linaldeddu, B.T. First report of canker and dieback caused by Neofusicoccum parvum and Diplodia olivarum on oleaster in Italy. Ital. J. Mycol. 2020, 49, 85–91. [Google Scholar] [CrossRef]
- Sharma, P.; Meena, P.D.; Chauhan, J.S. First Report of Nigrospora oryzae (Berk. & Broome) Petch Causing Stem Blight on Brassica juncea in India. J. Phytopathol. 2013, 161, 439–441. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Andolfi, A.; Nicoletti, R. The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture 2020, 10, 488. [Google Scholar] [CrossRef]
- Mantooth, K.; Hadziabdic, D.; Boggess, S.; Windham, M.; Miller, S.; Cai, G.; Spatafora, J.; Zhang, N.; Staton, M.; Ownley, B.; et al. Confirmation of independent introductions of an exotic plant pathogen of Cornus species, Discula destructiva, on the east and west coasts of North America. PLoS ONE 2017, 12, 1–26. [Google Scholar] [CrossRef]
- Saunders, M.; Glenn, A.E.; Kohn, L.M. Exploring the evolutionary ecology of fungal endophytes in agricultural systems: Using functional traits to reveal mechanisms in community processes. Evol. Appl. 2010, 3, 525–537. [Google Scholar] [CrossRef]
- Maciá-Vicente, J.G.; Ferraro, V.; Burruano, S.; Lopez-Llorca, L.V. Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb. Ecol. 2012, 64, 668–679. [Google Scholar] [CrossRef] [Green Version]
- McKinney, L.V.; Thomsen, I.M.; Kjær, E.D.; Bengtsson, S.B.K.; Nielsen, L.R. Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): A case of local cryptic extinction? Fungal Ecol. 2012, 5, 663–669. [Google Scholar] [CrossRef]
- Ragazzi, A.; Moricca, S.; Capretti, P.; Dellavalle, I.; Turco, E. Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. For. Pathol. 2003, 33, 31–38. [Google Scholar] [CrossRef]
- Moricca, S.; Ginetti, B.; Ragazzi, A. Species-and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathol. Mediterr. 2012, 51, 587–598. [Google Scholar]
- Collado, J.; Platas, G.; González, I.; Peláez, F. Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol. 1999, 144, 525–532. [Google Scholar] [CrossRef]
- Peršoh, D. Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers. 2013, 60, 55–69. [Google Scholar] [CrossRef]
- Martins, F.; Pereira, J.A.; Bota, P.; Bento, A.; Baptista, P. Fungal endophyte communities in above-and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol. 2016, 20, 193–201. [Google Scholar] [CrossRef]
- Fisher, P.J.; Petrini, O.; Petrini, L.E.; Sutton, B.C. Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 1994, 127, 133–137. [Google Scholar] [CrossRef]
- Zamora, P.; Martínez-Ruiz, C.; Diez, J.J. Fungi in needles and twigs of pine plantations from northern Spain. Fungal Divers. 2008, 30, 171–184. [Google Scholar]
- Glynou, K.; Ali, T.; Buch, A.K.; Haghi Kia, S.; Ploch, S.; Xia, X.; Ali Çelik, A.; Thines, M.; Maciá-Vicente, J.G. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 2016, 18, 2418–2434. [Google Scholar] [CrossRef]
- EPPO Global Database. Available online: https://gd.eppo.int (accessed on 10 October 2020).
- Tan, M.K.; Timmer, L.W.; Broadbent, P.; Priest, M.; Cain, P. Differentiation by molecular analysis of Elsinoë spp. causing scab diseases of citrus and its epidemiological implications. Phytopathology 1996, 86, 1039–1044. [Google Scholar] [CrossRef]
- d’Errico, G.; Carletti, B.; Schröder, T.; Mota, M.; Vieira, P.; Roversi, P.F. An update on the occurrence of nematodes belonging to the genus Bursaphelenchus in the Mediterranean area. Int. J. For. Res. 2015, 88, 509–520. [Google Scholar]
- d’Errico, G.; Crescenzi, A.; Landi, S. First report of the southern root-knot nematode Meloidogyne incognita on the invasive weed Araujia sericifera in Italy. Plant. Dis. 2014, 98, 1593. [Google Scholar] [CrossRef]
- IPPC. International Plant. Protection Convention; IPPC & FAO: Rome, Italy, 1997. [Google Scholar]
- WTO. Agreement on the Application of Sanitary and Phytosanitary Measures; World Trade Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Brasier, C.M. Preventing invasive pathogens: Deficiencies in the system. Plantsman 2005, 4, 54–57. [Google Scholar]
- Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Sikes, B.A.; Bufford, J.L.; Hulme, P.E.; Cooper, J.A.; Johnston, P.R.; Duncan, R.P. Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLoS Biol. 2018, 16, e2006025. [Google Scholar] [CrossRef] [PubMed]
- Aglietti, C.; Luchi, N.; Pepori, A.L.; Bartolini, P.; Pecori, F.; Raio, A.; Capretti, P.; Santini, A. Real-time loop-mediated isothermal amplification: An early-warning tool for quarantine plant pathogen detection. AMB Express 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Botella, L.; Bačová, A.; Dvorák, M.; Kudláček, T.; Pepori, A.L.; Santini, A.; Ghelardini, L.; Luchi, N. Detection and quantification of the air inoculum of Caliciopsis pinea in a plantation of Pinus radiata in Italy. iForest Biogeosciences For. 2019, 12, 1–193. [Google Scholar] [CrossRef]
- Jactel, H.; Desprez-Loustau, M.L.; Battisti, A.; Brockerhoff, E.; Santini, A.; Stenlid, J.; Björkman, C.; Branco, M.; Dehnen-Schmutz, K.; Douma, J.C.; et al. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota 2020, 58, 107. [Google Scholar] [CrossRef]
Fungi Genera | Plant Genera | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | AL | BA | BE | CP | CS | CO | HA | JA | LI | LO | NE | RO | Tot SF | |
Acremonium | 1 | 3 | 4 | |||||||||||
Albifimbria | 1 | 1 | ||||||||||||
Alternaria | 1 | 1 | 4 | 1 | 3 | 2 | 2 | 14 | ||||||
Anguillospora | 1 | 1 | ||||||||||||
Ascochyta | 1 | 1 | ||||||||||||
Ascotricha | 2 | 2 | ||||||||||||
Aspergillus | 3 | 8 | 11 | 1 | 9 | 2 | 3 | 3 | 40 | |||||
Aureobasidium | 2 | 4 | 6 | |||||||||||
Bacillispora | 1 | 1 | ||||||||||||
Beauveria | 1 | 1 | ||||||||||||
Bipolaris | 1 | 2 | 1 | 4 | ||||||||||
Botryosphaeria | 1 | 2 | 3 | |||||||||||
Botrytis | 1 | 1 | 2 | |||||||||||
Campylospora | 1 | 1 | ||||||||||||
Cercospora | 1 | 1 | ||||||||||||
Chaetomium | 2 | 1 | 3 | 6 | ||||||||||
Chrysosporium | 1 | 1 | ||||||||||||
Cladosporium | 4 | 1 | 5 | 1 | 3 | 14 | ||||||||
Clonostachys | 1 | 1 | 1 | 3 | ||||||||||
Cochliobolus | 1 | 3 | 1 | 5 | ||||||||||
Colletotrichum | 2 | 1 | 3 | 4 | 1 | 2 | 1 | 7 | 3 | 3 | 27 | |||
Coprinus | 1 | 1 | ||||||||||||
Cordyceps | 1 | 1 | ||||||||||||
Corynespora | 1 | 1 | ||||||||||||
Cryptodiaporthe | 1 | 1 | ||||||||||||
Cryptodiaporthe | 1 | 1 | ||||||||||||
Curvularia | 1 | 5 | 2 | 2 | 10 | |||||||||
Cylindrocarpon | 1 | 1 | ||||||||||||
Cyrptosporiopsis | 1 | 1 | ||||||||||||
Daldinia | 1 | 1 | ||||||||||||
Diaporthe | 1 | 1 | 2 | 2 | 1 | 7 | ||||||||
Didymella | 2 | 2 | ||||||||||||
Diplococcium | 2 | 2 | ||||||||||||
Diplodia | 1 | 1 | 2 | |||||||||||
Discula | 1 | 1 | ||||||||||||
Dothiorella | 6 | 2 | 8 | |||||||||||
Drechslera | 1 | 1 | ||||||||||||
Drepanopeziza | 1 | 1 | ||||||||||||
Elsinoe | 1 | 1 | ||||||||||||
Epicoccum | 1 | 1 | 2 | |||||||||||
Eupenicillium | 1 | 1 | ||||||||||||
Eutiarosporella | 1 | 1 | ||||||||||||
Exserohilum | 1 | 2 | ||||||||||||
Fusarium | 1 | 4 | 4 | 4 | 4 | 4 | 2 | 1 | 4 | 1 | 29 | |||
Fusidium | 1 | 1 | ||||||||||||
Geomyces | 1 | 1 | ||||||||||||
Geotrichum | 1 | 1 | 1 | 3 | ||||||||||
Gibberella | 2 | 2 | ||||||||||||
Glomerella | 1 | 1 | ||||||||||||
Gloniopsis | 1 | 1 | ||||||||||||
Guignardia | 1 | 1 | 1 | 3 | ||||||||||
Heliscus | 1 | 1 | ||||||||||||
Helminthosporium | 1 | 1 | 2 | |||||||||||
Hypoxylon | 1 | 1 | ||||||||||||
Khuskia | 1 | 1 | ||||||||||||
Kiflimonium | 1 | 1 | ||||||||||||
Lasiodiplodia | 6 | 1 | 1 | 1 | 2 | 1 | 12 | |||||||
Lasmenia | 2 | 2 | ||||||||||||
Lecanicillium | 1 | 1 | ||||||||||||
Leptosphaerulina | 1 | 1 | ||||||||||||
Libertella | 1 | 1 | ||||||||||||
Lophiostoma | 1 | 1 | ||||||||||||
Microsphaeropsis | 1 | 1 | ||||||||||||
Moesziomyces | 1 | 1 | 2 | |||||||||||
Myrmecridium | 2 | 2 | ||||||||||||
Myrothecium | 1 | 3 | ||||||||||||
Nectria | 2 | 2 | ||||||||||||
Nemania | 1 | 1 | ||||||||||||
Neocosmospora | 1 | 1 | 1 | 3 | ||||||||||
Neofabraea | 1 | 1 | ||||||||||||
Neofusicoccum | 6 | 6 | ||||||||||||
Neonectria | 2 | 2 | ||||||||||||
Nigrospora | 4 | 1 | 1 | 1 | 1 | 8 | ||||||||
Nodulisporium | 2 | 2 | 4 | |||||||||||
Oblongocollomyces | 1 | 1 | ||||||||||||
Paecilomyces | 2 | 2 | ||||||||||||
Papulospora | 1 | 1 | ||||||||||||
Paraboeremia | 1 | 1 | ||||||||||||
Paraphaeosphaeria | 1 | 1 | 2 | |||||||||||
Penicillium | 2 | 3 | 7 | 3 | 2 | 8 | 1 | 4 | 30 | |||||
Periconia | 1 | 1 | ||||||||||||
Peroneutypa | 1 | 1 | ||||||||||||
Pestalotia | 1 | 1 | 2 | |||||||||||
Pestalotiopsis | 2 | 4 | 1 | 7 | ||||||||||
Peyronellaea | 1 | 1 | ||||||||||||
Pezicula | 1 | 1 | ||||||||||||
Phaeobotryosphaeria | 1 | 1 | ||||||||||||
Phoma | 2 | 3 | 1 | 1 | 7 | |||||||||
Phomopsis | 3 | 1 | 2 | 3 | 3 | 12 | ||||||||
Phyllosticta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | ||||
Phytophthora | 1 | 1 | ||||||||||||
Pithomyces | 1 | 1 | ||||||||||||
Pleuroceras | 1 | 1 | ||||||||||||
Prathoda | 1 | 1 | ||||||||||||
Preussia | 1 | 1 | ||||||||||||
Psathyrella | 1 | 1 | ||||||||||||
Pseudopithomyces | 1 | 1 | ||||||||||||
Pseudothielavia | 1 | 1 | ||||||||||||
Puccinia | 1 | 1 | ||||||||||||
Pycnidiella | 1 | 1 | ||||||||||||
Rhizopus | 1 | 1 | 2 | |||||||||||
Rosellinia | 1 | 1 | ||||||||||||
Sarocladium | 1 | 1 | ||||||||||||
Scedosporium | 1 | 1 | ||||||||||||
Sclerotinia | 1 | 1 | ||||||||||||
Scopulariopsis | 1 | 1 | ||||||||||||
Septoria | 1 | 1 | ||||||||||||
Simplicillium | 1 | 1 | ||||||||||||
Spegazzinia | 2 | 2 | ||||||||||||
Spencermartinsia | 1 | 1 | ||||||||||||
Sphaeria | 1 | 1 | ||||||||||||
Sporormiella | 1 | 1 | ||||||||||||
Stenella | 1 | 1 | ||||||||||||
Talaromyces | 3 | 2 | 3 | 8 | ||||||||||
Thelioviopsis | 1 | 1 | ||||||||||||
Thelonectria | 1 | 1 | ||||||||||||
Torula | 1 | 3 | ||||||||||||
Trichoderma | 1 | 1 | 2 | 6 | 1 | 2 | 1 | 14 | ||||||
Tubakia | 2 | 2 | ||||||||||||
Verticillium | 1 | 1 | 2 | |||||||||||
Xylaria | 1 | 2 | 1 | 1 | 2 | 1 | 8 | |||||||
Wickerhamomyces | 1 | 1 | ||||||||||||
Tot. SP | 51 | 27 | 94 | 29 | 42 | 19 | 78 | 4 | 7 | 29 | 3 | 37 | 6 |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Phyllosticta sp. | A. amara | leaf | Masinagudi, India | [34] |
Xylaria sp. | A. amara | leaf | Masinagudi, India | [34] |
Aspergillus niger | A. arabica | leaf | Punjab, India | [35] |
Aspergillus sp. | A. auriculaeformis | root | Guangdong, China | [36] |
Trichoderma sp. | A. auriculaeformis | root | Guangdong, China | [36] |
Aureobasidium pullulans | A. baileyana | phyllode | Melbourne, Australia | [37] |
Alternaria sp. | A. decurrens | leaf, stem | Yunnan, China | [38] |
Penicillium sp. | A. decurrens | leaf, stem | Yunnan, China | [38] |
Peyronellaea sp. | A. decurrens | leaf, stem | Yunnan, China | [38] |
Phoma sp. | A. decurrens | leaf, stem | Yunnan, China | [38] |
Rhizopus sp. | A. decurrens | leaf, stem | Yunnan, China | [38] |
Aureobasidium pullulans | A. floribunda | phyllode | Melbourne, Australia | [37] |
Chaetomium globosum | A. floribunda | phyllode | Melbourne, Australia | [37] |
Dothiorella heterophyllae | A. heterophylla | branch | La Réunion, France | [39] |
Dothiorella reunionis | A. heterophylla | branch | La Réunion, France | [39] |
Lasiodiplodia iranensis | A. heterophylla | branch | La Réunion, France | [39] |
Lasiodiplodia rubropurpurea | A. heterophylla | branch | La Réunion, France | [39] |
Neofusicoccum parvum | A. heterophylla | branch | La Réunion, France | [39] |
Cochliobolus geniculatus | A. hindsii | leaf | Mexico | [40] |
Colletotrichum gloeosporioides | A. hindsii | leaf | Mexico | [40] |
Colletotrichum truncatum | A. hindsii | leaf | Mexico | [40] |
Eupenicillium javanicum | A. hindsii | leaf | Mexico | [40] |
Fusarium oxysporum | A. hindsii | leaf | Mexico | [40] |
Moesziomyces bullatus | A. hindsii | leaf | Mexico | [40] |
Paraphaeosphaeria sp. | A. hindsii | leaf | Mexico | [40] |
Phoma sp. | A. hindsii | leaf | Mexico | [40] |
Wickerhamomyces anomalus | A. hindsii | leaf | Mexico | [40] |
Botryosphaeria dothidea | A. karroo | branch | South Africa | [41] |
Diplodia allocellula | A. karroo | branch | South Africa | [41,42] |
Dothiorella brevicollis | A. karroo | branch | South Africa | [41,42] |
Dothiorella dulcispinae | A. karroo | branch | South Africa | [42] |
Dothiorella pretoriensis | A. karroo | branch | South Africa | [41,42] |
Eutiarosporella urbis-rosarum | A. karroo | branch | South Africa | [41,42] |
Lasiodiplodia pseudotheobromae | A. karroo | branch | South Africa | [41] |
Lasiodiplodia theobromae | A. karroo | branch | South Africa | [41] |
Lasiodiplodia gonubiensis | A. karroo | branch | South Africa | [41] |
Neofusicoccum kwambonambiense | A. karroo | branch | South Africa | [41] |
Neofusicoccum protearum | A. karroo | branch | South Africa | [41] |
Neofusicoccum vitifusiforme | A. karroo | branch | South Africa | [41,42] |
Neofusicoccum australe | A. karroo | branch | South Africa | [41] |
Neofusicoccum parvum | A. karroo | branch | South Africa | [41] |
Oblongocollomyces variabilis | A. karroo | branch | South Africa | [41] |
Phaeobotryosphaeria variabilis | A. karroo | branch | South Africa | [42] |
Spencermartinsia viticola | A. karroo | branch | South Africa | [41,42] |
Dothiorella koae | A. koa | branch | Hawaii, USA | [39] |
Lasiodiplodia theobromae | A. koa | branch | Hawaii, USA | [39] |
Lasiodiplodia exigua | A. koa | branch | Hawaii, USA | [39] |
Neofusicoccum occulatum | A. koa | branch | Hawaii, USA | [39] |
Neofusicoccum parvum | A. koa | branch | Hawaii, USA | [39] |
Aspergillus ochraceus | A. nilotica | stem | Al-Sharqia, Egypt | [43] |
Penicillium sp. | A. nilotica | stem | Al-Sharqia, Egypt | [43] |
Pestalotia sp. | A. nilotica | stem | Al-Sharqia, Egypt | [43] |
Chaetomium globosum | A. podalyriifolia | phyllode | Melbourne, Australia | [37] |
Chaetomium sp. | A. podalyriifolia | phyllode | Melbourne, Australia | [37] |
Preussia sp. | A. victoriae | leaf | Arizona, USA | [44] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Acremonium sp. | A. lebbeck | - | Indonesia | [47] |
Aspergillus fumigatus | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus fumigatus | A. lebbeck | leaf | Al-Sharqia, Egypt | [43] |
Aspergillus glaucus | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus niger | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus raperi | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus sclerotioniger | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus flavus | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Aspergillus sp. | A. lebbeck | - | Indonesia | [47] |
A. lebbeck | leaf and twig | Baghdad, Iraq | [48] | |
Bipolaris australiensis | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Colletotrichum sp. | A. amara | leaf | Masinagudi, India | [34] |
Curvularia cymbopogonis | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Diaporthe sp. | A. amara | leaf | Masinagudi, India | [34] |
Fusarium verticilloides | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Fusarium sp. | A. amara | leaf | Masinagudi, India | [34] |
A. lebbeck | - | Indonesia | [47] | |
Fusarium oxysporum | A. julibrissin | - | - | [49] |
Lasiodiplodia sp. | A. amara | leaf | Masinagudi, India | [34] |
Neocosmospora solani | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Paecilomyces variotii | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Paecilomyces sp. | A. lebbeck | leaf and twig | Baghdad, Iraq | [48] |
Penicillium sp. | A. lebbeck | - | Indonesia | [47] |
A. lebbeck | leaf | Al-Sharqia, Egypt | [43] | |
A. lebbeck | leaf and twig | Baghdad, Iraq | [48] | |
Rosellinia sanctae-cruciana | A. lebbeck | leaf | Jammu, India | [50] |
Trichoderma sp. | A. lebbeck | - | Indonesia | [47] |
Verticillium sp. | A. lebbeck | - | Indonesia | [47] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Acremonium sp. | B. brevipes | - | Brazil | [53] |
B. forficata | - | Brazil | [53] | |
B. brevipes | leaf | Pirapitinga, Brazil | [54] | |
Albifimbriaverrucaria | B. fortificata | stem | Recife, Brazil | [55] |
Alternaria alternata | B. malabarica | stem | Chennai, India | [56] |
B. racemosa | leaf | Mudumalai, India | [57] | |
Ascotricha sp. | B. forficata | - | Brazil | [53] |
Ascotricha chartarum | B. fortificata | seed | Recife, Brazil | [55] |
Aspergillus sp. | B. forficata | - | Brazil | [53] |
B. monandra | leaf | Recife, Brazil | [58] | |
B. guianensis | - | Brazil | [53,59,60] | |
Aspergillus flavus | B. malabarica | leaf, root | Chennai, India | [56] |
Aspergillus niger | B. fortificata | stem | Recife, Brazil | [55] |
B. malabarica | leaf, root, stem | Chennai, India | [56] | |
B. racemosa | leaf | Mudumalai, India | [57] | |
Aspergillus ochraceus | B. fortificata | stem, seed | Recife, Brazil | [55] |
Aspergillus tamarii | B. malabarica | leaf, stem | Chennai, India | [56] |
Aspergillus terreus | B. malabarica | leaf, root | Chennai, India | [56] |
Aspergillus versicolor | B. vahlii | leaf | Chilkigarh, India | [61] |
Botrytis cinerea | B. racemosa | leaf | Mudumalai, India | [57] |
Chaetomium globosum | B. malabarica | leaf | Chennai, India | [56] |
Cladosporium sphaerospermum | B. fortificata | leaf | Recife, Brazil | [55] |
Cladosporium sp. | B. forficata | - | Brazil | [53] |
Cladosporium cladosporioides | B. racemosa | leaf | Mudumalai, India | [57] |
Cladosporium oxysporum | B. fortificata | sepal | Recife, Brazil | [55] |
Cochliobolus sp. | B. forficata | - | Brazil | [53] |
Cochliobolus australiensis | B. fortificata | leaf | Recife, Brazil | [55] |
Cochliobolus lunatus | B. fortificata | leaf, stem | Recife, Brazil | [55] |
Colletotrichum sp. | B. forficata | - | Brazil | [53] |
Colletotrichum coccodes | B. guianensis | stem | Belem, Brazil | [62] |
Colletotrichum gloeosporioides | B. racemosa | leaf | Mudumalai, India | [57] |
Corynespora cassiicola | B. racemosa | leaf | Mudumalai, India | [63] |
Curvularia sp. | B. monandra | leaf | Recife, Brazil | [58] |
Curvularia brachyspora | B. malabarica | leaf | Chennai, India | [56] |
Curvularia clavata | B. guianensis | stem | Belem, Brazil | [62] |
B. phoenicea | leaf | Kudremukh range, India | [64] | |
Curvularia lunata | B. malabarica | leaf | Chennai, India | [56] |
B. racemosa | leaf | Mudumalai, India | [57] | |
B. phoenicea | bark, leaf | Kudremukh range, India | [64] | |
Curvularia pallescens | B. phoenicea | leaf | Kudremukh range, India | [64] |
Diaporthe sp. | B. brevipes | leaf | Pirapitinga, Brazil | [54] |
Diplococcium sp. | B. forficata | - | Brazil | [53] |
Diplococcium spicatum | B. fortificata | leaf | Recife, Brazil | [55] |
Dothiorella sp. | B. brevipes | - | Brazil | [53] |
leaf | Pirapitinga, Brazil | [54] | ||
Exserohilum rostratum | B. racemosa | leaf, stem | Sathyamangalam, India | [65] |
B. guianensis | stem | Belem, Brazil | [62,66] | |
Fusarium culmorum | B. malabarica | leaf, stem | Chennai, India | [56] |
Fusarium verticillioides | B. malabarica | root | Chennai, India | [56] |
Fusarium oxysporum | B. malabarica | leaf, root, stem | Chennai, India | [56] |
B. phoenicea | leaf | Kudremukh range, India | [64] | |
Fusarium sp. | B. forficata | - | Brazil | [53] |
Fusidium viride | B. vahlii | petiole | Chilkigarh, India | [61] |
Geotrichum candidum | B. vahlii | leaf, petiole | Chilkigarh, India | [61] |
Gibberella fujikuroi | B. fortificata | leaf, stem | Recife, Brazil | [55] |
Gibberella sp. | B. forficata | - | Brazil | [53] |
Glomerella sp. | B. forficata | - | Brazil | [53] |
Kiflimonium curvulum | B. fortificata | sepal, stem | Recife, Brazil | [55] |
Khuskia sp. | B. forficata | - | Brazil | [53] |
Lasiodiplodia theobromae | B. racemosa | leaf | Mudumalai, India | [57,63] |
Lasmenia sp. | B. forficata | - | Brazil | [53] |
Lasmeniabalansae | B. fortificata | stem | Recife, Brazil | [55] |
Myrmecridium sp. | B. forficata | - | Brazil | [53] |
Myrmecridium schulzeri | B. fortificata | sepal | Recife, Brazil | [55] |
Nigrospora oryzae | B. racemosa | leaf | Mudumalai, India | [57] |
B. phoenicea | stem, leaf | Kudremukh range, India | [64] | |
B. fortificata | sepal | Recife, Brazil | [55] | |
Nigrospora sacchari | B. phoenicea | leaf | Kudremukh range, India | [64] |
Nigrospora sp. | B. forficata | - | Brazil | [53] |
Nigrospora sphaerica | B. vahlii | stem | Chilkigarh, India | [61] |
B. racemosa | leaf, stem | Sathyamangalam, India | [65] | |
Nodulisporium sp. | B. forficata | - | Brazil | [53] |
B. fortificata | stem | Recife, Brazil | [55] | |
Paraboeremia putaminum | B. fortificata | sepal | Recife, Brazil | [55] |
Penicillium commune | B. fortificata | sepal | Recife, Brazil | [55] |
Penicillium corylophilum | B. fortificata | seed | Recife, Brazil | [55] |
Penicillium glabrum | B. fortificata | stem, seed | Recife, Brazil | [55] |
Penicillium implicatum | B. fortificata | stem | Recife, Brazil | [55] |
Penicillium sp. | B. forficata | - | Brazil | [53] |
B. monandra | leaf | Recife, Brazil | [58] | |
Penicillium aurantiogriseum | B. fortificata | seed | Recife, Brazil | [55] |
Pestalotia sp. | B. forficata | - | Brazil | [53] |
Pestalotiopsis sp. | B. brevipes | leaf | Pirapitinga, Brazil | [54] |
B. brevipes | - | Brazil | [53] | |
Phoma sp. | B. forficata | - | Brazil | [53] |
B. brevipes | - | Brazil | [53] | |
leaf | Pirapitinga, Brazil | [54] | ||
Phomopsis sp. | B. brevipes | - | Brazil | [53] |
B. forficata | - | Brazil | [53] | |
Phomopsis diachenii | B. fortificata | leaf | Recife, Brazil | [55] |
Phyllosticta capitalensis | B. racemosa | leaf | Mudumalai, India | [57] |
Pithomyces sp. | B. forficata | - | Brazil | [53] |
Pseudopithomycesatro-olivaceus | B. fortificata | seed | Recife, Brazil | [55] |
Scedosporium apiospermum | B. guianensis | stem | Belem, Brazil | [62] |
Spegazzinia sp. | B. forficata | - | Brazil | [53] |
Spegazzinia tessarthra | B. fortificata | leaf | Recife, Brazil | [55] |
Sphaeria baccata | B. fortificata | sepal | Recife, Brazil | [55] |
Sporormiella minima | B. racemosa | leaf | Mudumalai, India | [57] |
Talaromyces sp. | B. forficata | - | Brazil | [53] |
Talaromyces funiculosus | B. fortificata | leaf | Recife, Brazil | [55] |
Torulomyces lagena | B. racemosa | leaf | Mudumalai, India | [57] |
Trichoderma piluliferum | B. fortificata | stem | Recife, Brazil | [55] |
Trichoderma sp. | B. forficata | - | Brazil | [53] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Alternaria alternata | B. poiretii | leaf, twig | Beijing, China | [70] |
B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] | |
Alternaria macrospora | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Alternaria solani | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Anguillospora crassa | Berberis sp. | root | Western Himalaya | [71] |
Aspergillus flavus | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Campylospora parvula | Berberis sp. | root | Western Himalaya | [71] |
Cercospora citrullina | B. aristata | stem | Sial Sui, District Rajouri, J&K, India | [68] |
Clonostachys rosea | B. aristata | root | Sial Sui, District Rajouri, J&K, India | [68] |
Colletotrichum coccodes | B. aristata | root | Sial Sui, District Rajouri, J&K, India | [68] |
Colletotrichum coffeanum | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Colletotrichum gloeosporioides | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Colletotrichum kahawae | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Bacillispora aquatica | Berberis sp. | root | Western Himalaya | [71] |
Diaporthe sp. | B. vulgaris | leaf, stem | Kenya | [72] |
Neocosmospora falciformis | B. aristata | root | Sial Sui, District Rajouri, J&K, India | [68] |
Fusarium lateritium | B. aristata | stem | Sial Sui, District Rajouri, J&K, India | [68] |
Fusarium nematophilum | B. aristata | root | Sial Sui, District Rajouri, J&K, India | [68] |
Fusarium oxysporum | B. aristata | stem | Sial Sui, District Rajouri, J&K, India | [68] |
Fusarium solani | B. aristata | root | Sial Sui, District Rajouri, J&K, India | [68] |
Heliscus lugdunensis | Berberis sp. | root | Western Himalaya | [71] |
Microsphaeropsis conielloides | B. poiretii | twig | Beijing, China | [70] |
Myrothecium inundatum | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Paraphaeosphaeria sp. | B. thunbergii | stem | China | [73] |
Phomopsis sp. | B. poiretii | twig | Beijing, China | [70] |
Diaporthe tersa | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Phyllosticta capitalensis | B. aristata | leaf | Sial Sui, District Rajouri, J&K, India | [68] |
Prathoda longissima | Berberis sp. | root | Western Himalaya | [71] |
Puccinia graminis f. sp. tritici | B. vulgaris | - | Pacific Northwest USA | [74] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Alternaria alternata | C. pulcherrima | leaf | India | [76] |
Aspergillus flavus | C. pulcherrima | leaf | India | [76] |
Aspergillus fumigatus | C. pulcherrima | leaf | India | [76] |
Aspergillus niger | C. pulcherrima | leaf | India | [76] |
Aspergillus flavus var. oryzae | C. pulcherrima | leaf | India | [76] |
Aspergillus rugulosus | C. pulcherrima | leaf | India | [76] |
Aspergillus terreus | C. pulcherrima | leaf | India | [76] |
Aspergillus sp. | C. pyramidalis | leaf | Brazil | [53] |
C. echinata | leaf | Brazil | [53] | |
C. echinata | stem, bark | Brazil | [77] | |
Aspergillus nidulans | C. pulcherrima | leaf | India | [76] |
Bipolaris oryzae | C. pulcherrima | leaf | India | [76] |
Bipolaris sp. | C. pulcherrima | leaf | India | [76] |
Chrysosporium sp. | C. sappan | stem | Indonesia | [78] |
Cladosporium cladosporioides | C. echinata | leaf | Brazil | [79] |
Colletotrichum gloeosporioides | C. echinata | leaf | Brazil | [79] |
Curvularia lunata | C. sappan | stem | Indonesia | [78] |
Curvularia pallescens | C. echinata | leaf | Brazil | [79] |
Epicoccum sp. | C. echinata | Brazil | [53] | |
Fusarium sp. | C. echinata | leaf | Brazil | [53] |
stem | Brazil | [77] | ||
stem, bark | Brazil | [77] | ||
C. pulcherrima | leaf | India | [76] | |
Geotrichum candidum | C. sappan | stem | Indonesia | [78] |
Helminthosporium sp. | C. pulcherrima | leaf | India | [76] |
Lasiodiplodia theobromae | C. echinata | leaf | Brazil | [79] |
Nectria sp. | C. echinata | - | Brazil | [53] |
Nectria pseudotrichia | C. echinata | stem, bark | Brazil | [77] |
stem | [80] | |||
Penicillium citrinum | C. pulcherrima | leaf | India | [76] |
Penicillium chrysogenum | C. pulcherrima | leaf | India | [76] |
Penicillium sp. | C. sappan | stem | Indonesia | [78] |
Phyllosticta sorghina | C. echinata | stem, bark | Brazil | [77] |
Scopulariopsis coprophila | C. echinata | leaf | Brazil | [79] |
Talaromyces sp. | C. echinata | stem, bark | Brazil | [77] |
leaf | Brazil | [53] | ||
Trichoderma atroviride | C. pyramidalis | stem, bark | Brazil | [81] |
Trichoderma harzianum | C. pyramidalis | stem, bark | Brazil | [81] |
Trichoderma koningiopsis | C. pyramidalis | stem, bark | Brazil | [81] |
Trichoderma longibrachiatum | C. pyramidalis | stem, bark | Brazil | [81] |
Trichoderma virens | C. pyramidalis | stem, bark | Brazil | [81] |
Trichoderma sp. | C. sappan | stem | Indonesia | [78] |
Xylaria sp. | C. echinata | leaf | Brazil | [53] |
Xylaria berteri | C. echinata | stem, bark | Brazil | [77] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Aspergillus flavus | C. siamea | leaf | Malaysia | [87] |
Aspergillus sp. | C. fistula | leaf, stem, fruit | India | [88] |
Coprinus sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Daldinia sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Guignardia sp. | C. occidentalis | leaf | Brazil | [53] |
Hypoxylon sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Nemania sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Nigrospora sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Nodulisporium sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
- | - | [90] | ||
Papulospora sp. | C. fistula | bark | India | [91] |
Penicillium sclerotiorum | C. fistula | - | India | [92] |
Penicillium sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Periconia sp. | C. fistula | bark | India | [91] |
Phomopsis cassiae | C. spectabilis | - | Brazil | [52] |
Phomopsis sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Psathyrella sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Thelioviopsis sp. | C. fistula | leaf | India | [91] |
Xylaria sp. | C. fistula | leaf | Bangkok, Thailand | [89] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Alternaria alternata | Cornus spp. | leaf | Japan, USA | [95] |
Alternaria sp. | C. stolonifera | leaf | Canada | [96] |
Alternaria tenuissima | C. officinalis | twig, leaf | China | [97] |
Cornus spp. | leaf | Japan | [95] | |
Ascochyta medicaginicola | C. officinalis | twig | China | [97] |
Aspergillus flavus var. oryzae | C. alba | leaf | - | [98] |
Aspergillus sp. | Cornus spp. | leaf | Japan, USA | [95] |
Aureobasidium pullulans | Cornus spp. | leaf | USA | [95] |
Aureobasidium sp. | C. stolonifera | leaf | Canada | [96] |
Cornus spp. | leaf | Japan, USA | [95] | |
Botryosphaeria dothidea | C. officinalis | twig, leaf | China | [97] |
Cornus spp. | leaf | Japan | [95] | |
Botryosphaeria sp. | Cornus spp. | leaf | Japan | [95] |
Botrytis sp. | C. stolonifera | leaf | Canada | [96] |
Cladosporium cladosporioides | C. stolonifera | leaf | Canada | [96] |
Cladosporium herbarum | C. stolonifera | leaf | Canada | [96] |
Cladosporium sp. | C. stolonifera | leaf | Canada | [96] |
Cornus spp. | leaf | Japan | [95] | |
Cladosporium sphaerospermum | C. stolonifera | leaf | Canada | [96] |
Colletotrichum acutatum | Cornus spp. | leaf | USA, Japan | [95] |
Colletotrichum gloeosporioides | C. officinalis | twig, leaf | China | [97] |
C. stolonifera | leaf | Canada | [96] | |
Colletotrichum sp. | Cornus spp. | leaf | Japan | [95] |
Cordycepsfarinose | C. stolonifera | leaf | Canada | [96] |
Cryptodiaporthe corni | C. alternifolia | stem | USA | [99] |
bark, phloem | USA | [100] | ||
Cyrptosporiopsis sp. | Cornus spp. | leaf | USA | [95] |
Diaporthe amygdali | Cornus spp. | leaf | USA, Japan | [95] |
Diaporthe lagerstroemiae | Cornus spp. | leaf | Japan | [95] |
Didymellapinodella | C. officinalis | twig | China | [97] |
Didymella glomerata | Cornus spp. | leaf | USA, Japan | [95] |
Discula destructiva | Cornus spp. | leaf | USA | [101] |
leaf | USA | [95] | ||
C. florida | leaf | Germany | [102] | |
leaf | Italy | [103] | ||
Drepanopeziza populi | C. officinalis | twig | China | [97] |
Elsinoe fawcettii | Cornus spp. | leaf | USA | [95] |
Epicoccum nigrum | C. stolonifera | leaf | Canada | [96] |
Fusarium lateritium | C. controversa | stem | Korea | [104] |
Fusarium oxysporum | C. officinalis | root | China | [97] |
Fusarium sp. | Cornus spp. | leaf | Japan | [95] |
C. stolonifera | leaf | Canada | [96] | |
Helminthosporium velutinum | C. officinalis | twig | China | [97] |
Lecanicillium psalliotae | C. stolonifera | leaf | Canada | [96] |
Leptosphaerulina australis | C. officinalis | twig | China | [97] |
Lophiostoma sp. | Cornus spp. | leaf | USA | [95] |
Neofabraea sp. | Cornus spp. | leaf | USA | [95] |
Neonectria sp. | Cornus spp. | leaf | USA, Japan | [95] |
Nigrospora sphaerica | C. florida | stem | Tennessee, USA | [105] |
Penicillium brevicompactum | C. stolonifera | leaf | Canada | [96] |
Penicillium chrysogenum | Cornus spp. | leaf | USA | [95] |
Penicillium citrinum | C. stolonifera | leaf | Canada | [96] |
Penicillium miczynskii | C. stolonifera | leaf | Canada | [96] |
Penicillium simplicissimum | Cornus spp. | leaf | USA | [95] |
Penicillium sp. | C. stolonifera | leaf | Canada | [96] |
Penicillium spinulosum | Cornus spp. | leaf | Japan | [95] |
Penicillium thomii | C. stolonifera | leaf | Canada | [96] |
Phytophthora palmivora | C. florida | leaf, shoot | USA | [106] |
Pestalotiopsis mangiferae | Cornus spp. | leaf | Japan | [95] |
Pestalotiopsis microspora | Cornus spp. | leaf | USA, Japan | [95] |
Pestalotiopsis monochaeta | Cornus spp. | leaf | Japan | [95] |
Pestalotiopsis sp. | Cornus spp. | leaf | Japan | [95] |
Phoma moricola | C. officinalis | twig | China | [97] |
Phomopsis sp. | C. stolonifera | leaf | Canada | [96] |
Cornus spp. | leaf | USA, Japan | [95] | |
Phyllosticta fallopiae | C. officinalis | leaf | China | [97] |
Phytophthora nicotianae | C. florida | leaf, shoot | USA | [106] |
Pleuroceras tenellum | Cornus spp. | leaf | USA | [95] |
Sarocladiumkiliense | C. stolonifera | leaf | Canada | [96] |
Sclerotinia sclerotiorum | C. stolonifera | leaf | Canada | [96] |
Septoria sp. | C. stolonifera | leaf | Canada | [96] |
Simplicillium lanosoniveum | C. officinalis | fruit | China | [97] |
Stenella sp. | C. stolonifera | leaf | Canada | [96] |
Talaromyces assiutensis | C. officinalis | root | China | [97] |
Talaromycescecidicola | Cornus spp. | leaf | USA, Japan | [95] |
Talaromyces trachyspermus | C. officinalis | root | China | [97] |
Thelonectriadiscophora | Cornus spp. | leaf | Japan | [95] |
Trichoderma lixii | Cornus spp. | leaf | USA, Japan | [95] |
Tubakia sp. | Cornus spp. | leaf | USA, Japan | [95] |
Verticillium dahliae | Cornus spp. | leaf | USA | [95] |
Xylaria sp. | Cornus spp. | leaf | USA | [95] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Colletotrichum acutatum | H. virginiana | leaf | Dutchess Co., USA | [109] |
Hamamelis sp. | leaf | Litchfield, USA | [109] | |
Nigrospora oryzae | H. mollis | leaf | China | [110] |
Pezicula sporulosa | H. mollis | - | Netherlands | [111] |
H. virginiana | - | Canada | [112] | |
Phyllosticta hamamelidis | H. japonica | leaf | Japan | [113,114] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Colletotrichum dematium | J. sambac | leaf | India | [120] |
Colletotrichum truncatum | J. sambac | leaf | Vietnam | [121] |
Colletotrichum jasminicola | J. sambac | leaf, shoot | India | [120] |
Colletotrichum jasminigenum | J. sambac | leaf | Vietnam | [121] |
Colletotrichum jasmini-sambac | J. sambac | leaf | Vietnam | [121] |
Colletotrichum siamense | J. sambac | leaf | Vietnam | [121] |
Colletotrichum sp. | J. sambac | leaf | Vietnam | [121] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Alternaria alternata | L. lucidum | leaf, petiole | Buenos Aires, Argentina | [126] |
Alternaria cheiranthi | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Cladosporium oxysporum | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Colletotrichum crassipes | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Colletotrichum sp. | L. roxburghii | leaf | Bhavani, India | [34] |
Colletotrichum gloeosporioides | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Diplodia mutila | L. lucidum | stem | Buenos Aires, Argentina | [127] |
Fusarium oxysporum | L. lucidum | - | Jiangsu, China | [128] |
Fusarium lateritium | L. lucidum | stem | Buenos Aires, Argentina | [127] |
Geotrichum candidum | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Guignardia mangiferae | L. compactum var. tschonski | leaf | Kyoto, Japan | [129] |
L. quihoui | leaf | Kyoto, Japan | [129] | |
L. obsusifoilium | leaf | Kyoto, Japan | [129] | |
Lasiodiplodia theobromae | L. lucidum | stem | Buenos Aires, Argentina | [127] |
Lasiodiplodia sp. | L. roxburghii | leaf | Bhavani, India | [34] |
Libertella sp. | L. lucidum | branches | Argentina | [130] |
Neocosmospora solani | L. lucidum | - | Jiangsu, China | [128] |
Peroneutypa scoparia | L. lucidum | branches | Argentina | [130] |
Penicillum sp. | L. lucidum | leaf | China | [131] |
Pestalotiopsis sp. | L. roxburghii | leaf | India | [132] |
Bhavani, India | [34] | |||
Phomopsis ligustri-vulgaris | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Phomopsis sp. | L. vulgare | leaf | Braunschweig, Germany | [133] |
L. roxburghii | leaf | Bhavani, India | [34] | |
Phyllosticta sp. | L. roxburghii | leaf | Bhavani, India | [34] |
Pycnidiella resinae | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Rhizopus microsporus | L. lucidum | stem | Buenos Aires, Argentina | [127] |
Trichoderma harzianum | L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Trichoderma koningii | L. lucidum | stem | Buenos Aires, Argentina | [127] |
Xylaria sp. | L. roxburghii | leaf | Bhavani, India | [34] |
L. lucidum | leaf | Buenos Aires, Argentina | [126] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Fusarium sp. | L. japonica | leaf | Henan, China | [136] |
Guignardia mangiferae | L. morrowii | leaf | Kyoto, Japan | [129] |
Phyllosticta sp. | L. morrowii | leaf | Kyoto, Japan | [129] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Alternaria brassicicola | N. oleander | stem, flower | India | [141] |
Alternaria sp. | N. oleander | leaf | Southern India | [142] |
Aspergillus flavus | N. oleander | flower | Chennai, India | [143] |
Aspergillus niger | N. oleander | flower | Chennai, India | [143] |
Aspergillus sp. | N. oleander | stem, root | China | [144] |
Bipolaris sp. | N. oleander | stem, flower | India | [141] |
Chaetomium sp. | N. oleander | stem, flower | India | [141] |
N. oleander | stem | Hong Kong, China | [145] | |
N. oleander | leaf | Southern India | [142] | |
Cladosporium sp. | N. oleander | stem | Hong Kong, China | [145] |
N. oleander | stem | India | [141] | |
N. oleander | leaf | Southern India | [142] | |
Cochliobolus sp. | N. oleander | stem, flower | India | [141] |
Colletotrichum sp. | N. oleander | stem | Hong Kong, China | [145] |
N. oleander | flower | Chennai, India | [143] | |
N. oleander | leaf | Southern India | [142] | |
Curvularia brachyspora | N. oleander | stem, flower | India | [141] |
Curvularia sp. | N. oleander | stem, flower | India | [141] |
Cylindrocephalum sp. | N. oleander | stem, flower | India | [141] |
Drechslera sp. | N. oleander | stem | India | [141] |
Fusarium oxysporum | N. oleander | flower | Chennai, India | [143] |
Fusarium semitectum | N. oleander | stem, flower | India | [141] |
Fusarium sp. | N. oleander | stem, flower | India | [141] |
N. oleander | leaf | Southern India | [142] | |
Geomyces sp. | N. oleander | stem | China | [144] |
Lasiodiplodia theobromae | N. oleander | flower | Chennai, India | [143] |
Nigrospora sp. | N. oleander | root | China | [144] |
Penicillium sp. | N. oleander | stem | China | [144] |
N. oleander | stem, flower | India | [141] | |
N. oleander | root | China | [146] | |
N. oleander | leaf | Southern India | [142] | |
Phoma sp. | N. oleander | stem | Hong Kong, China | [145] |
Phyllosticta sp. | N. oleander | leaf | Southern India | [142] |
Rhizopus stolonifera | N. oleander | flower | Chennai, India | [143] |
Pseudothielavia terricola | N. oleander | stem | India | [141] |
Torula sp. | N. oleander | stem | Hong Kong, China | [145] |
Trichoderma sp. | N. oleander | stem, root | China | [144] |
Xylaria sp. | N. oleander | leaf | Southern India | [142] |
Species | Host Plant | Plant Part | Country | Reference |
---|---|---|---|---|
Beauveria bassiana | R. pseudoacacia | - | Mlyňany, Slovakia | [150] |
Diaporthe oncostoma | R. pseudoacacia | stem | Hungary | [151] |
Monodictys fluctuata | R. pseudoacacia | - | Germany | [152] |
Fusarium sp. | R. pseudoacacia | - | Huaxi district, China | [153] |
Gloniopsis sp. | R. pseudoacacia | - | Huaxi district, China | [153] |
Clonostachys sp. | R. pseudoacacia | - | Huaxi district, China | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioia, L.; d’Errico, G.; Sinno, M.; Ranesi, M.; Woo, S.L.; Vinale, F. A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes. Agriculture 2020, 10, 643. https://doi.org/10.3390/agriculture10120643
Gioia L, d’Errico G, Sinno M, Ranesi M, Woo SL, Vinale F. A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes. Agriculture. 2020; 10(12):643. https://doi.org/10.3390/agriculture10120643
Chicago/Turabian StyleGioia, Laura, Giada d’Errico, Martina Sinno, Marta Ranesi, Sheridan Lois Woo, and Francesco Vinale. 2020. "A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes" Agriculture 10, no. 12: 643. https://doi.org/10.3390/agriculture10120643
APA StyleGioia, L., d’Errico, G., Sinno, M., Ranesi, M., Woo, S. L., & Vinale, F. (2020). A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes. Agriculture, 10(12), 643. https://doi.org/10.3390/agriculture10120643