Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Procedure
2.3. Instrument and Processing of Data
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Effect of PA Practice on Accelerations
3.3. Correlation Analysis
3.4. Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peñeñory, V.M.; Manresa-Yee, C.; Riquelme, I.; Collazos, C.A.; Fardoun, H.M. Scoping review of systems to train psychomotor skills in hearing impaired children. Sensors 2018, 18, 2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, C.; Hikihara, Y.; Ohkawara, K.; Tanaka, S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr. Exerc. Sci. 2012, 24, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Wälchli, M.; Ruffieux, J.; Mouthon, A.; Keller, M.; Taube, W. Is young age a limiting factor when training balance? Effects of child-oriented balance training in children and adolescents. Pediatr. Exerc. Sci. 2018, 30, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ledebt, A.; Bril, B.; Brenière, Y. The build-up of anticipatory behaviour an analysis of the development of gait initiation in children. Exp. Brain Res. 1998, 120, 9–17. [Google Scholar] [CrossRef]
- Malouin, F.; Richards, C.L. Preparatory adjustments during gait initiation in 4 to 6-year-old children. Gait Posture 2000, 11, 239–253. [Google Scholar] [CrossRef]
- Schmitz, C.; Martin, N.; Assaiante, C. Building anticipatory postural adjustment during childhood: A kinematic and electromyographic analysis of unloading in children from 4 to 8 years of age. Exp. Brain Res. 2002, 142, 354–364. [Google Scholar] [CrossRef]
- Alexander, G.M.; Wilcox, T. Sex differences in early infancy. Child Dev. Perspect. 2012, 6, 400–406. [Google Scholar] [CrossRef]
- Lenroot, R.K.; Giedd, J.N. Sex differences in the adolescent brain. Brain Cogn. 2010, 72, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006, 30, 718–729. [Google Scholar] [CrossRef]
- Livesey, D.; Coleman, R.; Piek, J. Performance on the movement assessment battery for children by Australian 3-to 5-year-old children. Child Care Health Dev. 2007, 33, 713–719. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A. The effects of age and gender on balance skills in preschool children. FU Phys. Educ. Sport 2011, 9, 81–90. [Google Scholar]
- Webster, E.K.; Martin, C.K.; Staiano, A.E. Fundamental motor skills, screen-time, and physical activity in preschoolers. J. Sport Health Sci. 2019, 8, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearin, B.M.; Fien, H. Translating the neuroscience of physical activity to education. Trends Neurosci. Educ. 2016, 5, 12–19. [Google Scholar] [CrossRef]
- Gómez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Horak, F.B.; Kluzik, J.; Hlavacka, F. Velocity dependence of vestibular information for postural control on tilting surfaces. J. Neurophysiol. 2016, 116, 1468–1479. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, V.; Roy, F.G. An overview of motor skill performance and balance in hearing impaired children. Ital. J. Pediatrics 2011, 37, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massion, J. Postural control system. Curr. Opin. Neurobiol. 1994, 4, 877–887. [Google Scholar] [CrossRef]
- Farinelli, V.; Palmisano, C.; Marchese, S.M.; Strano, C.M.M.; D’Arrigo, S.; Pantaleoni, C.; Ardissone, A.; Nardocci, N.; Esposti, R.; Cavallari, P. Postural control in children with cerebellar ataxia. Appl. Sci. 2020, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.E.; Chou, L. Can motion of individual body segments identify dynamic instability in the elderly? Clin. Biomech. 2003, 18, 737–744. [Google Scholar] [CrossRef]
- García-Liñeira, J.; García-Soidán, J.; Romo-Pérez, V.; Leirós-Rodríguez, R. Reliability of accelerometric assessment of balance in children aged 6–12 years. BMC Pediatr. 2020, 20, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Leirós-Rodríguez, R.; García-Soidán, J.L.; Romo-Pérez, V. Analyzing the use of accelerometers as a method of early diagnosis of alterations in balance in elderly people: A systematic review. Sensors 2019, 19, 3883. [Google Scholar] [CrossRef] [Green Version]
- Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Soidán, J.L. Validity and reliability of a tool for accelerometric assessment of static balance in women. Eur. J. Physiother. 2017, 19, 243–248. [Google Scholar] [CrossRef]
- Tanner, J.M. Growth at adolescence. In Endokrinologie der Entwicklung und Reifung. Symposion der Deutschen Gesellschaft für Endokrinologie in Ulm vom 26.—28; Kracht, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1970; Volume 16. [Google Scholar] [CrossRef]
- Miller, B.S.; Sarafoglou, K.; Addo, O.Y. Development of Tanner stage age adjusted CDC height curves for research and clinical applications. J. Endocr. Soc. 2020, 4. [Google Scholar] [CrossRef]
- Marceau, K.; Kirisci, L.; Tarter, R.E. Correspondence of pubertal neuroendocrine and Tanner stage changes in boys and associations with substance use. Child Dev. 2019, 90, e763–e782. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Esteves, F.C.; Duarte, R.; Esteves, E.A.; Bressan, J. Energy expenditure: Components and evaluation methods. Nutr. Hosp. 2011, 26, 430–440. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Hartmann, A.; Luzi, S.; Murer, K.; de Bie, R.A.; de Bruin, E.D. Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 2009, 29, 444–448. [Google Scholar] [CrossRef]
- Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Soidán, J.L.; Soto-Rodríguez, A. identification of body balance deterioration of gait in women using accelerometers. Sustainability 2020, 12, 1222. [Google Scholar] [CrossRef] [Green Version]
- Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Soidán, J.L.; García-Liñeira, J. Percentiles and reference values for the Accelerometric assessment of static balance in women aged 50–80 years. Sensors 2020, 20, 940. [Google Scholar] [CrossRef] [Green Version]
- Aznar, S.; Lara, M.; Queralt, A.; Molina-García, J. Psychosocial and environmental correlates of sedentary behaviors in Spanish children. BioMed Res. Int. 2017, 2017, 4728924. [Google Scholar] [CrossRef] [PubMed]
- Shakir, R.N.; Coates, A.M.; Olds, T.; Rowlands, A.; Tsiros, M.D. Not all sedentary behaviour is equal: Children’s adiposity and sedentary behaviour volumes, patterns and types. Obes. Res. Clin. Pract. 2018, 12, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Theory and Practical Applications; Lippincott Williams & Wilkins: London, UK, 1995. [Google Scholar]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnath, H.O.; Ferber, S.; Dichgans, J. The neural representation of postural control in humans. Proc. Natl. Acad. Sci. USA 2000, 97, 13931–13936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.C.; Challis, J.H.; Bartok, C.; Costigan, F.A.; Newell, K.M. Obesity, mechanical and strength relationships to postural control in adolescence. Gait Posture 2012, 35, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Shams, A.; Vameghi, R.; Dehkordi, P.S.; Allafan, N.; Bayati, M. The development of postural control among children: Repeatability and normative data for computerized dynamic posturography system. Gait Posture 2020, 78, 40–47. [Google Scholar] [CrossRef]
- Rispens, S.M.; van Schooten, K.S.; Pijnappels, M.; Daffertshofer, A.; Beek, P.J.; van Dieën, J.H. Do extreme values of daily-life gait characteristics provide more information about fall risk than median values? JMIR Res. Protoc. 2015, 4, e4. [Google Scholar] [CrossRef]
- Freitas, D.L.; Lausen, B.; Maia, J.A.; Gouveia, É.R.; Antunes, A.M.; Thomis, M.; Lefevre, J.; Malina, R.M. Skeletal maturation, fundamental motor skills, and motor performance in preschool children. Scan. J. Med. Sci. Sports 2018, 28, 2358–2368. [Google Scholar] [CrossRef]
- Remer, J.; Croteau-Chonka, E.; Dean, D.C.; D’Arpino, S.; Dirks, H.; Whiley, D.; Deoni, S.C.L. Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage 2017, 153, 246–261. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics Publishers: Champaing, IL, USA, 2004. [Google Scholar]
- Plandowska, M.; Lichota, M.; Gorniak, K. Postural stability of 5-year-old girls and boys with different body heights. PLoS ONE 2019, 14, e0227119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, S.W.; Harrison, A.L. Aging of the somatosensory system: A translational perspective. Phys. Ther. 2007, 87, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaerlan, M.G.; Alpert, P.T.; Cross, C.; Louis, M.; Kowalski, S. Postural balance in young adults: The role of visual, vestibular and somatosensory systems. J. Am. Acad. Nurse Pract. 2012, 24, 375–381. [Google Scholar] [CrossRef]
- Martínez-Andrés, M.; Bartolomé-Gutiérrez, R.; Rodríguez-Martín, B.; Pardo-Guijarro, M.J.; Martínez-Vizcaíno, V. “Football is a boys’ game”: Children’s perceptions about barriers for physical activity during recess time. Int. J. Qual. Stud. Health Well Being 2017, 12, 1379338. [Google Scholar] [CrossRef] [Green Version]
- Kordi, H.; Sohrabi, M.; Saberi-Kakhki, A.; Attarzadeh-Hossini, S. The effect of strength training based on process approach intervention on balance of children with developmental coordination disorder. Arch. Argent. Pediatr. 2016, 114, 526–533. [Google Scholar] [CrossRef]
- Faulkner, J.A.; Larkin, L.M.; Claflin, D.R.; Brooks, S.V. Age--related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1091–1096. [Google Scholar] [CrossRef]
All (n = 118) | Girls (n = 54) | Boys (n = 64) | |
---|---|---|---|
Chronological age (years) | 10.6 ± 0.9 | 10.7 ± 0.9 | 10.5 ± 1 |
Maturational Tanner’s stage | 1.6 ± 0.6 | 1.3 ± 0.5 ** | 1.8 ± 0.7 ** |
Height (cm) | 143 ± 0.1 | 146 ± 0.1 | 142 ± 0.1 |
Weight (kg) | 40.1 ± 10.5 | 41.9 ± 11.1 | 38.5 ± 9.7 |
BMI (kg/m2) | 19.1 ± 3.6 | 19.4 ± 3.5 | 18.9 ±3.6 |
Physical activity practice (days) | 2.7 ± 0.9 | 2.3 ± 1.2 * | 2.8 ± 0.6 * |
Accelerometric variables | |||
Monopodal balance with eyes open (g) | |||
Vertical axis | 21.4 ± 27 | 13.4 ± 15.1 ** | 28.1 ± 32.5 ** |
Mediolateral axis | 31.3 ± 25.2 | 22.1 ± 16.8 *** | 39 ± 28.5 *** |
Anteroposterior axis | 29.7 ± 27.1 | 23.8 ± 23.4 * | 34.6 ± 29.2 * |
Root mean square | 47.8 ± 40.2 | 36.3 ± 29.9 ** | 57.5 ± 45.3 ** |
Monopodal balance with eyes closed (g) | |||
Vertical axis | 37.2 ± 32.5 | 26.8 ± 23.6 *** | 46 ± 36.5 *** |
Mediolateral axis | 50 ± 27.9 | 38.8 ± 21 *** | 59.4 ± 29.7 *** |
Anteroposterior axis | 41.9 ± 26.6 | 34.6 ± 23.8 ** | 48 ± 27.6 ** |
Root mean square | 72.1 ± 42.2 | 57.1 ± 32 *** | 84.8 ± 45.8 *** |
Monopodal balance on mat with eyes open (g) | |||
Vertical axis | 47.9 ± 44.8 | 33.3 ± 35.2 *** | 60.2 ± 48.6 *** |
Mediolateral axis | 52.4 ± 35.4 | 39.2 ± 27.4 *** | 63.6 ± 37.6 *** |
Anteroposterior axis | 42.4 ± 31.7 | 33 ± 26 ** | 50.2 ± 37.6 ** |
Root mean square | 80.9 ± 56.5 | 62.6 ± 46 *** | 96.3 ± 60.4 *** |
Normal gait (g) | |||
Vertical axis | 64.3 ± 22.2 | 61.6 ± 15.4 | 66.7 ± 26.5 |
Mediolateral axis | 59.3 ± 17.3 | 55.5 ± 15.3 * | 62.4 ± 17.8 * |
Anteroposterior axis | 54.1 ± 19.7 | 51.4 ± 12.4 | 56.5 ± 24.2 |
Root mean square | 92.5 ± 29.5 | 86.5 ± 20.1 * | 97.6 ± 34.9 * |
Age (years) | Boys Development Stage | Girls Development Stage | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
8 | 5 | - | - | 2 | - | - |
9 | 15 | 2 | - | 3 | 3 | - |
10 | 12 | 4 | - | 12 | 9 | 2 |
11 | 11 | 12 | - | 1 | 13 | 5 |
12 | 1 | 2 | - | - | 2 | 2 |
All | 44 | 20 | - | 18 | 27 | 9 |
Girls | Boys | All | ||||
---|---|---|---|---|---|---|
Active (n = 21) | Sedentary (n = 33) | Active (n = 39) | Sedentary (n = 25) | Active (n = 60) | Sedentary (n = 58) | |
Monopodal balance with eyes open (g) | ||||||
Vertical axis | 12.1 ± 16.4 | 14.1 ± 14.9 ### | 22.2 ± 29.1 | 37.3 ± 35.9 ### | 18.7 ± 25.7 | 24.1 ± 28.3 |
Mediolateral axis | 19.3 ± 17.1 && | 23.9 ± 16.3 ### | 35.5 ± 23.8 && | 44.6 ± 34.4 ### | 29.8 ± 22.9 | 32.8 ± 27.5 |
Anteroposterior axis | 21.9 ± 26.4 | 25 ± 21.3 # | 27.8 ± 21.9 | 45.3 ± 35.9 # | 25.7 ± 23.5 | 33.7 ± 30 |
Root mean square | 33.1 ± 34.8 | 38.2 ± 26.2 ## | 50.3 ± 39.1 | 68.7 ± 52.6 ## | 44.3 ± 38.2 | 51.4 ± 42.2 |
Monopodal balance with eyes closed (g) | ||||||
Vertical axis | 24 ± 19.7 & | 28.6 ± 25.6 ## | 41.9 ± 32.7 & | 52.5 ± 41.7 ## | 35.6 ± 29.9 | 38.9 ± 35.2 |
Mediolateral axis | 34.2 ± 23 & | 41.7 ± 19 ## | 59.6 ± 31.1 & | 59.1 ± 27.9 ## | 50.7 ± 30.9 | 49.2 ± 24.6 |
Anteroposterior axis | 31.8 ± 20 | 36.4 ± 25.8 # | 44.5 ± 27.8 | 53.4 ± 26.9 # | 40.1 ± 25.9 | 43.7 ± 27.4 |
Root mean square | 51.7 ± 30.3 & | 60.6 ± 32.6 ## | 82.1 ± 46.8 & | 89.1 ± 44.8 ## | 71.5 ± 44 | 72.9 ± 40.5 |
Monopodal balance on mat with eyes open (g) | ||||||
Vertical axis | 29.9 ± 33.2 & | 35.4 ± 36.3 ## | 56.4 ± 46.7 & | 66.2 ± 51.8 ## | 47.1 ± 44.1 | 48.7 ± 45.9 |
Mediolateral axis | 29.7 ± 23.6 **;&&& | 45.2 ± 28.3 **; # | 62.9 ± 34.8 &&& | 64.7 ± 42.3 # | 51.3 ± 35 | 53.6 ± 36 |
Anteroposterior axis | 24.1 ± 18.8 *;&&& | 38.7 ± 28.2 *; # | 46.6 ± 31.7 &&& | 55.9 ± 37.9 # | 38.7 ± 29.7 | 46.1 ± 33.5 |
Root mean square | 52 ± 40.1 && | 69.3 ± 48.2 ## | 91.7 ± 59.4 && | 103.5 ± 62.5 ## | 77.8 ± 56.4 | 84 ± 56.9 |
Normal gait (g) | ||||||
Vertical axis | 63.2 ± 14.4 | 60.5 ± 16.1 # | 61.9 ± 23.7 | 74.1 ± 29.3 # | 62.3 ± 20.8 | 66.4 ± 23.5 |
Mediolateral axis | 57.6 ± 16.7 | 54.3 ± 15.5 # | 61 ± 17.4 | 64.7 ± 18.6 # | 59.8 ± 17.1 | 58.8 ± 17.5 |
Anteroposterior axis | 51.4 ± 13.5 | 51.4 ± 11.6 | 52.6 ± 17.6 | 62.5 ± 31.4 | 52.2 ± 16.2 | 56.2 ± 22.8 |
Root mean square | 88.9 ± 20.1 | 84.9 ± 20.3 # | 91.4 ± 27.8 | 107.3 ± 42.5 # | 90.5 ± 25.2 | 94.5 ± 33.4 |
M. E. | O. R. | S. E. | 95% C. I. | |
---|---|---|---|---|
Monopodal balance with eyes open (g) | ||||
Vertical axis | −0.008 ** | 0.968 ** | 0.011 | 0.948–0.989 |
Mediolateral axis | −0.01 *** | 0.958 *** | 0.011 | 0.937–0.981 |
Anteroposterior axis | −0.005 * | 0.98 * | 0.009 | 0.962–0.997 |
Root mean square | −0.005 ** | 0.981 ** | 0.006 | 0.968–0.994 |
Monopodal balance with eyes closed (g) | ||||
Vertical axis | −0.005 ** | 0.977 ** | 0.007 | 0.962–0.991 |
Mediolateral axis | −0.01 *** | 0.965 *** | 0.009 | 0.946–0.983 |
Anteroposterior axis | −0.005 ** | 0.977 ** | 0.008 | 0.961–0.994 |
Root mean square | −0.005 *** | 0.979 *** | 0.006 | 0.968–0.991 |
Monopodal balance on mat with eyes open (g) | ||||
Vertical axis | −0.004 ** | 0.983 ** | 0.005 | 0.973–0.994 |
Mediolateral axis | −0.006 *** | 0.973 *** | 0.007 | 0.959–0.987 |
Anteroposterior axis | −0.006 ** | 0.977 ** | 0.007 | 0.961–0.992 |
Root mean square | −0.003 *** | 0.986 ** | 0.004 | 0.977–0.994 |
Normal gait (g) | ||||
Vertical axis | −0.002 | 0.988 | 0.008 | 0.971–1.005 |
Mediolateral axis | −0.005 | 0.977 | 0.011 | 0.954–1.001 |
Anteroposterior axis | −0.227 | 0.985 | 0.01 | 0.964–1.007 |
Root mean square | −0.004 | 0.985 | 0.007 | 0.971–1.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Soidán, J.L.; García-Liñeira, J.; Leirós-Rodríguez, R.; Soto-Rodríguez, A. Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related? J. Clin. Med. 2020, 9, 2919. https://doi.org/10.3390/jcm9092919
García-Soidán JL, García-Liñeira J, Leirós-Rodríguez R, Soto-Rodríguez A. Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related? Journal of Clinical Medicine. 2020; 9(9):2919. https://doi.org/10.3390/jcm9092919
Chicago/Turabian StyleGarcía-Soidán, Jose L., Jesús García-Liñeira, Raquel Leirós-Rodríguez, and Anxela Soto-Rodríguez. 2020. "Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related?" Journal of Clinical Medicine 9, no. 9: 2919. https://doi.org/10.3390/jcm9092919
APA StyleGarcía-Soidán, J. L., García-Liñeira, J., Leirós-Rodríguez, R., & Soto-Rodríguez, A. (2020). Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related? Journal of Clinical Medicine, 9(9), 2919. https://doi.org/10.3390/jcm9092919