The Role of Airways 17β-Estradiol as a Biomarker of Severity in Postmenopausal Asthma: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Menopausal Assessment
2.3. Atopic Status
2.4. Lung Function
2.5. Measurement of FENO
2.6. IS Collection and Processing
2.7. 17-β-estradiol (E2) Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Zein, J.G.; Denson, J.L.; Wechsler, M.E. Asthma over the Adult Life Course: Gender and Hormonal Influences. Clin. Chest Med. 2019, 40, 149–161. [Google Scholar] [CrossRef]
- Uemura, Y.; Liu, T.Y.; Narita, Y.; Suzuki, M.; Matsushita, S. 17β-Estradiol (E2) plus tumor necrosis factor-α induces a distorted maturation of human monocyte-derived dendritic cells and promotes their capacity to initiate T-helper 2 responses. Hum. Immunol. 2008, 69, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, M.; Narita, S.I.; Lambert, K.C.; Grady, J.J.; Estes, D.M.; Curran, E.M.; Brooks, E.G.; Watson, C.S.; Goldblum, R.M.; Midoro-Horiuti, T. Estradiol activates mast cells via a non-genomic estrogen receptor-α and calcium influx. Mol. Immunol. 2007, 44, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonds, R.S.; Midoro-Horiuti, T. Estrogen effects in allergy and asthma. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Cephus, J.Y.; Stier, M.T.; Fuseini, H.; Yung, J.A.; Toki, S.; Bloodworth, M.H.; Zhou, W.; Goleniewska, K.; Zhang, J.; Garon, S.L.; et al. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation. Cell Rep. 2017, 21, 2487–2499. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.P.; Domingos, H.V.; Cavriani, G.; Damazo, A.S.; dos Santos Franco, A.L.; Oliani, S.M.; Oliveira-Filho, R.M.; Vargaftig, B.B.; de Lima, W.T. Cellular recruitment and cytokine generation in a rat model of allergic lung inflammation are differentially modulated by progesterone and estradiol. Am. J. Physiol. Cell Physiol. 2007, 293, C1120–C1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, A.; Morrish, D.; Wadsworth, S.; Dorscheid, D.; Man, S.P.; Sin, D.D. The role of female hormones on lung function in chronic lung diseases. BMC Womens Health 2011, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcomb, D.C.; Cephus, J.Y.; Boswell, M.G.; Fahrenholz, J.M.; Langley, E.W.; Feldman, A.S.; Zhou, W.; Dulek, D.E.; Goleniewska, K.; Woodward, K.B.; et al. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma. J. Allergy Clin. Immunol. 2015, 136, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Balzano, G.; Fuschillo, S.; De Angelis, E.; Gaudiosi, C.; Mancini, A.; Caputi, M. Persistent airway inflammation and high exacerbation rate in asthma that starts at menopause. Monaldi Arch. Chest Dis = Arch. Monaldi per le Mal del Torace 2007, 67, 135–141. [Google Scholar] [CrossRef]
- Foschino Barbaro, M.P.; Costa, V.R.; Resta, O.; Prato, R.; Spanevello, A.; Palladino, G.P.; Martinelli, D.; Carpagnano, G.E. Menopausal asthma: A new biological phenotype? Allergy 2010, 65, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Baldaçara, R.P.; Silva, I. Association between asthma and female sex hormones. Sao Paulo Med. J. 2017, 135, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ronde, W.; Van Der Schouw, Y.T.; Muller, M.; Grobbee, D.E.; Gooren, L.J.; Pols, H.A.; De Jong, F.H. Associations of Sex-Hormone-Binding Globulin (SHBG) with Non-SHBG-Bound Levels of Testosterone and Estradiol in Independently Living Men. J. Clin. Endocrinol. Metab. 2005, 90, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Strategy for Asthma Management and Prevention. Available online: www.ginasthma.org (accessed on 16 February 2020).
- Heinzerling, L.; Mari, A.; Bergmann, K.C.; Bresciani, M.; Burbach, G.; Darsow, U.; Durham, S.; Fokkens, W.; Gjomarkaj, M.; Haahtela, T.; et al. The skin prick test—European standards. Clin. Transl. Allergy 2013, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Hankinson, J.A.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef] [PubMed]
- Toungoussova, O.; Migliori, G.B.; Barbaro, M.P.; Esposito, L.M.; Dragonieri, S.; Carpagnano, G.E.; Salerno, F.G.; Neri, M.; Spanevello, A. Changes in sputum composition during 15 min of sputum induction in healthy subjects and patients with asthma and chronic obstructive pulmonary disease. Respir. Med. 2007, 101, 1543–1548. [Google Scholar] [CrossRef] [Green Version]
- Assaggaf, H.; Felty, Q. Gender, Estrogen, and Obliterative Lesions in the Lung. Int. J. Endocrinol. 2017, 2017, 8475701. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Endocrine regulation of lung disease and inflammation. Exp. Biol. Med. (Maywood) 2018, 243, 1313–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Torre, F.; Cassani, L.; Segale, M. Asma ed orticaria nell’anziano: Ruolo degli ormoni ipofiso-gonadici in menopausa. Rass. Geriatr. 1988, 24, 165–171. [Google Scholar]
- Jiang, Y.; Zhou, Z.; Ji, Y. Experimental immunology Effects of the recombinant allergen rDer f 2 on neuro-endocrino-immune network in asthmatic mice. Cent. Eur. J. Immunol. 2014, 3, 294–298. [Google Scholar] [CrossRef]
- Mendel, C.M. The free hormone hypothesis. Distinction from the free hormone transport hypothesis. J. Androl. 1992, 13, 107–116. [Google Scholar]
- Bhowmik, A.; Seemungal, T.A.R.; Sapsford, R.J.; Devalia, J.L.; Wedzicha, J.A. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. Thorax 1998, 53, 953–956. [Google Scholar] [CrossRef] [Green Version]
- Newcomb, D.C.; Peebles, R.S. Th17-mediated inflammation in asthma. Curr. Opin. Immunol. 2013, 25, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, M.; Aoyama, H.; Morishita, M.; Iwamoto, Y. Effects of Sex Hormones on Chemotaxis of Human Peripheral Polymorphonuclear Leukocytes and Monocytes. J. Periodontol. 1992, 63, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, T.; Shimizu, I.; Cheng, X.; Yuan, Y.; Oshio, A.; Tamaki, K.; Fukuno, H.; Honda, H.; Okamura, Y.; Ito, S. Opposing effects of oestradiol and progesterone on intracellular pathways and activation processes in the oxidative stress induced activation of cultured rat hepatic stellate cells. Gut 2005, 54, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.P.; Bolin, A.P.; de Cassia Macedo dos Santos, R.; Curi, R.; Otton, R. Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem. Funct. 2010, 28, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Sulli, A.; Capellino, S.; Villaggio, B.; Montagna, P.; Seriolo, B.; Straub, R.H. Sex hormones influence on the immune system: Basic and clinical aspects in autoimmunity. Lupus 2004, 13, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.; Antó, J.M.; Barreiro, E.; Bel, E.H.; Bonsignore, G.; Bousquet, J.; Castellsague, J.; Chanez, P.; Cibella, F.; Cuttitta, G.; et al. The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. Eur. Respir. J. 2003, 22, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Quek, Y.W.; Sun, H.L.; Ng, Y.Y.; Lee, H.S.; Yang, S.F.; Ku, M.S.; Lu, K.H.; Sheu, J.N.; Lue, K.H. Associations of Serum Leptin with Atopic Asthma and Allergic Rhinitis in Children. Am. J. Rhinol. Allergy 2010, 24, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Beuther, D.A.; Sutherland, E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007, 175, 661–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Xiao, L. Association of general and central obesity and atopic and nonatopic asthma in US adults. J. Asthma 2013, 50, 395–402. [Google Scholar] [CrossRef] [PubMed]
Number of Patients | HS 30 | MMA 15 | SA 18 |
---|---|---|---|
Demographic and clinical characteristics | |||
Age, years (mean ± SD) | 62 ± 5.45 | 55 ± 18 | 58 ± 11 |
BMI, Kg/m2, (mean ± SD) | 27 ± 5 | 26 ± 5 | 28 ± 5 |
Age of onset, years (mean ± SD) | 45 ± 8 | 40 ± 15 | |
Postmenopausal status (%) | 25 (83%) | 12 (80%) | 14 (78%) |
Surgical menopause (%) | 5 (17%) | 3 (20%) | 4 (22%) |
Exacerbations/year, (mean ± SD) | 1 ± 1 * | 3 ± 1 * | |
Atopy (SPT+), n (%) | 0 (0%) | 5 (33.3%) | 7 (38.8%) |
Aspirin-sensitivity, n (%) | 8 (53.3%) | 10 (55.5%) | |
ICS low to medium dose, n (%) | 12 (80%) | 0 | |
ICS high dose/LABA, n (%) | 3 (20%) * | 7 (38.8%) * | |
ICS high dose/LABA/TIOTROPIUM, n (%) | 0 | 11 (61.1%) | |
OCS, n (%) | 0 | 10 (55.5%) | |
ACT | 19 ± 3 * | 14 ± 4 * | |
ACQ | 1 ± 0.7 * | 3 ± 2 * | |
Lung function | |||
FEV1 preBD, % predicted | 85 ± 5 †,¥ | 78 ± 14 *,¥ | 67 ± 19 †,* |
FEV1/FVC preBD, % | 82 ± 12 †,¥ | 68 ± 10 ¥ | 62 ± 12 † |
Reversibility, % | 5 ± 4.5 †,¥ | 13 ± 9 ¥ | 11 ± 6 † |
TLC, % predicted | 104 ± 13 | 98 ± 14 | 96 ± 14 |
RV, % predicted | 89 ± 20 | 97 ± 25 | 110 ± 26 |
Biomarkers | |||
FENO50, ppb | 15 ± 6 †,¥ | 22 ± 28 ¥ | 25 ± 21† |
Blood eosinophil count, cells/mL | 0.05 ± 0.22 †,¥ | 0.21 ± 0.24 ¥ | 0.25 ± 0.25 † |
Blood neutrophil level, cells/mL | 2.2 ± 1.7 † | 2.7 ± 1.4 * | 5.6 ± 2.7 †,* |
Eosinophil IS count, % total cells | 1 ± 1 †,¥ | 2 ± 2 ¥ | 3 ± 2 † |
Neutrophil IS level, % total cells | 38 ± 18 † | 37 ± 12 * | 68 ± 15 †,* |
Serum 17β-estradiol, pg/mL | 7.79 ± 1.54 †,¥ | 24 ± 6.63 *,¥ | 33 ± 5.5 †,* |
SEI 17β-estradiol, pg/mL | 0.07 ± 0.06 †,¥ | 0.26 ± 0.13 *,¥ | 0.34 ± 0.17 †,* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scioscia, G.; Carpagnano, G.E.; Lacedonia, D.; Soccio, P.; Quarato, C.M.I.; Trabace, L.; Fuso, P.; Foschino Barbaro, M.P. The Role of Airways 17β-Estradiol as a Biomarker of Severity in Postmenopausal Asthma: A Pilot Study. J. Clin. Med. 2020, 9, 2037. https://doi.org/10.3390/jcm9072037
Scioscia G, Carpagnano GE, Lacedonia D, Soccio P, Quarato CMI, Trabace L, Fuso P, Foschino Barbaro MP. The Role of Airways 17β-Estradiol as a Biomarker of Severity in Postmenopausal Asthma: A Pilot Study. Journal of Clinical Medicine. 2020; 9(7):2037. https://doi.org/10.3390/jcm9072037
Chicago/Turabian StyleScioscia, Giulia, Giovanna Elisiana Carpagnano, Donato Lacedonia, Piera Soccio, Carla Maria Irene Quarato, Luigia Trabace, Paolo Fuso, and Maria Pia Foschino Barbaro. 2020. "The Role of Airways 17β-Estradiol as a Biomarker of Severity in Postmenopausal Asthma: A Pilot Study" Journal of Clinical Medicine 9, no. 7: 2037. https://doi.org/10.3390/jcm9072037