Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thyroid Uptake of 99mTcO4− in Humans
2.2. Animals
2.3. Small-Animal MicroSPECT/CT Scans
2.4. Metabolites Extraction and Iodide Quantification
2.5. Protein Extraction
2.6. Tandem Mass Tag (TMT) Labelling
2.7. Peptide Fractionation and LC-MS/MS Analysis
2.8. Protein Identification and Quantification
2.9. Bioinformatics Analysis
2.10. Statistical Analysis
3. Results
3.1. Effect of ICM on Thyroid 99mpertechnetate Uptake in Humans
3.2. Effect of ICM and NaI on 99mpertechnetate Uptake in Mice
3.3. Measurement of Iodide in Thyroids From Mice Treated with ICM or NaI
3.4. Quantitative Proteomic Analysis of Thyroids From Mice Treated With ICM or NaI
3.5. Altered Pathways
3.6. Commonly Modulated Pathways
3.7. Focus on the TSH Receptor
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hingorani, M.; Spitzweg, C.; Vassaux, G.; Newbold, K.; Melcher, A.; Pandha, H.; Vile, R.; Harrington, K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr. Cancer Drug Targets 2010, 10, 242–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayem, M.; Navarro, V.; Marsault, R.; Darcourt, J.; Lindenthal, S.; Pourcher, T. From the molecular characterization of iodide transporters to the prevention of radioactive iodide exposure. Biochimie 2006, 88, 1793–1806. [Google Scholar] [CrossRef] [PubMed]
- Rosati, G. Clinical pharmacology of iomeprol. Eur. J. Radiol. 1994, 18 (Suppl. 1), S51–S60. [Google Scholar] [CrossRef]
- Zuckier, L.S.; Dohan, O.; Li, Y.; Chang, C.J.; Carrasco, N.; Dadachova, E.; Dohan, O. Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J. Nucl. Med. 2004, 45, 500–507. [Google Scholar] [PubMed]
- Zwarthoed, C.; Chatti, K.; Guglielmi, J.; Hichri, M.; Compin, C.; Darcourt, J.; Vassaux, G.; Benisvy, D.; Pourcher, T.; Cambien, B. Single-Photon Emission Computed Tomography for Preclinical Assessment of Thyroid Radioiodide Uptake Following Various Combinations of Preparative Measures. Thyroid 2016, 26, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Grayson, R.R. Factors which influence the radioactive iodine thyroidal uptake test. Am. J. Med. 1960, 28, 397–415. [Google Scholar] [CrossRef]
- Rogers, W.R.; Robbins, L.R. Iodipamide (cholografin) administration; its effect on the thyroid uptake of I131 and the serum precipitable iodine in euthyroid persons. N. Engl. J. Med. 1955, 253, 424–425. [Google Scholar] [CrossRef]
- Slingerland, D.W. Effects of an organic iodine compound (priodax) on tests of thyroid function. J. Clin. Endocrinol. Metab. 1957, 17, 82–93. [Google Scholar] [CrossRef]
- Van der Molen, A.J.; Thomsen, H.S.; Morcos, S.K.; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). Effect of iodinated contrast media on thyroid function in adults. Eur. Radiol. 2004, 14, 902–907. [Google Scholar]
- Jaffiol, C.; Baldet, L.; Bada, M.; Vierne, Y. The influence on thyroid function of two iodine-containing radiological contrast media. Br. J. Radiol. 1982, 55, 263–265. [Google Scholar] [CrossRef]
- Pacini, F.; Schlumberger, M.; Dralle, H.; Elisei, R.; A Smit, J.W.; Wiersinga, W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 2006, 154, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.; Tennvall, J.; Bombardieri, E.; European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-D.; Shaw, S.M. Potential interference of agents on radioiodide thyroid uptake in the euthyroid rat. J. Nucl. Med. 2003, 44, 832–838. [Google Scholar] [PubMed]
- Lee, W.R.; Pease, A.P.; Berry, C.R. The effects of iohexol administration on technetium thyroid scintigraphy in normal cats. Vet. Radiol. Ultrasound 2010, 51, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Vassaux, G.; Zwarthoed, C.; Signetti, L.; Guglielmi, J.; Compin, C.; Guigonis, J.M.; Juhel, T.; Humbert, O.; Benisvy, D.; Pourcher, T.; et al. Iodinated Contrast Agents Perturb Iodide Uptake by the Thyroid Independently of Free Iodide. J. Nucl. Med. 2018, 59, 121–126. [Google Scholar] [CrossRef]
- Laurie, A.J.; Lyon, S.G.; Lasser, E.C. Contrast material iodides: Potential effects on radioactive iodine thyroid uptake. J. Nucl. Med. 1992, 33, 237–238. [Google Scholar]
- Talner, L.B.; Coel, M.N.; Lang, J.H. Salivary secretion of iodine after urography. Further evidence for in vivo deiodination and salivary secretion of contrast media. Radiology 1973, 106, 263–268. [Google Scholar] [CrossRef]
- Padovani, R.P.; Kasamatsu, T.S.; Nakabashi, C.C.; Camacho, C.P.; Andreoni, D.M.; Malouf, E.Z.; Marone, M.M.; Maciel, R.M.; Biscolla, R.P.M. One Month Is Sufficient for Urinary Iodine to Return to Its Baseline Value After the Use of Water-Soluble Iodinated Contrast Agents in Post-Thyroidectomy Patients Requiring Radioiodine Therapy. Thyroid 2012, 22, 926–930. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chang, D.L.; He, X.; Pearce, E.N.; Braverman, L.E.; Leung, A.M. Urinary Iodine Excretion and Serum Thyroid Function in Adults After Iodinated Contrast Administration. Thyroid 2015, 25, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.Y.; Choi, J.H.; Kim, N.K.; Joung, J.Y.; Cho, Y.Y.; Park, S.M.; Kim, T.H.; Jin, S.M.; Bae, J.C.; Lee, S.Y.; et al. The Impact of Iodinated Contrast Agent Administered During Preoperative Computed Tomography Scan on Body Iodine Pool in Patients with Differentiated Thyroid Cancer Preparing for Radioactive Iodine Treatment. Thyroid 2014, 24, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Pradhan, P.K.; Gambhir, S.; Sabaretnam, M.; Gupta, A.; Babu, S. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J. Surg. Res. 2015, 193, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Rhee, C.M.; Leung, A.M.; Braverman, L.E.; Brent, G.A.; Pearce, E.N. A review: Radiographic iodinated contrast media-induced thyroid dysfunction. J. Clin. Endocrinol Metab. 2015, 100, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornelius, E.; Chiou, J.-Y.; Yang, Y.-S.; Peng, C.-H.; Lai, Y.-R.; Huang, C.-N. Iodinated Contrast Media Increased the Risk of Thyroid Dysfunction: A 6-year Retrospective Cohort Study. J. Clin. Endocrinol. Metab. 2015, 100, 3372–3379. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, J.D.; Paulo, J.A.; O’Brien, J.J.; Gygi, S.P. Proteome-Wide Evaluation of Two Common Protein Quantification Methods. J. Proteome Res. 2018, 17, 1934–1942. [Google Scholar] [CrossRef]
- Li, Z.; Adams, R.M.; Chourey, K.; Hurst, G.B.; Hettich, R.L.; Pan, C. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos. J. Proteome Res. 2012, 11, 1582–1590. [Google Scholar] [CrossRef]
- Colzani, R.M.; Alex, S.; Fang, S.-L.; Braverman, L.E.; Emerson, C.H. The Effect of Recombinant Human Thyrotropin (rhTSH) on Thyroid Function in Mice and Rats. Thyroid 1998, 8, 797–801. [Google Scholar] [CrossRef]
- Cambien, B.; Franken, P.R.; Lamit, A.; Mauxion, T.; Richard-Fiardo, P.; Guglielmi, J.; Crescence, L.; Mari, B.; Pourcher, T.; Darcourt, J.; et al. 99mTcO4−-, auger-mediated thyroid stunning: Dosimetric requirements and associated molecular events. PLoS ONE 2014, 9, e92729. [Google Scholar] [CrossRef]
- Loening, A.M.; Gambhir, S.S. AMIDE: A free software tool for multimodality medical image analysis. Mol. Imaging 2003, 2, 131–137. [Google Scholar] [CrossRef]
- Richard-Fiardo, P.; Hervouet, C.; Marsault, R.; Franken, P.R.; Cambien, B.; Guglielmi, J.; Warnez-Soulie, J.; Darcourt, J.; Pourcher, T.; Colombani, T.; et al. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer. Biomaterials 2015, 45, 10–17. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [PubMed]
- Schaffhauser, K.; Hanscheid, H.; Rendl, J.; Grelle, I.; Reiners, C. Intrathyroidal iodine concentration after application of non-ionic contrast media with and without prophylactic application of perchlorate. Nuklearmedizin 2005, 44, 143–148. [Google Scholar] [CrossRef] [PubMed]
- De Souza, E.C.L.; Padrón Álvaro, S.; Braga, W.M.O.; De Andrade, B.M.; Vaisman, M.; Nasciutti, L.E.; Ferreira, A.C.F.; De Carvalho, D.P. MTOR downregulates iodide uptake in thyrocytes. J. Endocrinol. 2010, 206, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Nascimento, C.; Teixeira, S.D.S.; Nicola, J.P.; Nachbar, R.T.; Masini-Repiso, A.M.; Nunes, M.T. The Acute Inhibitory Effect of Iodide Excess on Sodium/Iodide Symporter Expression and Activity Involves the PI3K/Akt Signaling Pathway. Endocrinology 2014, 155, 1145–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, B.; Santisteban, P. PI3K is involved in the IGF-I inhibition of TSH-induced sodium/iodide symporter gene expression. Mol. Endocrinol. 2002, 16, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaballos, M.A.; Garcia, B.; Santisteban, P. Gbetagamma dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells. Mol. Endocrinol. 2008, 22, 1183–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogai, T.; Sajid-Crockett, S.; Newmarch, L.S.; Liu, Y.Y.; Brent, G.A. Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. J. Endocrinol. 2008, 199, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Resende, M.; Corbo, R.; Vaisman, M. The effect of recombinant human TSH on 123I thyroid uptake after intravenous iodide contrast agent. Nucl. Med. Commun. 2010, 31, 315–319. [Google Scholar] [CrossRef]
- Mariani, G.; Ferdeghini, M.; Augeri, C.; Villa, G.; Taddei, G.Z.; Scopinarô, G.; Boni, G.; Bodei, L.; Rabitti, C.; Molinari, E.; et al. Clinical Experience with Recombinant Human Thyrotrophin (rhTSH) in the Management of Patients with Differentiated Thyroid Cancer. Cancer Biotherapy Radiopharm. 2000, 15, 211–217. [Google Scholar] [CrossRef]
- Levy, O.; Dai, G.; Riedel, C.; Ginter, C.S.; Paul, E.M.; Lebowitz, A.N.; Carrasco, N. Characterization of the thyroid Na+/I- symporter with an anti-COOH terminus antibody. Proc. Natl. Acad. Sci. USA 1997, 94, 5568–5573. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Xu, W.; Hong, M.; Pan, Z.; Sinko, P.J.; Ma, J.; You, G. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Mol. Pharm. 2005, 67, 868–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadysirisack, U.D.; Chen, E.S.-W.; Zhang, Z.; Jhiang, S.M.; Tsai, M.-D.; Chang, G.-D. Identification of in Vivo Phosphorylation Sites and Their Functional Significance in the Sodium Iodide Symporter. J. Biol. Chem. 2007, 282, 36820–36828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darrouzet, E.; Graslin, F.; Marcellin, D.; Tcheremisinova, I.; Marchetti, C.; Salleron, L.; Pognonec, P.; Pourcher, T. A systematic evaluation of sorting motifs in the sodium–iodide symporter (NIS). Biochem. J. 2016, 473, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.E.; Read, M.L.; Turnell, A.S.; Watkins, R.J.; Watkinson, J.C.; Lewy, G.D.; Fong, J.C.W.; James, S.R.; Eggo, M.C.; Boelaert, K.; et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J. Cell Sci. 2009, 122, 3393–3402. [Google Scholar] [CrossRef] [Green Version]
- Kogai, T.; Endo, T.; Saito, T.; Miyazaki, A.; Kawaguchi, A.; Onaya, T. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 1997, 138, 2227–2232. [Google Scholar] [CrossRef]
- Riedel, C.; Levy, O.; Carrasco, N. Post-transcriptional Regulation of the Sodium/Iodide Symporter by Thyrotropin. J. Biol. Chem. 2001, 276, 21458–21463. [Google Scholar] [CrossRef] [Green Version]
- Eng, P.; Cardona, G.; Previti, M.; Chin, W.; Braverman, L.; Braverman, L. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. Eur. J. Endocrinol. 2001, 144, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Dohan, O.; Baloch, Z.; Banrevi, Z.; Livolsi, V.; Carrasco, N. Rapid communication: Predominant intracellular overexpression of the Na+/I− symporter (NIS) in a large sampling of thyroid cancer cases. J. Clin. Endocrinol. Metab. 2001, 86, 2697–2700. [Google Scholar] [CrossRef]
- Wapnir, I.L.; Van De Rijn, M.; Nowels, K.; Amenta, P.S.; Walton, K.; Montgomery, K.; Greco, R.S.; Dohán, O.; Carrasco, N. Immunohistochemical Profile of the Sodium/Iodide Symporter in Thyroid, Breast, and Other Carcinomas Using High Density Tissue Microarrays and Conventional Sections. J. Clin. Endocrinol. Metab. 2003, 88, 1880–1888. [Google Scholar] [CrossRef] [Green Version]
- Ab Knostman, K.; A McCubrey, J.; Morrison, C.D.; Zhang, Z.; Capen, C.C.; Jhiang, S.M. PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer. BMC Cancer 2007, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Benderitter, M.; Pourcher, T.; Martin, J.C.; Darcourt, J.; Guigon, P.; Caire-Maurisier, F.; Pech, A.; Lebsir, D.; Rosique, C.; Guglielmi, J.; et al. Do Multiple Administrations of Stable Iodine Protect Population Chronically Exposed to Radioactive Iodine: What Is Priodac Research Program (2014-22) Teaching Us? Radiat Prot. Dosim. 2018, 182, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Phan, G.; Chioukh, R.; Suhard, D.; Legrand, A.; Moulin, C.; Sontag, T.; Rebière, F.; Bouvier-Capely, C.; Agarande, M.; Renaud-Salis, V.; et al. Repeated KI Prophylaxis in Case of Prolonged Exposure to Iodine Radioisotopes: Pharmacokinetic Studies in Adult Rats. Pharm. Res. 2018, 35, 227. [Google Scholar] [CrossRef] [PubMed]
- Frequently Asked Questions on Potassium Iodide (KI). Available online: http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm072265.htm (accessed on 21 January 2020).
- Kinoshita, N.; Sueki, K.; Sasa, K.; Kitagawa, J.-I.; Ikarashi, S.; Nishimura, T.; Wong, Y.-S.; Satou, Y.; Handa, K.; Takahashi, T.; et al. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci. USA 2011, 108, 19526–19529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skovgaard, N.; Jensen, E.R.; Jakobsen, K.P. Iopromide versus diatrizoate. A comparative study of adverse reactions. Acta Radiol. 1990, 31, 537–538. [Google Scholar] [CrossRef]
- Faykus, M.H., Jr.; Cope, C.; Athanasoulis, C.; Druy, E.M.; Hedgcock, M.; Miller, F.J.; Bron, K. Double-Blind Study of the Safety, Tolerance, and Diagnostic Efficacy of Iopromide as Compared with Iopamidol and Iohexol in Patients Requiring Aortography and Visceral Angiography. Investig. Radiol. 1994, 29 (Suppl. 1), S98–S101. [Google Scholar] [CrossRef]
- Hoogewoud, H.M.; Woessmer, B. Iobitridol 300 compared to iopromide 300—A double-blind randomized phase-III study of clinical tolerance in total body CT. Acta Radiol. Suppl. 1996, 400, 62–64. [Google Scholar]
- Barrett, B.J.; Parfrey, P.S.; Vavasour, H.M.; O’Dea, F.; Kent, G.; Stone, E. A Comparison of Nonionic, Low-Osmolality Radiocontrast Agents with Ionic, High-Osmolality Agents during Cardiac Catheterization. N. Engl. J. Med. 1992, 326, 431–436. [Google Scholar] [CrossRef]
- Schmiedel, E. Tolerability of nonionic contrast media—Results of a multicenter double blind study. Aktuel. Radiol. 1992, 2, 148–152. [Google Scholar]
- Harding, J.; Bertazzoli, M.; Spinazzi, A. A randomised, double-blind trial of iomeprol and iopromide in intravenous excretory urography. Eur. J. Radiol. 1994, 18 (Suppl. 1), S93–S96. [Google Scholar] [CrossRef]
- De Geeter, P.; Melchior, H. Iomeprol versus iopromide for intravenous urography. Br. J. Radiol. 1994, 67, 958–963. [Google Scholar] [CrossRef]
- Hunter, T.B.; Dye, J.; Duval, J.F. Selective use of low-osmolality contrast agents for i.v. urography and CT: Safety and effect on cost. Am. J. Roentgenol. 1994, 163, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Encina, J.L.; Marti-Bonmati, L.; Ronchera-Oms, C.L.; Rodriguez, V. Iopentol (Imagopaque® 300) compared with iopromide (Ultravist® 300) in abdominal CT A multi-centre monitoring trial assessing adverse events and diagnostic information—Results from 518 patients in Spain. Eur. Radiol. 1997, 7 (Suppl. 4), S115–S119. [Google Scholar] [CrossRef]
Accession | Description | Gene | Abundance Ratio NaI vs. CTRL | p-Value |
---|---|---|---|---|
A1YYN9 | Fibroblast growth factor receptor | Fgfr2 | 1.44 | 0.02 |
P02535 | Keratin, type I cytoskeletal 10 | Krt10 | 1.32 | 0.01 |
P55264 | Adenosine kinase | Adk | 1.32 | 0.05 |
Q3KQJ3 | H2-D1 protein (Fragment) | H2-D1 | 1.31 | 0.02 |
G3UXX7 | N6-adenosine-methyltransferase subunit METTL3 (Fragment) | Mettl3 | 1.30 | 0.04 |
D3Z722 | 40S ribosomal protein S19 | Rps19 | 1.29 | 0.01 |
Q64378 | Peptidyl-prolyl cis-trans isomerase FKBP5 | Fkbp5 | 0.59 | 0.02 |
Q8VCW2 | Keratin, type I cytoskeletal 25 | Krt25 | 0.51 | 0.04 |
A0A0G2JDV3 | Guanylate-binding protein 6 | Gbp6 | 0.49 | 0.01 |
F7C2Y9 | Zinc finger CCCH-type with G patch domain-containing protein (Fragment) | Zgpat | 0.35 | 0.01 |
Accession | Description | Gene | Abundance Ratio ICM vs. CTRL | p-Value |
---|---|---|---|---|
Q3KQJ3 | H2-D1 protein (Fragment) | H2-D1 | 1.75 | 0.05 |
H3BJB6 | T-complex protein 1 subunit theta (Fragment) | Cct8 | 1.73 | 0.03 |
Q8CGR9 | NDR2 (Fragment) | Ndr2 | 1.47 | 0.04 |
P13707 | Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic | Gpd1 | 1.46 | 0.04 |
P21550 | Beta-enolase | Eno3 | 1.46 | 0.04 |
Q3UD06 | ATP synthase subunit gamma | Atp5c1 | 0.48 | 0.05 |
G3UWS4 | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform | Ppp2r1b | 0.45 | 0.03 |
O88456 | Calpain small subunit 1 | Capns1 | 0.43 | 0.02 |
Q8CG71 | Prolyl 3-hydroxylase 2 | P3h2 | 0.37 | 0.03 |
Q3UHW5 | Uncharacterized protein | Rab8a | 0.33 | 0.03 |
-LOG(p Value) | Z Score | |||||||
---|---|---|---|---|---|---|---|---|
Canonical Pathway | (NaI) vs. (CTRL) | (ICA) vs. (CTRL) | (ICA) vs. (NaI) | (NaI) vs. (CTRL) | (ICA) vs. (CTRL) | (ICA) vs. (NaI) | NaI Proteins | ICA Proteins |
Actin Cytoskeleton Signaling | 4.291 | 2.503 | 1.423 | 1 | 0.377 | N/A | ITGB1,FLNA,FGFR2,MYLK,MYH7,ACTN4,NCKAP1 | ITGB1,ACTR3,PTPN11,Actn3,MYH7,GSN,ACTG1 |
Clathrin-mediated Endocytosis Signaling | 4.695 | 2.860 | 1.583 | N/A | N/A | N/A | ITGB1,PICALM,FGFR2,SERPINA1,UBC,CTTN,AP1G1 | ITGB1,HSPA8,ACTR3,PTPN11,UBC,ACTG1,AP1G1 |
CTLA4 Signaling in Cytotoxic T Lymphocytes | 2.140 | 2.113 | 0.583 | N/A | N/A | N/A | HLA-A,FGFR2,AP1G1 | PTPN11,HLA-A,PPP2R1B,AP1G1 |
EIF2 Signaling | 2.718 | 3.432 | 0.835 | N/A | N/A | N/A | RPL27,PABPC1,RPS19,EIF5,FGFR2 | PABPC1,RPS7,PTBP1,EIF3B,PTPN11,EIF2S3,EIF3E,RPS3 |
ILK Signaling | 3.785 | 2.250 | 0.331 | 0 | 0.816 | N/A | ITGB1,FLNA,FERMT2,FGFR2,MYH7,ACTN4 | ITGB1,PTPN11,Actn3,MYH7,PPP2R1B,ACTG1 |
Integrin Signaling | 3.537 | 3.359 | 1.497 | 2.449 | 1.133 | N/A | ITGB1,FGFR2,CAPN2,MYLK,ACTN4,CTTN | ITGB1,CAPNS1,ACTR3,PTPN11,CAPN1,Actn3,GSN,ACTG1 |
Regulation of Cellular Mechanics by Calpain Protease | 2.593 | 2.692 | 0.725 | N/A | N/A | N/A | ITGB1,CAPN2,ACTN4 | ITGB1,CAPNS1,CAPN1,Actn3 |
Regulation of eIF4 and p70S6K Signaling | 2.381 | 5.238 | 0.404 | N/A | N/A | N/A | PABPC1,ITGB1,RPS19,FGFR2 | PABPC1,RPS7,ITGB1,EIF3B,PTPN11,EIF2S3,EIF3E,RPS3,PPP2R1B |
Virus Entry via Endocytic Pathways | 3.907 | 2.563 | 1.276 | N/A | N/A | N/A | ITGB1,FLNA,HLA-A,FGFR2,AP1G1 | ITGB1,PTPN11,HLA-A,ACTG1,AP1G1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hichri, M.; Vassaux, G.; Guigonis, J.-M.; Juhel, T.; Graslin, F.; Guglielmi, J.; Pourcher, T.; Cambien, B. Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake. J. Clin. Med. 2020, 9, 329. https://doi.org/10.3390/jcm9020329
Hichri M, Vassaux G, Guigonis J-M, Juhel T, Graslin F, Guglielmi J, Pourcher T, Cambien B. Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake. Journal of Clinical Medicine. 2020; 9(2):329. https://doi.org/10.3390/jcm9020329
Chicago/Turabian StyleHichri, Maha, Georges Vassaux, Jean-Marie Guigonis, Thierry Juhel, Fanny Graslin, Julien Guglielmi, Thierry Pourcher, and Béatrice Cambien. 2020. "Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake" Journal of Clinical Medicine 9, no. 2: 329. https://doi.org/10.3390/jcm9020329
APA StyleHichri, M., Vassaux, G., Guigonis, J.-M., Juhel, T., Graslin, F., Guglielmi, J., Pourcher, T., & Cambien, B. (2020). Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake. Journal of Clinical Medicine, 9(2), 329. https://doi.org/10.3390/jcm9020329