Imaging and Imaging-Based Management of Pediatric Thyroid Nodules
Abstract
1. Introduction—Definitions
2. Epidemiology
3. Risk Factors for Thyroid Nodules and Factors Indicative of Higher Malignancy Risk
4. Initial Evaluation
5. Ultrasonography (US)
6. US Elastography
7. Fine-Needle Aspiration Biopsy (FNAB)
8. 123Ι/131Ι/99mTc Thyroid Scintigraphy
9. PET/CT
10. 99mTc-sestamibi (MIBI) Scan
11. CT and MRI
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
18F-FDG-PET | 18F fludeoxyglucose Positron Emission Tomography |
ATA | American Thyroid Association |
AUS/FLUS | Atypia or follicular lesion of undetermined significance |
CT | Calsitonin |
CNS | Central Nervous System |
CT | Computed Tomography |
DTC | Differentiated Thyroid Cancer |
EANM | European Association of Nuclear Medicine |
FNAB | Fine Needle Aspiration Biopsy |
FN/SFN | Follicular/Hürthle neoplasm or suspicious for follicular/Hürthle neoplasm |
GEC | Gene Expression Classifier |
GLs | Guidelines |
HT | Hashimoto Thyroiditis |
MTC | Medullary Thyroid Cancer |
MRI | Magnetic Resonance Imaging |
MTC | Medullary thyroid carcinoma |
MPUS | Multiparametric neck ultrasonography |
MEN | multiple endocrine neoplasia |
NCI | National Cancer Institute |
NPV | Negative predictive value |
PTC | Papillary thyroid cancer |
PPV | Positive predictive value |
RAIU | Radioiodine uptake |
SWE | shear-wave elastography |
SEER | Surveillance Epidemiology and End Results |
SUSP | Suspicious for malignancy |
TBSRTC | The Bethesda System for Reporting Thyroid Cytopathology |
TC | Thyroid Cancer |
Tg | Thyroglobulin |
TFNAC | thyroid fine needle aspiration cytology |
US | Ultrasound |
WOInd | Wash-Out Index |
References
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef]
- Popoveniuc, G.; onklaas, J. Thyroid Nodules. Med. Clin. North Am. 2012, 96, 329–349. [Google Scholar] [CrossRef]
- Francis, G.L.; Waguespack, S.G.; Bauer, A.J.; Angelos, P.; Benvenga, S.; Cerutti, J.M.; Dinauer, C.A.; Hamilton, J.; Hay, I.D.; Luster, M.; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 25, 716–759. [Google Scholar] [CrossRef]
- Bauer, A.J.; Francis, G.L. Evaluation and management of thyroid nodules in children. Curr. Opin. Pediatr. 2016, 28, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Mussa, A.; De Andrea, M.; Motta, M.; Mormile, A.; Palestini, N.; Corrias, A. Predictors of Malignancy in Children with Thyroid Nodules. J. Pediatr. 2015, 167, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Paulson, V.A.; Rudzinski, E.R.; Hawkins, D.S. Thyroid Cancer in the Pediatric Population. Genes 2019, 10, E723. [Google Scholar] [CrossRef] [PubMed]
- Massimino, M.; Evans, D.B.; Podda, M.; Spinelli, C.; Collini, P.; Pizzi, N.; Bleyer, A. Thyroid cancer in adolescents and young adults. Pediatr. Blood Cancer 2018, 65, e27025. [Google Scholar] [CrossRef]
- Corrias, A.; Mussa, A.; Baronio, F.; Arrigo, T.; Salerno, M.; Segni, M.; Vigone, M.C.; Gastaldi, R.; Zirilli, G.; Tuli, G.; et al. Diagnostic features of thyroid nodules in pediatrics. Arch. Pediatr. Adolesc. Med. 2010, 164, 714–719. [Google Scholar] [CrossRef]
- Holmes, L., Jr.; Hossain, J.; Opara, F. Pediatric Thyroid Carcinoma Incidence and Temporal Trends in the USA (1973–2007): Race or Shifting Diagnostic Paradigm? ISRN Oncol. 2012, 2012, 906197. [Google Scholar] [CrossRef]
- Dermody, S.; Walls, A.; Harley, E.H., Jr. Pediatric thyroid cancer: An update from the SEER database 2007–2012. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 121–126. [Google Scholar] [CrossRef]
- Qian, Z.J.; Jin, M.C.; Meister, K.D.; Megwalu, U.C. Pediatric Thyroid Cancer Incidence and Mortality Trends in the United States, 1973–2013. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Giannoula, E.; Iakovou, I.; Chatzipavlidou, V. Risk factors and the progression of thyroid malignancies. Hell J. Nucl. Med. 2015, 18, 275–284. [Google Scholar] [PubMed]
- Giannoula, E.; Gkantaifi, A.; Iakovou, I. Radiation treatment of head and neck carcinomas as a risk factor for thyroid carcinomas. Hell J. Nucl. Med. 2016, 19, 65–74. [Google Scholar] [PubMed]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Guille, J.T.; Opoku-Boateng, A.; Thibeault, S.L.; Chen, H. Evaluation and management of the pediatric thyroid nodule. Oncologist 2015, 20, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Penta, L.; Cofini, M.; Lanciotti, L.; Leonardi, A.; Principi, N.; Esposito, S. Hashimoto’s Disease and Thyroid Cancer in Children: Are They Associated? Front. Endocrinol. 2018, 9, 565. [Google Scholar] [CrossRef]
- Sklar, C.; Whitton, J.; Mertens, A.; Stoval, M.; Green, D.; Marina, N.; Greffe, B.; Wolden, S.; Robison, L. Abnormalities of the thyroid in survivors of Hodgkin’s disease:data from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2000, 85, 3227–3232. [Google Scholar]
- Meadows, A.T.; Friedman, D.L.; Neglia, J.P.; Mertens, A.C.; Donaldson, S.S.; Stovall, M.; Hammond, S.; Yasui, Y.; Inskip, P.D. Second neoplasms in survivors of childhoodcancer: Findings from the Childhood Cancer Survivor Study cohort. J. Clin. Oncol. 2009, 27, 2356–2362. [Google Scholar] [CrossRef]
- Veiga, L.H.; Holmberg, E.; Anderson, H.; Pottern, L.; Sadetzki, S.; Adams, M.J.; Sakata, R.; Schneider, A.B.; Inskip, P.; Bhatti, P.; et al. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies. Radiat. Res. 2016, 185, 473–484. [Google Scholar] [CrossRef]
- Weiss, W. Chernobyl thyroid cancer: 30 years of follow-up overview. Radiat. Prot. Dosim. 2018, 182, 58–61. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Galetti, V. Iodine intake as a risk factor for thyroid cancer: A comprehensive review of animal and human studies. Thyroid Res. 2015, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.G.; Shoback, D. Hormones and hormone action. In Green Spans Basic and Clinical Endocrinology, 9th ed.; Yale Journal of Biology and Medicine: New York, NY, USA, 2012. [Google Scholar]
- Boelaert, K.; Horacek, J.; Holder, R.L.; Watkinson, J.C.; Sheppard, M.C.; Franklyn, J.A. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J. Clin. Endocrinol. Metab. 2006, 91, 4295–4301. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Lyshchik, A.; Drozd, V.; Demidchik, Y.; Reiners, C. Diagnosis of thyroid cancer in children: Value of grayscale and power doppler US. Radiology 2005, 235, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Essenmacher, A.C.; Joyce, P.H., Jr.; Kao, S.C.; Epelman, M.; Pesce, L.M.; D’Alessandro, M.P.; Sato, Y.; Johnson, C.M.; Podberesky, D.J. Sonographic Evaluation of Pediatric Thyroid Nodules. Radiographics 2017, 37, 1731–1752. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ly, S.; Castroneves, L.A.; Frates, M.C.; Benson, C.B.; Feldman, H.A.; Wassner, A.J.; Smith, J.R.; Marqusee, E.; Alexander, E.K.; et al. A standardized assessmentof thyroid nodules in children confirms highercancer prevalence than in adults. J. Clin. Endocrinol. Metab. 2013, 98, 3238–3245. [Google Scholar] [CrossRef] [PubMed]
- Al Nofal, A.; Gionfriddo, M.R.; Javed, A.; Haydour, Q.; Brito, J.P.; Prokop, L.J.; Pittock, S.T.; Murad, M.H. Accuracy ofthyroid nodule sonography for the detection of thyroid cancerin children: Systematic review and meta-analysis. Clin. Endocrinol. 2016, 84, 423–430. [Google Scholar] [CrossRef]
- Koltin, D.; O’Gorman, C.S.; Murphy, A.; Ngan, B.; Daneman, A.; Navarro, O.M.; García, C.; Atenafu, E.G.; Wasserman, J.D.; Hamilton, J.; et al. Pediatric thyroidnodules: Ultrasonographic characteristics and inter-observervariability in prediction of malignancy. J. Pediatr. Endocrinol. Metab. 2016, 29, 789–794. [Google Scholar] [CrossRef]
- Richman, D.M.; Benson, C.B.; Doubilet, P.M.; Peters, H.E.; Huang, S.A.; Asch, E.; Wassner, A.J.; Smith, J.R.; Cherella, C.E.; Frates, M.C. Thyroid Nodules in Pediatric Patients: Sonographic Characteristics and Likelihood of Cancer. Radiology 2018, 288, 591–599. [Google Scholar] [CrossRef]
- Cantisani, V.; Lodise, P.; Grazhdani, H.; Mancuso, E.; Maggini, E.; Di Rocco, G.; D’Ambrosio, F.; Calliada, F.; Redler, A.; Ricci, P.; et al. Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur. J. Radiol. 2014, 83, 420–428. [Google Scholar] [CrossRef]
- Zhao, C.K.; Xu, H.X. Ultrasound elastography of the thyroid: Principles and current status. Ultrasonography 2019, 38, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.B.; Marino, L.C.I.; Yamaya, A.; Kochi, C.; Monte, O.; Longui, C.A.; Cury, A.N.; Fleury, E.D.F.C. Elastography for the evaluation of thyroid nodules in pediatric patients. Radiol. Bras. 2019, 52, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Pawluś, A.; Sokołowska-Dąbek, D.; Szymańska, K.; Inglot, M.S.; Zaleska-Dorobisz, U. Ultrasound elastography: Review of techniques and its clinical applications in pediatrics—Part 1. Adv. Clin. Exp. Med. 2015, 24, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Rago, T.; Vitti, P. Role of thyroid ultrasound in the diagnostic evaluation of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 913–928. [Google Scholar] [CrossRef]
- Yurttutan, N.; Gungor, G.; Bilal, N.; Kizildag, B.; Baykara, M.; Sarica, M.A. Interpretation of thyroid glands in a group of healthy children: Real-time ultrasonography elastography study. J. Pediatr. Endocrinol. Metab. 2016, 29, 933–937. [Google Scholar] [CrossRef]
- Palabıyık, F.B.; İnci, E.; PapatyaÇakır, E.D.; Hocaoğlu, E. Evaluation of Normal Thyroid Tissue and Autoimmune Thyroiditis in Children Using Shear Wave Elastography. J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 132–139. [Google Scholar] [CrossRef]
- Borysewicz-Sanczyk, H.; Dzieciol, J.; Sawicka, B.; Bossowski, A. Practical application ofelastography in the diagnosis of thyroid nodules in children and adolescents. Horm. Res. Paediatr. 2016, 86, 39–44. [Google Scholar] [CrossRef]
- Partyka, K.L.; Huang, E.C.; Cramer, H.M.; Chen, S.; Wu, H.H. Histologic and clinical follow-up of thyroidfine-needle aspirates in pediatric patients. Cancer Cytopathol. 2016, 124, 467–471. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. NCI Thyroid FNA State of the Science Conference. The Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 2009, 132, 658–665. [Google Scholar] [CrossRef]
- Cherella, C.E.; Angell, T.E.; Richman, D.M.; Frates, M.C.; Benson, C.B.; Moore, F.D.; Barletta, J.A.; Hollowell, M.; Smith, J.R.; Alexander, E.K.; et al. Differences in Thyroid Nodule Cytology and Malignancy Risk between Children and Adults. Thyroid 2019, 29, 1097–1104. [Google Scholar] [CrossRef]
- Giovanella, L.; Avram, A.M.; Iakovou, I.; Kwak, J.; Lawson, S.A.; Lulaj, E.; Luster, M.; Piccardo, A.; Schmidt, M.; Tulchinsky, M.; et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Kresnik, E.; Gallowitsch, H.J.; Mikosch, P.; Stettner, H.; Igerc, I.; Gomez, I.; Kumnig, G.; Lind, P. Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 2003, 133, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Ryu, J.S.; Kim, T.Y.; Kim, W.B.; Kwon, G.Y.; Gong, G.; Moon, D.H.; Kim, S.C.; Hong, S.J.; Shong, Y.K. 18F-fluorodeoxyglucose positron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J. Clin. Endocrinol. Metab. 2007, 92, 1630–1634. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sebastianes, F.M.; Cerci, J.J.; Zanoni, P.H.; Soares, J., Jr.; Chibana, L.K.; Tomimori, E.K.; de Camargo, R.Y.; Izaki, M.; Giorgi, M.C.; Eluf-Neto, J.; et al. Role of 18F-fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 2007, 92, 4485–4488. [Google Scholar] [CrossRef]
- Hales, N.W.; Krempl, G.A.; Medina, J.E. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am. J. Otolaryngol. 2008, 29, 113–118. [Google Scholar] [CrossRef]
- Wang, N.; Zhai, H.; Lu, Y. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J. Otolaryngol. Head Neck Surg. 2013, 42, 38. [Google Scholar] [CrossRef]
- Vriens, D.; Adang, E.M.; Netea-Maier, R.T.; Smit, J.W.; de Wilt, J.H.; Oyen, W.J.; de Geus-Oei, L.F. Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: A decision analytic approach. J. Clin. Endocrinol. Metab. 2014, 99, 3263–3274. [Google Scholar] [CrossRef]
- Piccardo, A.; Puntoni, M.; Treglia, G.; Foppiani, L.; Bertagna, F.; Paparo, F.; Massollo, M.; Dib, B.; Paone, G.; Arlandini, A.; et al. Thyroid nodules with indeterminate cytology: Prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur. J. Endocrinol. 2016, 174, 693–703. [Google Scholar] [CrossRef]
- Giovanella, L.; Suriano, S.; Maffioli, M.; Ceriani, L.; Spriano, G. (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck 2010, 32, 607–611. [Google Scholar]
- Leidig-Bruckner, G.; Cichorowski, G.; Sattler, P.; Bruckner, T.; Sattler, B. Evaluation of thyroid nodules—Combined use of 99mTc-methylisobutylnitrile scintigraphy and aspiration cytology to assess risk of malignancy and stratify patients for surgical or nonsurgical therapy—A retrospective cohort study. Clin. Endocrinol. 2012, 76, 749–758. [Google Scholar] [CrossRef]
- Saggiorato, E.; Angusti, T.; Rosas, R.; Martinese, M.; Finessi, M.; Arecco, F.; Trevisiol, E.; Bergero, N.; Puligheddu, B.; Volante, M.; et al. 99mTc-MIBI Imaging in the Presurgical Characterization of Thyroid Follicular Neoplasms: Relationship to Multidrug Resistance Protein Expression. J. Nucl. Med. 2009, 50, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Campennì, A.; Siracusa, M.; Ruggeri, R.M.; Laudicella, R.; Pignata, S.A.; Baldari, S.; Giovanella, L. Differentiating malignant from benign thyroid nodules with indeterminate cytology by 99mTc-MIBI scan: A new quantitative method for improving diagnostic accuracy. Sci. Rep. 2017, 7, 6147. [Google Scholar]
- Hoang, J.K.; Branstetter, B.F., 4th; Gafton, A.R.; Lee, W.K.; Glastonbury, C.M. Imaging of thyroid carcinoma with CT and MRI: Approaches to common scenarios. Cancer Imaging 2013, 13, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Adams, M.J.; Shore, R.; Holmberg, E.; Schneider, A.B.; Hawkins, M.M.; Robison, L.L.; Inskip, P.D.; Lundell, M.; Johansson, R.; et al. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts. J. Clin. Endocrinol. Metab. 2017, 102, 2575–2583. [Google Scholar] [CrossRef] [PubMed]
- Hempel, J.M.; Kloeckner, R.; Krick, S.; Pinto dos Santos, D.; Schadmand-Fischer, S.; Boeßert, P.; Bisdas, S.; Weber, M.M.; Fottner, C.; Musholt, T.J.; et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 2016, 16, 37. [Google Scholar] [CrossRef] [PubMed]
Exposure to Radioactivity | Medical Exposure |
---|---|
External Beam Radiation Therapy | |
Radioactive Contamination | |
Genes’ mutations andrelated types of thyroid tumors | RET:MTC |
HRAS, KRAS, NRAS: FTA, FTC, FVPTC, PDTC, ATC | |
PI3KCA: FTA, FTC, ATC, PTC | |
AKT1: Metastatic cancer | |
CTNNB1: PDTC, ATC | |
TP53: PDTC, ATC | |
PPKAR1A: PTC, HCTC | |
IDH1: FTC, FVPTC, PTC, ATC | |
ALK: ATC | |
APC: NMTC | |
EGFR: PTC | |
BRAFV600E: PTC, FVPTC, TCPTC,ATC | |
BRAFK601E: FVPTC | |
PTEN (mutation): FTCA, FTC, ATC, PTC | |
PTEN (deletion): FTC | |
NDUFA13: HCTC | |
Benign thyroid diseases | Autoimmune thyroiditis, most commonly Hashimoto |
Goiter | |
Grave’s disease | |
Iodine consumption | |
Dietary and Metabolic factors | Obesity |
Lack of physical exercise | |
Smoking | |
Female sex | |
Gender hormones and reproductive function | Menstruation before the age of 12 or after 14 years |
Gestation | |
Exogenous hormones | |
Trace elements associated with volcanic activity | |
Environmental factors | Air pollutants |
Xenobiotics | |
Viruses |
A. Sonographic patterns of thyroid nodules and estimated risk of malignancy [24]. | ||
Sonographic Pattern | US Features | Estimated Risk of Malignancy |
High suspicion | Solid hypoechoic nodule or solid hypoechoic component of a partially cystic nodule with one or more of the following features: irregular margins (infiltrative, microlobulated), microcalcifications, taller-than-wide shape, rim calcifications with small extrusive soft tissue component, evidence of extrathyroidal extension | >70–90% |
Intermediate suspicion | Hypoechoic solid nodule with smooth margins without microcalcifications, extrathyroidal extension, or taller-than-wide shape | 10–20% |
Low suspicion | Isoechoic or hyperechoic solid nodule, or partially cystic nodule with eccentric solid areas, without microcalcification, irregular margin or extrathyroidal extension, or taller-than-wide shape. | 5–10% |
Very low suspicion | Spongiform or partially cystic nodules without any of the sonographic features described in low, intermediate, or high suspicion patterns | <3% |
Benign | Purely cystic nodules (no solid component) | <1% |
B. Differences between pediatric and adult thyroid nodules | ||
Difference | Pediatric | Adults |
Epidemiology [4,5] | Less common. Nodule prevalence: 0.2–5% | More common Nodule prevalence: 19–35% |
Higher likelihood of malignancy (25%) | Lower likelihood of malignancy (10%) | |
Histology/Stage [3] | Higher incidence of regional lymph node involvement, extrathyroidal extension, and pulmonary metastasis | Lower incidence of regional lymph node involvement, extrathyroidal extension, and pulmonary metastasis |
Prognosis [11] | More favorable progression-free survival in children Mortality rate ~0.1% in patients aged < 20 | Less favorable progression-free survival in adults Maximum mortality rate up to 27.4% in patients aged 75–84 |
Molecular [3] | Higher prevalence of gene rearrangements and a lowerfrequency of point mutations in the proto-oncogenes implicatedin PTC | Lower prevalence of gene rearrangements and a higherfrequency of point mutations in the proto-oncogenes implicatedin PTC |
BRAF mutations are the less common abnormality in children PTC | BRAF mutations are the most common abnormality in adult PTC (36–83% of cases) | |
RET/PTC rearrangements are more common in PTC from children | RET/PTC rearrangements are less common in adult PTC | |
Sonographic characteristics [8,25,26,27,28,29] | The malignancy rate is increased with increasing nodule size | The nodule’s size is not associated with increased malignancy risk |
Color Doppler analysisis not a useful differentiating characteristic in the identification of thyroid cancer | Color Doppler analysis has incremental value in the identification of malignancies | |
Patients with an abnormal background sonographic appearance documented a higher risk of malignancy | A higher risk of malignancy is not documented for patients with an abnormal background sonographic appearance | |
Diffuse sclerosing variant PTC, with abundant microcalcifications is more common in children | Diffuse sclerosing variant PTC with abundant microcalcifications is less common in adults |
I | Non-diagnostic or unsatisfactory | Cyst fluid only Virtually acellular specimen Other (obscuring blood, clotting artifact, etc.) |
II | Benign | Consistent with a benign follicular nodule (includes adenomatoid nodule, colloid nodule, etc.) Consistent with lymphocytic (Hashimoto) thyroiditis in the proper clinical context Consistent with granulomatous (subacute) thyroiditis Other |
III | Atypia or follicular lesion of undetermined significance (AUS/FLUS). | |
IV | Follicular/Hürthle neoplasm or suspicious for follicular/Hürthle neoplasm (FN or SFN) | Specify if Hürthle cell (oncocytic) type |
V | Suspicious for malignancy (SUSP) | Suspicious for papillary carcinoma Suspicious for medullary carcinoma Suspicious for metastatic carcinoma Suspicious for lymphoma Other |
VI | Malignant | Papillary thyroid carcinoma Poorly differentiated carcinoma Medullary thyroid carcinoma Undifferentiated (anaplastic) carcinoma Squamous cell carcinoma Carcinoma with mixed features (specify) Metastatic carcinoma Non-Hodgkin lymphoma Other |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iakovou, I.; Giannoula, E.; Sachpekidis, C. Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. J. Clin. Med. 2020, 9, 384. https://doi.org/10.3390/jcm9020384
Iakovou I, Giannoula E, Sachpekidis C. Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. Journal of Clinical Medicine. 2020; 9(2):384. https://doi.org/10.3390/jcm9020384
Chicago/Turabian StyleIakovou, Ioannis, Evanthia Giannoula, and Christos Sachpekidis. 2020. "Imaging and Imaging-Based Management of Pediatric Thyroid Nodules" Journal of Clinical Medicine 9, no. 2: 384. https://doi.org/10.3390/jcm9020384
APA StyleIakovou, I., Giannoula, E., & Sachpekidis, C. (2020). Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. Journal of Clinical Medicine, 9(2), 384. https://doi.org/10.3390/jcm9020384