Moderate Normobaric Hypoxia Does Not Exacerbate Left Ventricular Dysfunction After Exhaustive Exercise in Athletes and Untrained Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Testing Protocol
2.4. Transthoracic Echocardiography (TTE)
2.5. Statistical Analysis
3. Results
3.1. Changes in Mechanical Work, Heart Rate and Saturation of Hemoglobin During Exercise to Exhaustion Under Normoxia and Hypoxia
3.2. Echocardiography-Derived LV Dimensions and Systolic Function Parameters
3.3. Echocardiographic Parameters of LV Diastolic Function and LA Dimensions
3.4. Post Hoc Power Analysis
3.5. Reproducibility
4. Discussion
4.1. Passive Exposure to Hypoxia
4.2. Exercise Under Normoxic and Hypoxic Conditions
4.2.1. LV Systolic Function and LV Dimensions
4.2.2. LV Diastolic Function and LA Dimensions
4.3. Trained vs. Untrained
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EICF | Exercise-induced cardiac fatigue |
| LV | Left ventricular |
| IVS | Interventricular septum |
| PW | Left ventricular posterior wall |
| LVEDD | Left ventricular end-diastolic diameter |
| LVESD | Left ventricular end-systolic diameter |
| LVEDV | Left ventricular end-diastolic volumes |
| LVESV | Left ventricular end-systolic volumes |
| LV EF | Left ventricular ejection fraction |
| LV GLS | Left ventricular global longitudinal strain |
| Septal S′ | Septal peak systolic mitral annulus velocity |
| Lateral S′ | Lateral peak systolic mitral annulus velocity |
| Mitral E | Early peak diastolic filling velocity |
| Mitral A | Late peak diastolic filling velocity |
| DT | Deceleration time |
| E′ septal | Septal early diastolic mitral annulus velocity |
| E′ lateral | Lateral early diastolic mitral annulus velocity |
| Averaged E′ | Mean early diastolic mitral annulus velocity |
| A′ septal | Septal late diastolic mitral annulus velocity |
| A′ lateral | Lateral late diastolic mitral annulus velocity |
| Averaged A′ | Mean late diastolic mitral annulus velocity |
| LA diameter | Left atrial diameter |
| LA area | Left atrial area |
| LAVi | Left atrial indexed volume |
| GXT | Graded exercise test to volitional exhaustion |
| CXT | Constant-workload exercise test, continued until volitional exhaustion |
| ICC | Intraclass correlation coefficients |
| CI | Confidence interval |
References
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining hypoxic methods for peak performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The effects of altitude training on erythropoietic response and hematological variables in adult athletes: A narrative review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F.; Laymon, A.S.; Levine, B.D. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt. Med. Biol. 2013, 14, 319–324. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic use of exercising in hypoxia: Promises and limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef] [PubMed]
- Niemaszyk, A.; Płoszczyca, K.; Czuba, M. The use of intermittent hypoxic training in rehabilitation, prevention, and treatment of non-communicable diseases (NCDs): A narrative review. Biomed. Hum. Kinet. 2025, 17, 173–185. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Li, S.; Ding, Y.; Wang, Y.; Ji, X. Intermittent hypoxia conditioning: A potential multi-organ protective therapeutic strategy. Int. J. Med. Sci. 2023, 20, 1551–1561. [Google Scholar] [CrossRef]
- Amann, M.; Eldridge, M.W.; Lovering, A.T.; Stickland, M.K.; Pegelow, D.F.; Dempsey, J.A. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J. Physiol. 2006, 575, 937–952. [Google Scholar] [CrossRef]
- Peltonen, J.E.; Rusko, H.K.; Rantamäki, J.; Sweins, K.; Nittymäki, S.; Vitasalo, J.T. Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. Eur. J. Appl. Physiol. 1997, 76, 495–503. [Google Scholar] [CrossRef]
- Adams, R.P.; Welch, H.G. Oxygen uptake, acid-base status, and performance with varied inspired oxygen fractions. J. Appl. Physiol. 1980, 49, 863–868. [Google Scholar] [CrossRef]
- Hogan, M.C.; Richardson, R.S.; Haseler, L.J. Human muscle performance and PCr hydrolysis with varied inspired oxygen fraction: A 31P-MRS study. J. Appl. Physiol. 1999, 86, 1367–1373. [Google Scholar] [CrossRef]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef]
- Siebenmann, C.; Lundby, C. Regulation of cardiac output in hypoxia. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S4), 53–59. [Google Scholar] [CrossRef]
- Richalet, J.P.; Hermand, E.; Lhuissier, F.J. Cardiovascular physiology and pathophysiology at high altitude. Nat. Rev. Cardiol. 2024, 21, 75–88. [Google Scholar] [CrossRef]
- Peltonen, J.E.; Tikkanen, H.O.; Ritola, J.J.; Ahotupa, M.; Rusko, H.K. Oxygen uptake response during maximal cycling in hyperoxia, normoxia and hypoxia. Aviat. Space Environ. Med. 2001, 72, 904–911. [Google Scholar] [PubMed]
- Naeije, R.; Dedobbeleer, C. Pulmonary hypertension and the right ventricle in hypoxia. Exp. Physiol. 2013, 98, 1247–1256. [Google Scholar] [CrossRef]
- Huez, S.; Retailleau, K.; Unger, P.; Pavelescu, A.; Vachiéry, J.L.; Derumeaux, G.; Naeije, R. Right and left ventricular adaptation to hypoxia: A tissue Doppler imaging study. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1391–H1398. [Google Scholar] [CrossRef] [PubMed]
- Boos, C.J.; Hodkinson, P.; Mellor, A.; Green, N.P.; Woods, D.R. The effects of acute hypobaric hypoxia on arterial stiffness and endothelial function and its relationship to changes in pulmonary artery pressure and left ventricular diastolic function. High Alt. Med. Biol. 2012, 13, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, J.; Tobise, K.; Kawashima, E. The effect of acute hypoxia on left ventricular function with special reference to diastolic function: An analysis using ultrasonic method. Jpn. Circ. J. 1992, 56, 998–1011. [Google Scholar] [CrossRef]
- Bölter, C.; Gabriel, P.; Appelt, P.; Salameh, A.; Schierle, K.; Rassler, B. Effects of adrenergic agonists and antagonists on cardiopulmonary function during normobaric hypoxia in rat. Front. Physiol. 2019, 10, 860. [Google Scholar] [CrossRef]
- Banks, L.; Sasson, Z.; Busato, M.; Goodman, J.M. Impaired left and right ventricular function following prolonged exercise in young athletes: Influence of exercise intensity and responses to dobutamine stress. J. Appl. Physiol. 2010, 108, 112–119. [Google Scholar] [CrossRef]
- Stewart, G.M.; Chan, J.; Yamada, A.; Kavanagh, J.J.; Haseler, L.J.; Shiino, K.; Sabapathy, S. Impact of high-intensity endurance exercise on regional left and right ventricular myocardial mechanics. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R.; Chesler, N. Pulmonary circulation at exercise. Compr. Physiol. 2012, 2, 711–741. [Google Scholar] [CrossRef] [PubMed]
- Dawson, E.; George, K.; Shave, R.; Whyte, G.; Ball, D. Does the human heart fatigue subsequent to prolonged exercise? Sports Med. 2003, 33, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.; Shave, R.; George, K.; Whyte, G.; Hart, E.; Atkinson, G. Left ventricular function immediately following prolonged exercise: A meta-analysis. Med. Sci. Sports Exerc. 2006, 38, 681–687. [Google Scholar] [CrossRef]
- Czuba, M.; Bril, G.; Płoszczyca, K.; Piotrowicz, Z.; Chalimoniuk, M.; Roczniok, R.; Zembroń-Łacny, A.; Gerasimuk, D.; Langfort, J. Intermittent hypoxic training at lactate threshold intensity improves aiming performance in well-trained biathletes with little change of cardiovascular variables. Biomed. Res. Int. 2019, 2019, 1287506. [Google Scholar] [CrossRef]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar]
- Czuba, M.; Wilk, R.; Karpiński, J.; Chalimoniuk, M.; Zajac, A.; Langfort, J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS ONE 2017, 12, e0180380. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Gore, C.J. Endurance training at altitude. High Alt. Med. Biol. 2009, 10, 135–148. [Google Scholar] [CrossRef]
- Vogt, M.; Hoppeler, H. Is hypoxia training good for muscles and exercise performance? Prog. Cardiovasc. Dis. 2010, 52, 525–533. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Huang, X.; Li, Z.; Wu, Q.; Chen, Z. Effect of altitude training on the aerobic capacity of athletes: A systematic review and meta-analysis. Heliyon 2023, 9, e20188. [Google Scholar] [CrossRef]
- Goliniewski, J.; Czuba, M.; Płoszczyca, K.; Chalimoniuk, M.; Gajda, R.; Niemaszyk, A.; Kaczmarczyk, K.; Langfort, J. The impact of normobaric hypoxia and intermittent hypoxic training on cardiac biomarkers in endurance athletes: A pilot study. Int. J. Mol. Sci. 2024, 25, 4584. [Google Scholar] [CrossRef]
- Kleinnibbelink, G.; van Dijk, A.P.J.; Fornasiero, A.; Speretta, G.F.; Johnson, C.; Hopman, M.T.E.; Sculthorpe, N.; George, K.P.; Somauroo, J.D.; Thijssen, D.H.J.; et al. Exercise-induced cardiac fatigue after a 45-minute bout of high-intensity running exercise is not altered under hypoxia. J. Am. Soc. Echocardiogr. 2021, 34, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Kullmer, T.; Kneissl, G.; Katova, T.; Kronenberger, H.; Urhausen, A.; Kindermann, W.; März, W.; Meier-Sydow, J. Experimental acute hypoxia in healthy subjects: Evaluation of systolic and diastolic function of the left ventricle at rest and during exercise using echocardiography. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 169–174. [Google Scholar] [CrossRef]
- Goebel, B.; Handrick, V.; Lauten, A.; Fritzenwanger, M.; Schütze, J.; Otto, S.; Figulla, H.R.; Edvardsen, T.; Poerner, T.C.; Jung, C. Impact of acute normobaric hypoxia on regional and global myocardial function: A speckle tracking echocardiography study. Int. J. Cardiovasc. Imaging 2013, 29, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A.; Hesselink, M. A new approach for the determination of ventilatory and lactate thresholds. Int. J. Sports Med. 1992, 13, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Grünig, E.; Mereles, D.; Hildebrandt, W.; Swenson, E.R.; Kübler, W.; Kuecherer, H.; Bärtsch, P. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J. Am. Coll. Cardiol. 2000, 35, 980–987. [Google Scholar] [CrossRef]
- Stewart, G.M.; Yamada, A.; Haseler, L.J.; Kavanagh, J.J.; Koerbin, G.; Chan, J.; Sabapathy, S. Altered ventricular mechanics after 60 min of high-intensity endurance exercise: Insights from exercise speckle-tracking echocardiography. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H875–H883. [Google Scholar] [CrossRef]
- Coates, A.M.; Millar, P.J.; Burr, J.F. Investigating the roles of exercise intensity and biological sex on postexercise alterations in cardiac function. J. Appl. Physiol. 2023, 134, 455–466. [Google Scholar] [CrossRef]
- Higginbotham, M.B.; Morris, K.G.; Williams, R.S.; McHale, P.A.; Coleman, R.E.; Cobb, F.R. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ. Res. 1986, 58, 281–291. [Google Scholar] [CrossRef]
- Ginzton, L.E.; Conant, R.; Brizendine, L.; Laks, M.M. Effect of long-term high intensity aerobic training on left ventricular volume during maximal upright exercise. J. Am. Coll. Cardiol. 1989, 14, 364–371. [Google Scholar] [CrossRef]
- Ketelhut, R.; Losem, C.J.; Messerli, F.H. Depressed systolic and diastolic cardiac function after prolonged aerobic exercise in healthy subjects. Int. J. Sports Med. 1992, 13, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Whyte, G.P.; George, K.; Sharma, S.; Lumley, S.; Gates, P.; Prasad, K.; McKenna, W.J. Cardiac fatigue following prolonged endurance exercise of differing distances. Med. Sci. Sports Exerc. 2000, 32, 1067–1072. [Google Scholar] [CrossRef]
- Flotats, A.; Serra-Grima, R.; Camacho, V.; Mena, E.; Borràs, X.; Estorch, M.; Tembl, A.; Fuertes, J.; Cinca, J.; Carrió, I. Left ventricular end-diastolic volume is decreased at maximal exercise in athletes with marked repolarisation abnormalities: A continuous radionuclide monitoring study. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C.; Hall, J.E. Heart muscle; the heart as a pump. In A Textbook of Physiology; Guyton, A.C., Hall, J.E., Eds.; Saunders: London, UK, 2000; pp. 96–106. [Google Scholar]
- Dawson, E.A.; Shave, R.; George, K.; Whyte, G.; Ball, D.; Gaze, D.; Collinson, P. Cardiac drift during prolonged exercise with echocardiographic evidence of reduced diastolic function of the heart. Eur. J. Appl. Physiol. 2005, 94, 305–309. [Google Scholar] [CrossRef]
- Hart, E.; Shave, R.; Middleton, N.; George, K.; Whyte, G.; Oxborough, D. Effect of preload augmentation on pulsed wave and tissue Doppler echocardiographic indices of diastolic function after a marathon. J. Am. Soc. Echocardiogr. 2007, 20, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.; Shave, R.; George, K.; Whyte, G.; Hart, E.; Oxborough, D.; Forster, J.; Gaze, D. Altered left ventricular diastolic filling following a marathon is a reproducible phenomenon. Int. J. Cardiol. 2007, 122, 87–89. [Google Scholar] [CrossRef]
- Yan, B.; Hu, Y.; Ji, H.; Bao, D. The effect of acute hypoxia on left ventricular function during exercise. Eur. J. Appl. Physiol. 2007, 100, 261–265. [Google Scholar] [CrossRef]
- Romer, L.M.; Haverkamp, H.C.; Amann, M.; Lovering, A.T.; Pegelow, D.F.; Dempsey, J.A. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R598–R606. [Google Scholar] [CrossRef]
- Amann, M.; Calbet, J.A. Convective oxygen transport and fatigue. J. Appl. Physiol. 2008, 104, 861–870. [Google Scholar] [CrossRef]
- Furukawa, K.; Kitamura, H.; Nishida, K.; Yamada, C.; Niki, S.; Sugihara, H.; Katsume, H.; Tsuji, H.; Kunishige, H.; Ijichi, H. Simultaneous changes of left ventricular and left atrial size and function in normal subjects during exercise. Jpn. Heart J. 1984, 25, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Schnell, F.; Claessen, G.; La Gerche, A.; Claus, P.; Bogaert, J.; Delcroix, M.; Carré, F.; Heidbuchel, H. Atrial volume and function during exercise in health and disease. J. Cardiovasc. Magn. Reson. 2017, 19, 104. [Google Scholar] [CrossRef]
- Gabrielli, L.; Bijnens, B.H.; Brambila, C.; Duchateau, N.; Marin, J.; Sitges-Serra, I.; Mont, L.; Brugada, J.; Sitges, M. Differential atrial performance at rest and exercise in athletes: Potential trigger for developing atrial dysfunction? Scand. J. Med. Sci. Sports 2016, 26, 1444–1454. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.D.; Oxborough, D. The athlete’s heart—From acute stimulus to chronic adaptation. Br. Med. Bull. 2025, 153, ldae021. [Google Scholar] [CrossRef]
- Huonker, M.; König, D.; Keul, J. Assessment of left ventricular dimensions and functions in athletes and sedentary subjects at rest and during exercise using echocardiography, Doppler sonography and radionuclide ventriculography. Int. J. Sports Med. 1996, 17 (Suppl. S3), S173–S179. [Google Scholar] [CrossRef]
- Urhausen, A.; Monz, T.; Kindermann, W. Sports-specific adaptation of left ventricular muscle mass in athlete’s heart. I. An echocardiographic study with combined isometric and dynamic exercise trained athletes (male and female rowers). Int. J. Sports Med. 1996, 17 (Suppl. S3), S145–S151. [Google Scholar] [CrossRef] [PubMed]
- Forteza-Albertí, J.F.; Sanchis-Gomar, F.; Lippi, G.; Cervellin, G.; Lucia, A.; Calderón-Montero, F.J. Limits of ventricular function: From athlete’s heart to a failing heart. Clin. Physiol. Funct. Imaging 2017, 37, 549–557. [Google Scholar] [CrossRef]



| Variable | Group | Normoxia | Hypoxia (3000 m) | Change |
|---|---|---|---|---|
| Wmech (kJ) | UT | 534.62 ± 173.96 | 434.94 ± 144.37 *** | −18.65% |
| T | 937.83 ± 183.14 ### | 762.06 ± 165.57 **### | −18.74% | |
| Wmech (kJ/kg) | UT | 6.28 ± 1.92 | 5.12 ± 1.6 *** | −18.47% |
| T | 13.08 ± 2.06 ### | 10.71 ± 2.41 **### | −18.12 | |
| HRend (bpm) | UT | 172.41 ± 8.71 | 164.41 ± 7.58 *** | −4.64% |
| T | 179.33 ± 7.41 # | 171.75 ± 8.51 ***# | −4.23% | |
| %HRmaxcon | UT | 95.65 ± 2.72 | 96.07 ± 2.96 | +0.44% |
| T | 95.35 ± 2.23 | 95.48 ± 2.57 | +0.14% | |
| SpO2end (%) | UT | 96.16 ± 1.11 | 84.91 ± 2.39 *** | −11.70% |
| T | 94.16 ± 1.11 | 84.41 ± 4.37 *** | −10.35% | |
| ∆La (mmol/L) | UT | 6.51 ± 1.9 | 6.35 ± 2.35 | −2.46% |
| T | 5.17 ± 1.72 | 4.75 ± 1.72 | −8.12% | |
| ∆pH | UT | −0.114 ± 0.048 | −0.101 ± 0.041 | −11.40% |
| T | −0.091 ± 0.026 | −0.075 ± 0.042 | −17.58% |
| Variable | Group | Normoxia | Hypoxia (3000 m) | ANOVA Results | |||
|---|---|---|---|---|---|---|---|
| At Rest (x ± SD) | Post Ex. (x ± SD) | At Rest (x ± SD) | Post Ex. (x ± SD) | Exercise | Exercise & Conditions | ||
| IVS (mm) | UT | 10.08 ±0.746 | 10.55 ±0.80 ** | 10.25 ±0.95 | 10.45 ±0.94 | F = 25.656 p = 0.001 | F = 4.105 p = 0.050 |
| T | 10.90 ±1.16 | 10.92 ±1.08 | 10.94 ±0.96 | 11.41 ±0.95 | F = 2.100 p = 0.161 | F = 1.820 p = 0.190 | |
| PW (mm) | UT | 10.17 ±0.79 | 10.30 ±0.78 | 10.22 ±0.97 | 9.99 ±0.99 | F = 0.123 p = 0.729 | F = 1.877 p = 0.184 |
| T | 11.08 ±1.06 | 11.18 ±0.76 | 10.73 ±0.72 | 11.13 ±0.99 | F = 2.326 p = 0.141 | F = 0.839 p = 0.369 | |
| LVEDD (mm) | UT | 53.75 ±2.96 | 53.00 ±3.38 | 54.16 ±3.27 | 52.41 ±3.20 ** | F = 11.702 p = 0.002 | F = 1.872 p = 0.185 |
| T | 53.15 ±3.28 | 51.47 ±2.78 | 49.44 ±14.38 | 51.47 ±3.66 | F = 0.009 p = 0.925 | F = 0.978 p = 0.333 | |
| LVESD (mm) | UT | 35.67 ±2.50 | 35.00 ±3.52 | 35.33 ±2.42 | 35.17 ±3.43 | F = 0.514 p = 0.480 | F = 0.185 p = 0.671 |
| T | 32.50 ± 3.29 | 34.64 ±3.03 | 32.73 ±2.83 | 34.07 ±3.13 | F = 8.972 p = 0.007 | F = 0.485 p = 0.493 | |
| LVEDV (mL) | UT | 154.08 ±29.38 | 148.52 ±41.91 | 161.25 ±30.38 | 146.25 ±31.42 *** | F = 14.328 p = 0.001 | F = 3.022 p = 0.096 |
| T | 162.33 ±29.92 | 146.58 ±22.920 | 160.17 ±25.09 | 154.41 ±30.15 | F = 7.183 p = 0.013 | F = 1.553 p = 0.225 | |
| LVESV (mL) | UT | 51.97 ±10.38 | 54.18 ±19.35 | 51.08 ±14.78 | 52.29 ±18.19 | F = 0.512 p = 0.481 | F = 0.043 p = 0.835 |
| T | 52.66 ±11.48 | 55.09 ±9.68 | 51.07 ±10.78 | 56.06 ±14.48 | F = 3.870 p = 0.061 | F = 0.461 p = 0.504 | |
| LV EF (%) | UT | 65.71 ±5.58 | 64.00 ±5.57 | 68.46 ±5.16 | 65.92 ±6.99 | F = 3.392 p = 0.790 | F = 0.128 p = 0.723 |
| T | 67.1 ± 4.45 | 62.3 ± 3.93 * | 68.21 ±4.83 | 64.1 3±5.14 | F = 16.190 p = 0.001 | F = 0.108 p = 0.745 | |
| LV GLS (%) | UT | −19.95 ±2.44 | −14.92 ±2.57 *** | −20.30 ±2.45 | −15.25 ±2.17 ** | F = 88.433 p = 0.001 | F = 0.001 p = 0.981 |
| T | −22.41 ±3.24 | −15.55 ±2.87 *** | −22.37 ±2.34 | −17.82 ±2.15 *** | F = 149.664 p = 0.001 | F = 6.163 p = 0.021 | |
| Septal S′ (cm/s) | UT | 8.85 ±1.12 | 8.61 ±2.25 | 8.96 ±0.72 | 8.72 ±1.37 | F = 0.526 p = 0.475 | F = 0.001 p = 0.995 |
| T | 9.30 ±1.06 | 8.16 ±1.01 | 9.66 ±1.03 | 8.46 ±1.13 *** | F = 26.057 p = 0.001 | F = 0.019 p = 0.890 | |
| Lateral S′ (cm/s) | UT | 11.74 ±2.37 | 11.52 ±1.89 | 11.94 ±2.37 | 12.41 ±2.27 | F = 0.065 p = 0.800 | F = 0.480 p = 0.495 |
| T | 12.66 ±3.43 | 10.64 ±2.50 * | 12.10 ±3.07 | 11.49 ±2.88 | F = 8.354 p = 0.001 | F = 2.404 p = 0.135 | |
| Variable | Group | Normoxia | Hypoxia (3000 m) | ANOVA Results | |||
|---|---|---|---|---|---|---|---|
| At Rest (x ± SD) | Post Ex. (x ± SD) | At Rest (x ± SD) | Post Ex. (x ± SD) | Exercise | Exercise & Conditions | ||
| Mitral E (cm/s) | UT | 84.49 ±18.66 | 66.57 ±18.58 * | 86.21 ±15.25 | 72.21 ±15.49 * | F = 27.093 p = 0.001 | F = 0.408 p = 0.529 |
| T | 84.77 ±15.39 | 65.05 ±13.19 ** | 87.15 ±13.20 | 74.19 ±16.13 ** | F = 38.693 p = 0.001 | F = 1.655 p = 0.211 | |
| Mitral A (cm/s) | UT | 51.99 ±12.95 | 47.01 ±9.07 | 53.65 ±9.71 | 50.36 ±13.17 | F = 1.305 p = 0.266 | F = 0.178 p = 0.677 |
| T | 49.15 ±17.85 | 51.08 ±12.77 | 51.98 ±10.98 | 53.91 ±14.29 | F = 0.330 p = 0.571 | F = 0.000 p = 0.999 | |
| E/A | UT | 1.71 ±0.62 | 1.38 ±0.33 | 1.65 ±0.41 | 1.44 ±0.37 | F = 7.305 p = 0.013 | F = 0.606 p = 0.445 |
| T | 1.74 ±0.43 | 1.31 ±0.29 * | 1.76 ±0.50 | 1.41 ±0.30 | F = 12.811 p = 0.001 | F = 0.163 p = 0.690 | |
| DT (ms) | UT | 195.82 ±53.02 | 195.27 ±52.31 | 208.27 ±39.06 | 183.73 ±38.76 | F = 0.977 p = 0.334 | F = 0.894 p = 0.355 |
| T | 213.91 ±51.57 | 177.75 ±40.49 | 229.08 ±33.06 | 193.75 ±57.80 | F = 7.225 p = 0.013 | F = 0.001 p = 0.975 | |
| E′ septal (cm/s) | UT | 12.66 ±2.40 | 10.82 ±2.219 | 12.64 ±1.33 | 10.84 ±1.99 | F = 12.464 p = 0.001 | F = 0.002 p = 0.967 |
| T | 13.19 ±1.96 | 10.42 ± 2.32 ** | 12.23 ±2.05 | 10.53 ±1.61 * | F = 30.743 p = 0.001 | F = 1.758 p = 0.198 | |
| E′ lateral (cm/s) | UT | 19.11 ±5.14 | 15.42 ±3.26 | 18.34 ±4.96 | 14.79 ±3.97 | F = 14.207 p = 0.001 | F = 0.004 p = 0.946 |
| T | 18.25 ±3.96 | 14.76 ±3.09 ** | 18.24 ±2.90 | 16.08 ±3.51 | F = 22.693 p = 0.001 | F = 1.263 p = 0.273 | |
| Averaged E′ (cm/s) | UT | 15.88 ±3.29 | 13.12 ±2.46 * | 15.49 ±2.87 | 12.82 ±2.71 | F = 19.752 p = 0.001 | F = 0.005 p = 0.964 |
| T | 15.72 ±2.50 | 12.59 ±2.29 ** | 15.21 ±2.19 | 13.31 ±2.23 * | F = 33.618 p = 0.001 | F = 2.011 p = 0.170 | |
| A′ septal (cm/s) | UT | 8.49 ±1.52 | 7.89 ±1.45 | 8.71 ±1.86 | 8.42 ±1.66 | F = 1.672 p = 0.209 | F = 0.216 p = 0.645 |
| T | 7.21 ±2.78 | 7.02 ±2.58 | 7.92 ±1.24 | 7.25 ±1.61 | F = 0.616 p = 0.440 | F = 0.190 p = 0.667 | |
| A′ lateral (cm/s) | UT | 7.71 ±1.24 | 7.66 ±2.45 | 7.12 ±1.82 | 6.49 ±1.87 | F = 0.340 p = 0.565 | F = 0.244 p = 0.626 |
| T | 7.86 ±2.11 | 7.18 ±3.20 | 7.51 ±1.83 | 6.75 ±3.26 | F = 1.158 p = 0.293 | F = 0.003 p = 0.951 | |
| Averaged A′ (cm/s) | UT | 8.10 ±1.14 | 7.91 ±1.54 | 7.91 ±1.49 | 7.45 ±1.51 | F = 1.016 p = 0.324 | F = 0.015 p = 0.903 |
| T | 7.54 ±2.02 | 7.10 ±2.80 | 7.72 ±1.47 | 7.01 ±1.99 | F = 1.148 p = 0.295 | F = 0.068 p = 0.795 | |
| Averaged E′/A′ | UT | 1.97 ±0.36 | 1.73 ±0.57 | 2.04 ±0.58 | 1.75 ±0.40 | F = 4.063 p = 0.056 | F = 0.145 p = 0.707 |
| T | 2.46 ±1.36 | 2.10 ±1.20 | 2.01 ±0.61 | 2.04 ±0.69 | F = 0.355 p = 0.556 | F = 0.534 p = 0.472 | |
| E/averaged E′ | UT | 5.37 ±0.97 | 5.10 ±1.12 | 5.53 ±1.55 | 5.77 ±2.07 | F = 0.001 p = 0.966 | F = 0.483 p = 0.494 |
| T | 5.50 ±1.20 | 5.26 ±1.21 | 5.37 ±1.81 | 5.60 ±1.09 | F = 0.001 p = 0.989 | F = 0.593 p = 0.449 | |
| LA diameter (mm) | UT | 39.83 ±2.88 | 39.04 ±3.90 | 40.33 ±4.11 | 38.37 ±4.47 * | F = 9.377 p = 0.005 | F = 1.688 p = 0.207 |
| T | 39.25 ±2.87 | 36.86 ±3.15 * | 38.43 ±2.93 | 38.28 ±3.12 | F = 8.689 p = 0.007 | F = 6.759 p = 0.016 | |
| LA area (cm2) | UT | 25.21 ±4.08 | 22.21 ±4.57 * | 24.17 ±3.81 | 22.53 ±4.49 | F = 17.453 p = 0.001 | F = 1.505 p = 0.232 |
| T | 23.52 ±1.93 | 21.82 ±2.08 | 23.45 ±1.86 | 21.56 ±3.72 | F = 11.571 p = 0.002 | F = 0.027 p = 0.869 | |
| LAVi (mL/m2) | UT | 40.77 ±9.52 | 32.06 ±9.49 ** | 41.90 ±12.05 | 34.07 ±9.25 * | F = 30.883 p = 0.001 | F = 1.307 p = 0.265 |
| T | 38.97 ±3.75 | 33.14 ±5.04 *** | 38.97 ±4.77 | 33.87 ±7.67 | F = 27.215 p = 0.001 | F = 0.122 p = 0.729 | |
| Variable | Group | Normoxia | Hypoxia (3000 m) |
|---|---|---|---|
| ∆LA diameter (mm) | UT | −0.79 ± 2.19 | −1.95 ± 2.19 |
| T | −2.39 ± 2.53 | −0.15 ± 1.57 # | |
| ∆PW (mm) | UT | 0.13 ± 0.55 | −0.22 ± 0.71 |
| T | 0.10 ± 0.95 | 0.40 ± 0.62 # | |
| ∆LVESD (mm) | UT | −0.66 ± 2.77 | −0.16±2.91 |
| T | 2.14 ± 2.76 # | 1.33 ± 2.91 | |
| ∆LV EF (%) | UT | −1.71 ± 3.79 | −2.53 ± 7.02 |
| T | −4.80 ± 4.34 # | −4.07 ± 6.28 | |
| ∆Septal S′ (cm/s) | UT | −0.24 ± 1.96 | −0.23 ± 1.20 |
| T | −1.14 ± 1.41 | −1.20 ± 0.73 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajda, R.; Płoszczyca, K.; Kowalik, E.; Niemaszyk, A.; Starczewski, M.; Grzebisz-Zatońska, N.; Kaczmarczyk, K.; Langfort, J.; Czuba, M. Moderate Normobaric Hypoxia Does Not Exacerbate Left Ventricular Dysfunction After Exhaustive Exercise in Athletes and Untrained Individuals. J. Clin. Med. 2025, 14, 8391. https://doi.org/10.3390/jcm14238391
Gajda R, Płoszczyca K, Kowalik E, Niemaszyk A, Starczewski M, Grzebisz-Zatońska N, Kaczmarczyk K, Langfort J, Czuba M. Moderate Normobaric Hypoxia Does Not Exacerbate Left Ventricular Dysfunction After Exhaustive Exercise in Athletes and Untrained Individuals. Journal of Clinical Medicine. 2025; 14(23):8391. https://doi.org/10.3390/jcm14238391
Chicago/Turabian StyleGajda, Robert, Kamila Płoszczyca, Ewa Kowalik, Adam Niemaszyk, Michał Starczewski, Natalia Grzebisz-Zatońska, Katarzyna Kaczmarczyk, Józef Langfort, and Miłosz Czuba. 2025. "Moderate Normobaric Hypoxia Does Not Exacerbate Left Ventricular Dysfunction After Exhaustive Exercise in Athletes and Untrained Individuals" Journal of Clinical Medicine 14, no. 23: 8391. https://doi.org/10.3390/jcm14238391
APA StyleGajda, R., Płoszczyca, K., Kowalik, E., Niemaszyk, A., Starczewski, M., Grzebisz-Zatońska, N., Kaczmarczyk, K., Langfort, J., & Czuba, M. (2025). Moderate Normobaric Hypoxia Does Not Exacerbate Left Ventricular Dysfunction After Exhaustive Exercise in Athletes and Untrained Individuals. Journal of Clinical Medicine, 14(23), 8391. https://doi.org/10.3390/jcm14238391

