Blood Flow Restriction Training Improves Cardiac Structure and Diastolic Function in Runners with Exercise-Induced Hypertension
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and the Study Protocol
2.2. Graded Exercise Test (GXT)
2.3. Echocardiography Test
2.4. Blood Flow Restriction Exercise Method
2.5. Statistical Analysis
3. Results
3.1. Graded Exercise Test (GXT) Outcomes
3.2. Echocardiography Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACC | American College of Cardiology |
| AHA | American Heart Association |
| ASE | American Society of Echocardiography |
| BFR | Blood Flow Restriction |
| BFRTg | Blood Flow Restriction Training group |
| BMI | Body Mass Index |
| BSA | Body Surface Area |
| CO | Cardiac Output |
| COI | Cardiac Output Index |
| DBP | Diastolic Blood Pressure |
| DBPmax | Maximal Diastolic Blood Pressure |
| DBPrest | Resting Diastolic Blood Pressure |
| DT | Deceleration Time |
| E | Peak early diastolic filling velocity |
| E′ | Early diastolic mitral annular velocity |
| E/E′ | Ratio of E to E′ |
| E′/A′ | Ratio of early to late diastolic mitral annular velocity |
| EIH | Exercise-Induced Hypertension |
| ECG | Electrocardiogram |
| GXT | Graded Exercise Test |
| HR | Heart Rate |
| HRmax | Maximal Heart Rate |
| HRrest | Resting Heart Rate |
| HRR | Heart Rate Reserve |
| IVSd | Interventricular Septum thickness at end-diastole |
| LAD | Left Atrial Diameter |
| LV | Left Ventricle/Left Ventricular |
| LVCO | Left Ventricular Cardiac Output |
| LVEDV | Left Ventricular End-Diastolic Volume |
| LVEF | Left Ventricular Ejection Fraction |
| LVESV | Left Ventricular End-Systolic Volume |
| LVFS | Left Ventricular Fractional Shortening |
| LVIDd | Left Ventricular Internal Dimension at end-diastole |
| LVIDs | Left Ventricular Internal Dimension at end-systole |
| LVIVSd | Left Ventricular Interventricular Septum thickness at end-diastole |
| LVM | Left Ventricular Mass |
| LVMI | Left Ventricular Mass Index |
| LVSV | Left Ventricular Stroke Volume |
| LVPWd | Left Ventricular Posterior Wall thickness at end-diastole |
| RPE | Rating of Perceived Exertion |
| SBP | Systolic Blood Pressure |
| SBPmax | Maximal Systolic Blood Pressure |
| SBPrest | Resting Systolic Blood Pressure |
| TET | Total Exercise Time |
| VO2max | Maximal Oxygen Uptake |
References
- Sun, L.; Xu, C.; Zhang, Z.; Tang, L.; Liu, X. Physical activity lowers all-cause and cardio-cerebrovascular mortality in adults with coronary heart disease. Int. J. Cardiol. 2024, 410, 132225. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.L.; Terada, T.; Cotie, L.M.; Tulloch, H.E.; Leenen, F.H.; Mistura, M.; Hans, H.; Wang, H.-W.; Vidal-Almela, S.; Reid, R.D. The effects of high-intensity interval training, Nordic walking and moderate-to-vigorous intensity continuous training on functional capacity, depression and quality of life in patients with coronary artery disease enrolled in cardiac rehabilitation: A randomized controlled trial (CRX study). Prog. Cardiovasc. Dis. 2022, 70, 73–83. [Google Scholar] [PubMed]
- Kim, Y.J.; Lee, S.E.; Park, K.M. Exercise characteristics and incidence of abnormal electrocardiogram response in long-distance runners with exercise-induced hypertension. J. Clin. Hypertens. 2021, 23, 1915–1921. [Google Scholar] [CrossRef]
- Kim, C.-H.; Park, Y.; Chun, M.Y.; Kim, Y.-J. Exercise-induced hypertension can increase the prevalence of coronary artery plaque among middle-aged male marathon runners. Medicine 2020, 99, e19911. [Google Scholar] [CrossRef]
- Gwag, H.B.; Kim, Y.-J.; Park, K.-M. Excessive blood pressure rise and cardiovascular remodeling in marathon runners. Int. J. Sports Med. 2024, 45, 930–936. [Google Scholar] [CrossRef]
- Allison, T.G.; Cordeiro, M.A.; Miller, T.D.; Daida, H.; Squires, R.W.; Gau, G.T. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am. J. Cardiol. 1999, 83, 371–375. [Google Scholar] [CrossRef]
- Singh, J.P.; Larson, M.G.; Manolio, T.A.; O’Donnell, C.J.; Lauer, M.; Evans, J.C.; Levy, D. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation 1999, 99, 1831–1836. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, Y.; Chun, M.Y.; Kim, Y.J. Exercise-induced hypertension is associated with angiotensin II activity and total nitric oxide. Medicine 2020, 99, e20943. [Google Scholar] [CrossRef]
- Yoon, E.S.; Kim, Y.J. Exercise-induced Hypertension and Carotid Intima-media Thickness in Male Marathon Runners. Int. J. Sports Med. 2024, 45, 519–525. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, K.M. Possible Mechanisms for Adverse Cardiac Events Caused by Exercise-Induced Hypertension in Long-Distance Middle-Aged Runners: A Review. J. Clin. Med. 2024, 13, 2184. [Google Scholar] [CrossRef]
- Spranger, M.D.; Krishnan, A.C.; Levy, P.D.; O’Leary, D.S.; Smith, S.A. Blood flow restriction training and the exercise pressor reflex: A call for concern. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1440–H1452. [Google Scholar] [CrossRef]
- Held, S.; Rappelt, L.; Rein, R.; Deutsch, J.-P.; Wiedenmann, T.; Donath, L. Five-Week, Low-Intensity Blood Flow Restriction Rowing Improves Vȯ2max in Elite Rowers. J. Strength Cond. Res. 2022, 10–1519. [Google Scholar] [CrossRef]
- Slysz, J.; Stultz, J.; Burr, J.F. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Glattke, K.E.; Tummala, S.V.; Chhabra, A. Anterior cruciate ligament reconstruction recovery and rehabilitation: A systematic review. J. Bone Jt. Surg. 2022, 104, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Araújo, J.P.; Silva, E.D.; Silva, J.C.; Souza, T.S.; Lima, E.O.; Guerra, I.; Sousa, M.S. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects. J. Hum. Kinet. 2014, 43, 79. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; Ma, X.; Qiang, L.; Lin, A.; Zhou, M. Low-intensity resistance exercise combined with blood flow restriction is more conducive to regulate blood pressure and autonomic nervous system in hypertension patients—Compared with high-intensity and low-intensity resistance exercise. Front. Physiol. 2022, 13, 833809. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Chung, I.-M.; Park, C.-H.; Lee, J.-Y. Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension. J. Clin. Med. 2025, 14, 4466. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Beasley, J.W.; FAAFP; Bricker, J.T.; Duvernoy, W.F.; Froelicher, V.F.; Mark, D.B.; Marwick, T.H.; McCallister, B.D. ACC/AHA guidelines for exercise testing: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Circulation 1997, 96, 345–354. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Pinto, R.R.; Polito, M.D. Haemodynamic responses during resistance exercise with blood flow restriction in hypertensive subjects. Clin. Physiol. Funct. Imaging 2016, 36, 407–413. [Google Scholar] [CrossRef]
- Cezar, M.A.; De Sá, C.A.; Corralo, V.d.S.; Copatti, S.L.; Santos, G.A.G.d.; Grigoletto, M.E.d.S. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients. Mot. Rev. De Educ. Física 2016, 22, 9–17. [Google Scholar] [CrossRef]
- Shimizu, R.; Hotta, K.; Yamamoto, S.; Matsumoto, T.; Kamiya, K.; Kato, M.; Hamazaki, N.; Kamekawa, D.; Akiyama, A.; Kamada, Y.; et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 2016, 116, 749–757. [Google Scholar] [CrossRef]
- Maga, M.; Wachsmann-Maga, A.; Batko, K.; Włodarczyk, A.; Kłapacz, P.; Krężel, J.; Szopa, N.; Sliwka, A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis-A Systematic Review with Meta-Analysis. Biomedicines 2023, 11, 1601. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, N.; Pang, F.; Chen, T. Resistance Training with Blood Flow Restriction on Vascular Function: A Meta-analysis. Int. J. Sports Med. 2021, 42, 577–587. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Zhang, J.; Li, L.; Wang, T.; Wang, X.; Wang, H. Effects of aerobic training with blood flow restriction on aerobic capacity, muscle strength, and hypertrophy in young adults: A systematic review and meta-analysis. Front. Physiol. 2024, 15, 1506386. [Google Scholar] [CrossRef]
- Horiuchi, M.; Stoner, L.; Poles, J. The effect of four weeks blood flow restricted resistance training on macro- and micro-vascular function in healthy, young men. Eur. J. Appl. Physiol. 2023, 123, 2179–2189. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.F.; Narayan, P.; Colleran, J.A.; Pittaras, A.; Notargiacomo, A.; Reda, D.; Papademetriou, V. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N. Engl. J. Med. 1995, 333, 1462–1467. [Google Scholar] [CrossRef] [PubMed]
- Hinderliter, A.; Sherwood, A.; Gullette, E.C.; Babyak, M.; Waugh, R.; Georgiades, A.; Blumenthal, J.A. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch. Intern. Med. 2002, 162, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, B.; Rocco, M.V.; Pajewski, N.M.; Morgan, T.; Blackshear, J.; Hundley, W.G.; Oparil, S.; Soliman, E.Z.; Cohen, D.L.; Hamilton, C.A.; et al. Effect of Intensive Blood Pressure Reduction on Left Ventricular Mass, Structure, Function, and Fibrosis in the SPRINT-HEART. Hypertension 2019, 74, 276–284. [Google Scholar] [CrossRef]
- Franz, I.W.; Tönnesmann, U.; Müller, J.F. Time course of complete normalization of left ventricular hypertrophy during long-term antihypertensive therapy with angiotensin converting enzyme inhibitors. Am. J. Hypertens. 1998, 11, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.P.; Weiss, J.L.; Becker, L.C.; Gottlieb, S.O.; Woodruff, K.M.; Weisfeldt, M.L.; Gerstenblith, G. The effects of antihypertensive therapy on left ventricular mass in elderly patients. N. Engl. J. Med. 1990, 322, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Hillis, G.S.; Møller, J.E.; Pellikka, P.A.; Gersh, B.J.; Wright, R.S.; Ommen, S.R.; Reeder, G.S.; Oh, J.K. Noninvasive estimation of left ventricular filling pressure by E/e’ is a powerful predictor of survival after acute myocardial infarction. J. Am. Coll. Cardiol. 2004, 43, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.T.; Ammann, P.; Rickli, H. The diagnosis of heart failure with normal ejection fraction—A demanding task! Swiss Med. Wkly. 2010, 140, 323–324. [Google Scholar] [CrossRef]
- Zamfirescu, M.B.; Ghilencea, L.N.; Popescu, M.R.; Bejan, G.C.; Maher, S.M.; Popescu, A.C.; Dorobanțu, M. The E/e’ Ratio-Role in Risk Stratification of Acute Heart Failure with Preserved Ejection Fraction. Medicina 2021, 57, 375. [Google Scholar] [CrossRef]
- Koprowski, A.; Gruchala, M.; Rynkiewicz, A. Management of left ventricular diastolic heart failure: Is it only blood pressure control? Curr. Opin. Cardiol. 2009, 24, 161–166. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, B.; Lee, J.Y.; Kim, J.S.; Han, B.G.; Choi, S.O.; Yang, J.W. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J. Intern. Med. 2013, 28, 35–44. [Google Scholar] [CrossRef]
- Sharp, A.S.; Tapp, R.J.; Thom, S.A.; Francis, D.P.; Hughes, A.D.; Stanton, A.V.; Zambanini, A.; O’Brien, E.; Chaturvedi, N.; Lyons, S.; et al. Tissue Doppler E/E’ ratio is a powerful predictor of primary cardiac events in a hypertensive population: An ASCOT substudy. Eur. Heart J. 2010, 31, 747–752. [Google Scholar] [CrossRef]
- Pearson, M.J.; Mungovan, S.F.; Smart, N.A. Effect of exercise on diastolic function in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2017, 22, 229–242. [Google Scholar] [CrossRef]
- Chan, E.; Giallauria, F.; Vigorito, C.; Smart, N.A. Exercise training in heart failure patients with preserved ejection fraction: A systematic review and meta-analysis. Monaldi Arch. Chest Dis. 2016, 86, 759. [Google Scholar] [CrossRef]




| Variable | BFRTg (n = 15) | Non-BFRTg (n = 14) | p-Value |
|---|---|---|---|
| General characteristics | |||
| Age (years) | 57.1 ± 5.6 | 57.1 ± 7.4 | 0.997 |
| Height (cm) | 172.0 ± 7.7 | 170.3 ± 3.6 | 0.462 |
| Weight (kg) | 68.4 ± 7.2 | 63.3 ± 16.3 | 0.280 |
| BMI (m2/kg) | 23.1 ± 2.2 | 21.8 ± 5.5 | 0.409 |
| Disease | 9 (60%) | 6 (42.8%) | 0.580 |
| Hypertension | 5 (33.3%) | 2 (14.3%) | 0.231 |
| Dyslipidemia | 3 (20.0%) | 2 (14.3%) | 0.684 |
| Diabetes | 1 (6.7%) | 1 (7.1%) | 0.960 |
| Diabetes + Hypertension | 0 (0.0%) | 1 (7.1%) | 0.292 |
| Exercise data | |||
| Exercise history (years) | 15.8 ± 6.2 | 17.5 ± 6.3 | 0.474 |
| Marathon time (min) | 234.6 ± 39.0 | 234.6 ± 39.0 | 0.833 |
| Marathon completed (numbers) | 73.6 ± 54.0 | 54.7 ± 39.5 | 0.296 |
| Exercise intensity (Borg’s scale) | 14.3 ± 1.4 | 14.8 ± 0.9 | 0.263 |
| Exercise frequency (weeks) | 3.7 ± 1.7 | 3.8 ± 1.5 | 0.841 |
| Exercise time (min/day) | 74.6 ± 22.6 | 87.1 ± 30.0 | 0.219 |
| GXT | |||
| HRrest (beats/min) | 60.0 ± 8.0 | 60.2 ± 7.0 | 0.939 |
| HRmax (beats/min) | 163.5 ± 14.4 | 166.9 ± 9.2 | 0.462 |
| SBPrest (mmHg) | 129.0 ± 12.2 | 123.9 ± 9.6 | 0.229 |
| SBPmax (mmHg) | 222.8 ± 7.3 | 218.2 ± 5.5 | 0.068 |
| DBPrest (mmHg) | 83.3 ± 9.7 | 78.2 ± 5.4 | 0.095 |
| DBPmax (mmHg) | 94.8 ± 7.3 | 94.0 ± 9.9 | 0.795 |
| TET (s) | 761.3 ± 130.4 | 806.4 ± 96.5 | 0.302 |
| VO2max (mL/kg/min) | 46.0 ± 9.6 | 47.2 ± 6.1 | 0.700 |
| Week | Target Intensity (%HRR) | Frequency & Duration | Mode and Pressure Details | Description |
|---|---|---|---|---|
| Week 1 | 50% HRR | Twice weekly, 20 min | Cyclic mode (low pressure: 150–220 mmHg); 30 s inflation → 5 s release, with +10 mmHg increments per cycle | Adaptation phase to gradually expose participants to BFR stimulus |
| Week 2 | 50% HRR | Twice weekly, 20 min | Stage 1: Cyclic mode (230–300 mmHg) for 10 min with gradual pressure increase (+10 mmHg per cycle) Stage 2: Constant mode (250 mmHg) for 10 min of sustained restriction | Transition phase introducing moderate pressure with partial constant loading |
| Weeks 3–8 | 60% HRR | Twice weekly, 20 min | Initial phase: Cyclic mode (230–300 mmHg) for 5 min with gradual pressure increments, followed by Continuous phase: Constant mode (250 mmHg) for 15 min of sustained restriction | Continuous BFR treadmill exercise at moderate intensity, promoting progressive load adaptation |
| Variable | Group | Pre | Post | p-Value |
|---|---|---|---|---|
| HRrest (beats/min) | BFRTg | 60.0 ± 8.0 | 62.2 ± 10.7 | T: 0.187 G: 0.870 I: 0.875 |
| non-BFRTg | 60.2 ± 7.0 | 63.0 ± 12.2 | ||
| SBPrest (mmHg) | BFRTg | 129.0 ± 12.2 | 119.5 ± 9.2 * | T: 0.027 G: 0.100 I: 0.770 |
| non-BFRTg | 123.9 ± 9.6 | 122.5 ± 14.1 | ||
| DBPrest (mmHg) | BFRTg | 83.3 ± 9.7 | 84.7 ± 8.0 | T: 0.202 G: 0.360 I: 0.084 |
| non-BFRTg | 78.2 ± 5.4 | 85.7 ± 5.8 * | ||
| HRmax (beats/min) | BFRTg | 163.5 ± 14.4 | 161.1 ± 17.9 | T: 0.882 G: 0.243 I: 0.317 |
| non-BFRTg | 166.9 ± 9.2 | 168.7 ± 10.2 | ||
| SBPmax (mmHg) | BFRTg | 222.8 ± 7.3 | 179.7 ± 17.4 * § | T: <0.001 G: <0.001 I: <0.001 |
| non-BFRTg | 218.2 ± 5.5 | 211.4 ± 12.9 | ||
| DBPmax (mmHg) | BFRTg | 94.8 ± 7.3 | 88.6 ± 8.7 * | T: 0.004 G: 0.838 I: 0.358 |
| non-BFRTg | 94.0 ± 9.9 | 90.7 ± 10.3 | ||
| TET (sec) | BFRTg | 761.3 ± 130.4 | 806.0 ± 134.7 * | T: 0.306 G: 0.714 I: 0.046 |
| non-BFRTg | 806.4 ± 96.5 | 791.4 ± 99.4 | ||
| VO2max (ml/kg/min) | BFRTg | 46.0 ± 9.6 | 49.7 ± 8.4 * | T: 0.327 G: 0.544 I: <0.001 |
| non-BFRTg | 47.2 ± 6.1 | 44.9 ± 8.1 * |
| Variable | Group | Pre | Post | p-Value |
|---|---|---|---|---|
| LAD (cm) | BFRTg | 3.6 ± 0.3 | 3.6 ± 0.2 | T: 0.608 G: 0.116 I: 0.332 |
| Non-BFRTg | 3.4 ± 0.4 | 3.4 ± 0.3 | ||
| LVIDd (cm) | BFRTg | 4.7 ± 0.2 | 4.8 ± 0.2 | T: 0.193 G: 0.595 I: 0.548 |
| Non-BFRTg | 4.8 ± 0.4 | 4.9 ± 0.4 | ||
| LVIDs (cm) | BFRTg | 3.0 ± 0.1 | 3.0 ± 0.1 | T: 0.027 G: 0.100 I: 0.770 |
| Non-BFRTg | 3.1 ± 0.3 | 3.1 ± 0.3 | ||
| LVPWd (mm) | BFRTg | 0.92 ± 0.10 | 0.92 ± 0.12 | T: 0.882 G: 0.243 I: 0.317 |
| Non-BFRTg | 0.91 ± 0.14 | 0.92 ± 0.12 | ||
| LVIVSd (mm) | BFRTg | 0.96 ± 0.09 | 0.92 ± 0.07 | T: 0.195 G: 0.629 I: 0.009 |
| Non-BFRTg | 0.95 ± 0.11 | 0.97 ± 0.11 | ||
| LVM (g) | BFRTg | 180.8 ± 25.4 | 181.4 ± 30.8 | T: 0.345 G: 0.515 I: 0.426 |
| Non-BFRTg | 188.0 ± 53.6 | 194.2 ± 52.5 | ||
| LVMI (g/m2) | BFRTg | 100.8 ± 17.2 | 100.6 ± 18.8 | T: 0.413 G: 0.506 I: 0.373 |
| Non-BFRTg | 104.9 ± 28.5 | 108.0 ± 27.8 | ||
| LVEDV (mL) | BFRTg | 107.0 ± 11.3 | 108.6 ± 12.7 | T: 0.170 G: 0.434 I: 0.572 |
| Non-BFRTg | 111.6 ± 24.6 | 115.4 ± 26.9 | ||
| LVESV (mL) | BFRTg | 37.4 ± 5.3 | 36.8 ± 4.8 | T: 0.440 G: 0.441 I: 0.979 |
| Non-BFRTg | 39.9 ± 12.2 | 39.2 ± 10.4 | ||
| LVSV (mL) | BFRTg | 69.5 ± 8.9 | 72.0 ± 9.6 | T: 0.049 G: 0.511 I: 0.532 |
| Non-BFRTg | 71.4 ± 14.0 | 76.0 ± 17.6 | ||
| LVCO (L/min) | BFRTg | 3.9 ± 0.8 | 4.0 ± 0.4 | T: 0.291 G: 0.601 I: 0.493 |
| Non-BFRG | 3.9 ± 0.8 | 4.3 ± 1.6 | ||
| LVEF (%) | BFRG | 65.0 ± 4.1 | 66.1 ± 3.0 | T: 0.054 G: 0.811 I: 0.694 |
| Non-BFRG | 64.4 ± 4.3 | 66.1 ± 3.4 | ||
| LVFS (%) | BFRG | 35.6 ± 3.0 | 36.5 ± 2.3 | T: 0.059 G: 0.854 I: 0.694 |
| Non-BFRG | 35.3 ± 3.1 | 36.5 ± 2.5 |
| Variable | Group | Pre | Post | p-Value |
|---|---|---|---|---|
| E (cm/s) | BFRG | 68.4 ± 17.4 | 64.7 ± 13.4 | T: 0.751 G: 0.231 I: 0.229 |
| Non-BFRG | 59.1 ± 16.2 | 61.2 ± 14.0 | ||
| A (cm/s) | BFRG | 62.2 ± 9.9 | 62.5 ± 10.8 | T: 0.896 G: 0.267 I: 0.925 |
| Non-BFRG | 58.1 ± 11.4 | 58.2 ± 10.3 | ||
| E/A | BFRG | 1.12 ± 0.34 | 1.05 ± 0.24 | T: 0.657 G: 0.862 I: 0.372 |
| Non-BFRG | 1.05 ± 0.38 | 1.07 ± 0.29 | ||
| E′ (cm/s) | BFRG | 8.7 ± 1.6 | 9.6 ± 1.6 | T: 0.135 G: 0.946 I: 0.061 |
| Non-BFRG | 9.2 ± 1.7 | 9.1 ± 1.8 | ||
| A′ (cm/s) | BFRG | 11.8 ± 1.7 | 11.5 ± 0.9 | T: 0.942 G: 0.983 I: 0.396 |
| Non-BFRG | 11.5 ± 1.3 | 11.7 ± 1.8 | ||
| E′/A′ ratio | BFRG | 0.75 ± 0.16 | 0.85 ± 0.19 | T: 0.225 G: 0.902 I: 0.021 |
| Non-BFRG | 0.81 ± 0.17 | 0.78 ± 0.14 | ||
| E/E′ ratio | BFRG | 7.80 ± 1.56 § | 6.77 ± 1.41 | T: 0.240 G: 0.232 I: 0.005 |
| Non-BFRG | 6.42 ± 1.47 | 6.87 ± 1.77 | ||
| DT (ms) | BFRG | 0.18 ± 0.02 | 0.17 ± 0.01 | T: 0.211 G: 0.101 I: 0.773 |
| Non-BFRG | 0.19 ± 0.03 | 0.19 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Lee, J.-Y.; Park, C.-H.; Park, H.-S. Blood Flow Restriction Training Improves Cardiac Structure and Diastolic Function in Runners with Exercise-Induced Hypertension. J. Clin. Med. 2025, 14, 7795. https://doi.org/10.3390/jcm14217795
Kim Y-J, Lee J-Y, Park C-H, Park H-S. Blood Flow Restriction Training Improves Cardiac Structure and Diastolic Function in Runners with Exercise-Induced Hypertension. Journal of Clinical Medicine. 2025; 14(21):7795. https://doi.org/10.3390/jcm14217795
Chicago/Turabian StyleKim, Young-Joo, Jong-Young Lee, Choung-Hwa Park, and Han-Soo Park. 2025. "Blood Flow Restriction Training Improves Cardiac Structure and Diastolic Function in Runners with Exercise-Induced Hypertension" Journal of Clinical Medicine 14, no. 21: 7795. https://doi.org/10.3390/jcm14217795
APA StyleKim, Y.-J., Lee, J.-Y., Park, C.-H., & Park, H.-S. (2025). Blood Flow Restriction Training Improves Cardiac Structure and Diastolic Function in Runners with Exercise-Induced Hypertension. Journal of Clinical Medicine, 14(21), 7795. https://doi.org/10.3390/jcm14217795

