The Influence of Uric Acid Concentration on the Daily Functioning of Patients at an Advanced Age, Based on the Results of Selected Point Scales Routinely Used for the Comprehensive Geriatric Assessment in Poland
Abstract
1. Introduction
2. Materials and Methods
- 1.
- Patients treated for hyperuricemia who had normal uric acid levels at recruitment;
- 2.
- Patients with elevated uric acid levels during recruitment—untreated or unsuccessfully treated;
- 3.
- Control group—patients not treated for hyperuricemia and with normal uric acid levels.
- 1.
- The ADL (Activities of Daily Living) is a questionnaire assessing the ability of the examined person to perform activities that allow independent coping with basic needs, including bathing, dressing, using the toilet, moving, controlled excretion of urine and stool, and eating. For independent performance of the above activities, 1 point is awarded; if they cannot do it, they receive 0 points. A maximum of 6 points can be awarded, which means full functionality and a minimum of 0. Obtaining less than 3 points means severe disability [14].
- 2.
- The MMSE (Mini-Mental State Examination) scale is a tool used to assess the patient’s cognitive functions. It contains 30 questions covering various cognitive function areas, including orientation, memory, attention, calculation, memorization, language, and following commands. The MMSE scale results can range from 0 to 30 points. The higher the number of points, the better the patient’s cognitive function. Values below 24 points may suggest the presence of cognitive disorders, such as dementia, but the final diagnosis requires further tests [15].
- 3.
- The ACE-III (Addenbrooke’s Cognitive Examination III) scale is a diagnostic tool also used to assess cognitive functions. However, it is more detailed than the MMSE. It consists of 5 main areas of assessment, which cover different aspects of cognitive functions: orientation, memory, attention, calculation, language, and visual–spatial skills. The total number of points obtained in the ACE-III scale is 100 [16]. Polish normative data for adults aged ≥65 years indicate that scores below 88/100 fall below the 5th percentile, suggesting cognitive impairment [17]. Accordingly, we classified participants with ≤87 points as cognitively impaired.
- 4.
- The Mini Nutritional Assessment (MNA) is a diagnostic tool used to assess the nutritional status of older people. It consists of 18 questions divided into two main parts: nutritional assessment (6 questions) and assessment of anthropometric measurements (12 questions). Based on the answers, the MNA scale score is calculated, and the patient receives one of three possible results: no malnutrition, risk of malnutrition, or malnutrition [18].
- 5.
- The GDS (Geriatric Depression Scale) is a scale that allows screening for the intensity of depression symptoms in older adults. The questionnaire consists of 30 questions that can be answered with short “yes” or “no” answers. The questions concern the feelings of the examined person during the last week. The answers are additionally marked with asterisks. For each marked answer with an asterisk, the patient receives 1 point. The more points obtained, the greater the risk of severe depression [19].
3. Results
3.1. Descriptive Statistics by Groups of Subjects
3.2. Uric Acid Values by Geriatric Scales
3.2.1. Uric Acid and the MMSE
3.2.2. Uric Acid and the ACE-III
3.2.3. Uric Acid and the MNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE-III | Addenbrooke’s Cognitive Examination III |
ADL | Activities of Daily Living |
FFH | Fisher–Freeman–Halton exact test |
GDS | Geriatric Depression Scale |
IADL | Instrumental Activities of Daily Living |
MMSE | Mini-Mental State Examination |
MNA | Mini Nutritional Assessment |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
SMMSE | Standardized Mini-Mental State Examination |
SPPB | Short Physical Performance Battery |
SUA | Serum Uric Acid |
UA | Uric Acid |
References
- Cortese, F.; Scicchitano, P.; Cortese, A.M.; Meliota, G.; Andriani, A.; Truncellito, L.; Calculli, G.; Giordano, P.; Ciccone, M.M. Uric Acid in Metabolic and Cerebrovascular Disorders: A Review. Curr. Vasc. Pharmacol. 2020, 18, 610–618. [Google Scholar] [CrossRef]
- Euser, S.M.; Hofman, A.; Westendorp, R.G.J.; Breteler, M.M.B. Serum Uric Acid and Cognitive Function and Dementia. Brain 2008, 132, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Peng, M.; Yang, T.; Si, G. Uric Acid Levels and Risk of Cognitive Impairment: Dose-Response Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2023, 18, e0293832. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and Its Related Diseases: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Hsu, F.-C.; Serra, M.C.; Yank, V.; Pahor, M.; Nicklas, B.J. The Effects of a Long-Term Physical Activity Intervention on Serum Uric Acid in Older Adults at Risk for Physical Disability. J. Aging Phys. Act. 2014, 22, 25–33. [Google Scholar] [CrossRef]
- Chung, P.-T.; Ma, H.-C.; Huang, S.-Y.; Lien, H.-N.; Ho, K.-H.; Hsu, H.-Y.; Hwang, L.-C.; Tsou, M.-T.; Lin, H.-H.; Chan, H.-L. Association between Serum Uric Acid Levels and Bone Mineral Density in Taiwanese Elderly Population. Int. J. Environ. Res. Public Health 2023, 20, 3448. [Google Scholar] [CrossRef]
- Domínguez-Zambrano, E.; Pedraza-Chaverri, J.; López-Santos, A.L.; Medina-Campos, O.N.; Cruz-Rivera, C.; Bueno-Hernández, F.; Espinosa-Cuevas, A. Association between Serum Uric Acid Levels, Nutritional and Antioxidant Status in Patients on Hemodialysis. Nutrients 2020, 12, 2600. [Google Scholar] [CrossRef]
- Weng, H.; Li, H.; Zhang, Z.; Zhang, Y.; Xi, L.; Zhang, D.; Deng, C.; Wang, D.; Chen, R.; Chen, G.; et al. Association between Uric Acid and Risk of Venous Thromboembolism in East Asian Populations: A Cohort and Mendelian Randomization Study. Lancet Reg. Health-West. Pac. 2023, 39, 100848. [Google Scholar] [CrossRef]
- Lu, J.; He, Y.; Cui, L.; Xing, X.; Liu, Z.; Li, X.; Zhang, H.; Li, H.; Sun, W.; Ji, A.; et al. Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic β-Cell Death in Uricase-Deficient Male Mice. Diabetes 2020, 69, 1149–1163. [Google Scholar] [CrossRef]
- Desideri, G.; Bocale, R.; D’Amore, A.M.; Carnassale, G.; Necozione, S.; Barini, A.; Barini, A.; Lombardi, C.P. Thyroid Hormones Modulate Uric Acid Metabolism in Patients with Recent Onset Subclinical Hypothyroidism by Improving Insulin Sensitivity. Intern. Emerg. Med. 2020, 15, 67–71. [Google Scholar] [CrossRef]
- Gherghina, M.-E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress—Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Ma, L.; Ge, Y.; Wang, X.M. The Effect of Lipid Metabolism Disorder on Patients with Hyperuricemia Using Multi-Omics Analysis. Sci. Rep. 2023, 13, 18211. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, M.; Lin, H.; Wang, J. Association between Uric Acid and the Risk of Depressive Symptoms in US Adults: Results from NHANES 2005–2018. Sci. Rep. 2024, 14, 24097. [Google Scholar] [CrossRef] [PubMed]
- Pashmdarfard, M.; Azad, A. Assessment Tools to Evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in Older Adults: A Systematic Review. Med. J. Islam. Repub. Iran 2020, 34, 33. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, Z.; Huang, F.; Su, C.; Du, W.; Jiang, H.; Wang, H.; Wang, J.; Wang, F.; Su, W.; et al. A Comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for Mild Cognitive Impairment Screening in Chinese Middle-Aged and Older Population: A Cross-Sectional Study. BMC Psychiatry 2021, 21, 485. [Google Scholar] [CrossRef]
- Senda, M.; Terada, S.; Takenoshita, S.; Hayashi, S.; Yabe, M.; Imai, N.; Horiuchi, M.; Yamada, N. Diagnostic Utility of the Addenbrooke’s Cognitive Examination—III (ACE-III), Mini-ACE, Mini-Mental State Examination, Montreal Cognitive Assessment, and Hasegawa Dementia Scale-Revised for Detecting Mild Cognitive Impairment and Dementia. Psychogeriatrics 2020, 20, 156–162. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Ilkowska, Z.; Kropinska, S.; Tobis, S.; Krzyminska-Siemaszko, R.; Kaluzniak-Szymanowska, A.; Wieczorowska-Tobis, K. Applying ACE-III, M-ACE and MMSE to Diagnostic Screening Assessment of Cognitive Functions within the Polish Population. Int. J. Environ. Res. Public Health 2022, 19, 12257. [Google Scholar] [CrossRef]
- Chudzik, M.; Burzyńska, M.; Kapusta, J. Use of 1-MNA to Improve Exercise Tolerance and Fatigue in Patients after COVID-19. Nutrients 2022, 14, 3004. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and Validation of a Geriatric Depression Screening Scale: A Preliminary Report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual, Scotts Valley. Available online: https://www.python.org/ (accessed on 22 April 2025).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pandas Development Team Pandas (v. 2.2.3). Available online: https://pandas.pydata.org/docs/whatsnew/index.html#version-2-3 (accessed on 22 April 2025).
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Mark, R.G. Tableone: An Open Source Python Package for Producing Summary Statistics for Research Papers. JAMIA Open 2018, 1, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Wen, S.; Arakawa, H.; Tamai, I. Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacol. Ther. 2024, 256, 108615. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, D.; Pang, Z.; Jiang, W.; Wang, S.; Tan, Q. Association of Serum Uric Acid Level with Muscle Strength and Cognitive Function among Chinese Aged 50-74 Years. Geriatr. Gerontol. Int. 2013, 13, 672–677. [Google Scholar] [CrossRef]
- Burke, B.T.; Köttgen, A.; Law, A.; Gwen Windham, B.; Segev, D.; Baer, A.N.; Coresh, J.; McAdams-DeMarco, M.A. Physical Function, Hyperuricemia, and Gout in Older Adults. Arthritis Care Res. 2015, 67, 1730–1738. [Google Scholar] [CrossRef]
- Ruggiero, C.; Cherubini, A.; Guralnik, J.; Semba, R.D.; Maggio, M.; Ling, S.M.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. The Interplay Between Uric Acid and Antioxidants in Relation to Physical Function in Older Persons. J. Am. Geriatr. Soc. 2007, 55, 1206–1215. [Google Scholar] [CrossRef]
- Laudisio, A.; Dorizzi, A.; Villeggia, F.; Latino, F.; Filippucci, D.; Zuccalà, G. Association of Serum Uric Acid with Functional Disability in Older Subjects: A Population-Based Study. Aging Clin. Exp. Res. 2024, 36, 96. [Google Scholar] [CrossRef]
- Kang, M.; Baek, J.Y.; Jo, Y.; Ryu, D.; Jang, I.; Jung, H.; Kim, B. Higher Serum Uric Acid as a Risk Factor for Frailty in Older Adults: A Nationwide Population-based Study. J. Cachexia Sarcopenia Muscle 2024, 15, 2134–2142. [Google Scholar] [CrossRef]
- Winder, M.; Owczarek, A.J.; Mossakowska, M.; Holecki, M.; Broczek, K.; Grodzicki, T.; Zdrojewski, T.; Chudek, J. Serum Uric Acid Is a Weak Independent Predictor of Overall Survival in Older Adults. J. Clin. Med. 2021, 10, 4505. [Google Scholar] [CrossRef]
- Afsar, B.; Elsurer, R.; Covic, A.; Johnson, R.J.; Kanbay, M. Relationship between Uric Acid and Subtle Cognitive Dysfunction in Chronic Kidney Disease. Am. J. Nephrol. 2011, 34, 49–54. [Google Scholar] [CrossRef]
- Latourte, A.; Soumaré, A.; Bardin, T.; Perez-Ruiz, F.; Debette, S.; Richette, P. Uric Acid and Incident Dementia over 12 Years of Follow-up: A Population-Based Cohort Study. Ann. Rheum. Dis. 2018, 77, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.B.; Wu, A.; Power, M.C.; West, N.A.; Alonso, A. Associations of Serum Uric Acid with Incident Dementia and Cognitive Decline in the ARIC-NCS Cohort. J. Neurol. Sci. 2020, 414, 116866. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, S.; Cheng, Q.; Li, J.; Zhang, H.; Wang, J.; Luo, J.; Pan, C.; Zhang, Q.; Xie, J.; et al. Associations between Uric Acid and Depressive Symptoms, and the Mediating Role of Immunoinflammatory: Findings from Rural Older Adults. Brain Behav. Immun.-Health 2024, 42, 100893. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Cheng, M.; Wang, H.; Yue, J.; Wang, H.; Li, G.; Zheng, L.; Zhong, Z.; Peng, F. Serum Uric Acid Levels and the Clinical Characteristics of Depression. Clin. Biochem. 2012, 45, 49–53. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Yu, D.; Ding, G. Associations between Serum Uric Acid and Depression among Middle-Aged and Elderly Participants in China. Psychol. Health Med. 2019, 24, 1277–1286. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhong, S.; Liang, Y.; Zhang, X.; Zhang, R.; Kang, K.; Qu, H.; Xu, Y.; Zhao, C.; Zhao, M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2021, 13, 625690. [Google Scholar] [CrossRef]
- Eurostat Cardiovascular Diseases Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cardiovascular_diseases_statistics (accessed on 6 July 2025).
Patients Properly Treated for Hyperuricemia | Control Group | Patients with Elevated Uric Acid Levels | ||
---|---|---|---|---|
Age | N | 25 | 29 | 23 |
mean | 81.40 | 81.93 | 83.83 | |
std | 8.46 | 8.46 | 9.79 | |
min | 63 | 68 | 61 | |
Q1 | 77 | 75 | 79 | |
median | 85 | 83 | 87 | |
Q3 | 87 | 90 | 90 | |
max | 94 | 94 | 98 | |
Uric acid | N | 25 | 29 | 23 |
mean | 4.73 | 4.89 | 9.21 | |
std | 1.08 | 1.00 | 1.43 | |
min | 2.7 | 2.9 | 7 | |
Q1 | 3.8 | 4 | 8.3 | |
median | 4.7 | 4.9 | 8.8 | |
Q3 | 5.6 | 5.6 | 9.65 | |
max | 6.7 | 6.7 | 12.3 | |
ADL | N | 24 | 29 | 23 |
mean | 4.29 | 4.28 | 4.17 | |
std | 1.20 | 1.07 | 1.30 | |
min | 2 | 2 | 1 | |
Q1 | 3 | 4 | 3.5 | |
median | 5 | 4 | 5 | |
Q3 | 5 | 5 | 5 | |
max | 6 | 6 | 6 | |
MMSE | N | 25 | 29 | 23 |
mean | 23.40 | 24.86 | 22.04 | |
std | 4.37 | 3.64 | 4.22 | |
min | 14 | 16 | 14 | |
Q1 | 21 | 23 | 20 | |
median | 24 | 27 | 24 | |
Q3 | 27 | 28 | 24.5 | |
max | 29 | 29 | 28 | |
ACE-III | N | 25 | 29 | 23 |
mean | 76.92 | 81.48 | 71.65 | |
std | 11.94 | 9.36 | 9.73 | |
min | 52 | 62 | 54 | |
Q1 | 74 | 74 | 65.5 | |
median | 78 | 84 | 72 | |
Q3 | 86 | 88 | 77 | |
max | 94 | 92 | 88 | |
MNA | N | 25 | 29 | 23 |
mean | 21.76 | 22.62 | 19.78 | |
std | 3.59 | 4.22 | 4.10 | |
min | 15 | 15 | 15 | |
Q1 | 19 | 19 | 16.5 | |
median | 22 | 24 | 19 | |
Q3 | 25 | 26 | 22 | |
max | 28 | 28 | 29 | |
GDS | N | 25 | 29 | 23 |
mean | 9.96 | 9.21 | 10.30 | |
std | 4.09 | 4.30 | 3.77 | |
min | 4 | 2 | 3 | |
Q1 | 6 | 6 | 7.5 | |
median | 10 | 10 | 10 | |
Q3 | 12 | 12 | 13 | |
max | 19 | 19 | 17 |
Overall | Patients Properly Treated for Hyperuricemia | Patients with Elevated Uric Acid Levels | Control Group | p-Value * | Power | ||
---|---|---|---|---|---|---|---|
N | 77 | 25 | 23 | 29 | |||
ADL, n (%) | None | 1 (1.3%) | 1 (4.0%) | 0.955 | 0.3641 | ||
independent | 39 (50.6%) | 13 (52.0%) | 12 (52.2%) | 14 (48.3%) | |||
moderate impairment | 29 (37.7%) | 9 (36.0%) | 8 (34.8%) | 12 (41.4%) | |||
very dependent | 8 (10.4%) | 2 (8.0%) | 3 (13.0%) | 3 (10.3%) | |||
MMSE, n (%) | cognitive impairments without dementia | 18 (23.4%) | 6 (24.0%) | 8 (34.8%) | 4 (13.8%) | 0.160 | 0.6575 |
mild dementia | 20 (26.0%) | 6 (24.0%) | 6 (26.1%) | 8 (27.6%) | |||
moderate dementia | 12 (15.6%) | 5 (20.0%) | 5 (21.7%) | 2 (6.9%) | |||
normal range | 27 (35.1%) | 8 (32.0%) | 4 (17.4%) | 15 (51.7%) | |||
ACE-III, n (%) | likely dementia | 42 (54.5%) | 14 (56.0%) | 18 (78.3%) | 10 (34.5%) | 0.007 | 0.9033 |
normal range | 35 (45.5%) | 11 (44.0%) | 5 (21.7%) | 19 (65.5%) | |||
MNA, n (%) | adequate nutritional status | 30 (39.0%) | 9 (36.0%) | 5 (21.7%) | 16 (55.2%) | 0.044 | 0.3561 |
at risk of malnutrition | 37 (48.1%) | 15 (60.0%) | 12 (52.2%) | 10 (34.5%) | |||
malnutrition | 10 (13.0%) | 1 (4.0%) | 6 (26.1%) | 3 (10.3%) | |||
GDS, n (%) | mild depressives | 40 (51.9%) | 13 (52.0%) | 12 (52.2%) | 15 (51.7%) | 0.999 | 0.0501 |
normal | 37 (48.1%) | 12 (48.0%) | 11 (47.8%) | 14 (48.3%) |
Group A | Group B | Geriatric Scale | p-Value | Power |
---|---|---|---|---|
control group | patients with elevated uric acid levels | ACE-III | 0.0043 | 0.8902 |
control group | patients properly treated for hyperuricemia | ACE-III | 0.1833 | 0.2651 |
patients with elevated uric acid levels | patients properly treated for hyperuricemia | ACE-III | 0.1833 | 0.2800 |
control group | patients with elevated uric acid levels | MNA | 0.0302 | 0.7065 |
control group | patients properly treated for hyperuricemia | MNA | 0.1304 | 0.4222 |
patients with elevated uric acid levels | patients properly treated for hyperuricemia | MNA | 0.0301 | 0.7806 |
Geriatric Scale | ANOVA | Kruskal–Wallis | |||||
---|---|---|---|---|---|---|---|
F | p-Value | np2 | Power | H | p-Value | Power | |
ADL | 0.3726 | 0.6903 | 0.6334 | 0.4209 | 0.6334 | 0.7286 | 0.3947 |
MMSE | 2.5450 | 0.0626 | 8.0365 | 0.9996 | 8.0365 | 0.0453 | 0.9947 |
ACE-III | 15.4842 | 0.0002 | 15.9341 | 1.0000 | 15.9341 | 0.0001 | 0.9999 |
MNA | 3.6647 | 0.0304 | 5.4843 | 0.9997 | 5.4843 | 0.0644 | 0.9933 |
GDS | 0.0572 | 0.8117 | 0.0250 | 0.0874 | 0.0250 | 0.8744 | 0.0845 |
Group | U | p-Value | Cohen Effect Size | |
---|---|---|---|---|
A | B | |||
cognitive impairments without dementia | mild dementia | 171 | 0.7923 | −0.0168 |
cognitive impairments without dementia | moderate dementia | 85.5 | 0.5272 | −0.3154 |
cognitive impairments without dementia | normal range | 305 | 0.3146 | 0.5311 |
mild dementia | moderate dementia | 102 | 0.5946 | −0.3328 |
mild dementia | normal range | 371 | 0.0913 | 0.6006 |
moderate dementia | normal range | 246 | 0.0660 | 0.9480 |
A | B | Mean(A) | Mean(B) | Diff | Se | T | p-Tukey | Cohen Effect Size |
---|---|---|---|---|---|---|---|---|
adequate nutritional status | at risk of malnutrition | 5.47 | 6.25 | −0.78 | 0.55 | −1.42 | 0.3367 | −0.3540 |
adequate nutritional status | malnutrition | 5.47 | 7.66 | −2.19 | 0.82 | −2.67 | 0.0251 | −1.1059 |
at risk of malnutrition | malnutrition | 6.25 | 7.66 | −1.41 | 0.80 | −1.76 | 0.1918 | −0.5633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husejko, J.; Kozakiewicz, M.; Gackowski, M.; Mądra-Gackowska, K.; Wojtasik, J.; Hołyńska-Iwan, I.; Porada, M.; Kiełkucka, M.; Harmoza, K.; Pokrzywa, A.; et al. The Influence of Uric Acid Concentration on the Daily Functioning of Patients at an Advanced Age, Based on the Results of Selected Point Scales Routinely Used for the Comprehensive Geriatric Assessment in Poland. J. Clin. Med. 2025, 14, 5793. https://doi.org/10.3390/jcm14165793
Husejko J, Kozakiewicz M, Gackowski M, Mądra-Gackowska K, Wojtasik J, Hołyńska-Iwan I, Porada M, Kiełkucka M, Harmoza K, Pokrzywa A, et al. The Influence of Uric Acid Concentration on the Daily Functioning of Patients at an Advanced Age, Based on the Results of Selected Point Scales Routinely Used for the Comprehensive Geriatric Assessment in Poland. Journal of Clinical Medicine. 2025; 14(16):5793. https://doi.org/10.3390/jcm14165793
Chicago/Turabian StyleHusejko, Jakub, Mariusz Kozakiewicz, Marcin Gackowski, Katarzyna Mądra-Gackowska, Jakub Wojtasik, Iga Hołyńska-Iwan, Mateusz Porada, Magdalena Kiełkucka, Karol Harmoza, Anna Pokrzywa, and et al. 2025. "The Influence of Uric Acid Concentration on the Daily Functioning of Patients at an Advanced Age, Based on the Results of Selected Point Scales Routinely Used for the Comprehensive Geriatric Assessment in Poland" Journal of Clinical Medicine 14, no. 16: 5793. https://doi.org/10.3390/jcm14165793
APA StyleHusejko, J., Kozakiewicz, M., Gackowski, M., Mądra-Gackowska, K., Wojtasik, J., Hołyńska-Iwan, I., Porada, M., Kiełkucka, M., Harmoza, K., Pokrzywa, A., Kubiaczyk, M., Jaśniak, A., & Kędziora-Kornatowska, K. (2025). The Influence of Uric Acid Concentration on the Daily Functioning of Patients at an Advanced Age, Based on the Results of Selected Point Scales Routinely Used for the Comprehensive Geriatric Assessment in Poland. Journal of Clinical Medicine, 14(16), 5793. https://doi.org/10.3390/jcm14165793