Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Variables and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Study Population
3.2. Genotype Distribution and Hardy–Weinberg Equilibrium
3.3. Inflammatory Biomarker Levels by Genotype
3.4. Hematological Parameters by Genotype
3.5. Genotype–Phenotype Associations
4. Discussion
Strengths, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, N.; Koenig, W. Inflammation in atherosclerotic cardiovascular disease: From diagnosis to treatment. Eur. J. Clin. Investig. 2025, 55, e70020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiang, Y.; Zhang, M.; Jiang, D.; Su, Q.; Shi, J. The role of inflammation in autoimmune disease: A therapeutic target. Front. Immunol. 2023, 14, 1267091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres-Torres, J.; Espino-Y-Sosa, S.; Martinez-Portilla, R.; Borboa-Olivares, H.; Estrada-Gutierrez, G.; Acevedo-Gallegos, S.; Ruiz-Ramirez, E.; Velasco-Espin, M.; Cerda-Flores, P.; Ramirez-Gonzalez, A.; et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int. J. Mol. Sci. 2024, 25, 7569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Habelrih, T.; Augustin, T.L.; Mauffette-Whyte, F.; Ferri, B.; Sawaya, K.; Côté, F.; Gallant, M.; Olson, D.M.; Chemtob, S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev. 2024, 78, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Mosalmanzadeh, N.; Pence, B.D. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int. J. Mol. Sci. 2024, 25, 11386. [Google Scholar] [CrossRef]
- Almansouri, M.; Patel, P.; Chamberlain, J.; Francis, S. OxLDL induces the release of IL-1β from primed human endothelial and smooth muscle cells via different caspase -1-dependent mechanisms. Vasc. Biol. 2022, 4, 11–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oh, K.; Yuk, M.; Yang, S.; Youn, J.; Dong, Q.; Wang, Z.; Song, N. A genome-wide association study of high-sensitivity C-reactive protein in a large Korean population highlights its genetic relationship with cholesterol metabolism. Sci. Rep. 2025, 15, 189. [Google Scholar] [CrossRef]
- Konieczny, M.J.; Omarov, M.; Zhang, L.; Malik, R.; Richardson, T.G.; Baumeister, S.E.; Bernhagen, J.; Dichgans, M.; Georgakis, M.K. The genomic architecture of circulating cytokine levels points to drug targets for immune-related diseases. Commun. Biol. 2025, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.H.; Stacey, D.; Eriksson, N.; Macdonald-Dunlop, E.; Hedman, Å.K.; Kalnapenkis, A.; Enroth, S.; Cozzetto, D.; Digby-Bell, J.; Marten, J.; et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 2023, 24, 1540–1551. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, T.; Zhang, C. The relationship between expression level and gene polymorphism of inflammatory factors and sepsis risk. Sci. Rep. 2025, 15, 6701. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-C.; Chen, N.-H.; Liu, N.-T.; Su, W.; Liao, C.-C.; Su, S.-L. Polymorphism of Toll-like Receptor 4 Is Correlated with an Increased Risk of Mortality of Hemodialysis Patients: A Retrospective Cohort Study in Taiwanese. J. Med. Sci. 2024, 44, 31–38. [Google Scholar] [CrossRef]
- Cariello, M.; Peres, C.; Zerlotin, R.; Porru, E.; Sabbà, C.; Roda, A.; Moschetta, A. Long-term Administration of Nuclear Bile Acid Receptor FXR Agonist Prevents Spontaneous Hepatocarcinogenesis in Abcb4−/− Mice. Sci. Rep. 2017, 7, 11203. [Google Scholar] [CrossRef]
- Reiter, F.P.; Wimmer, R.; Wottke, L.; Artmann, R.; Nagel, J.M.; Carranza, M.O.; Mayr, D.; Rust, C.; Fickert, P.; Trauner, M.; et al. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4(-/-) mouse model. World J. Hepatol. 2016, 8, 401–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Islam, M.M.; Satici, M.O.; Eroglu, S.E. Unraveling the clinical significance and prognostic value of the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-inflammation index, systemic inflammation response index, and delta neutrophil index: An extensive literature review. Turk. J. Emerg. Med. 2024, 24, 8–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aslan Sirakaya, H.; Sipahioglu, H.; Cetinkaya, A.; Aydin, K. Relationship Between Inflammatory Markers (IL-6, Neutrophil-Lymphocyte Ratio, and C-Reactive Protein-Albumin Ratio) and Diabetic Ketoacidosis Severity: Correlation with Clinical Outcomes. Medicina 2025, 61, 321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ibrahim, H.M.M.; Bahgat, H.M.; Sharshar, D.A.; Ramzy, T.A.A. Monocyte lymphocyte ratio, IL 6, and their association with increased carotid intima-media thickness as simple predictive markers for nephropathy in Egyptian diabetic patients. Egypt. J. Intern. Med. 2024, 36, 21. [Google Scholar] [CrossRef]
- Manning, E.S.; Shroff, G.R.; Jacobs, D.R., Jr.; Duprez, D.A. Chronic Inflammatory-Related Disease and Cardiovascular Disease in MESA. JACC Adv. 2025, 4, 101640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, M.F., Jr.; Carl, V.S.; Lodie, T.; Fenton, M.J. Secretory interleukin-1 receptor antagonist gene expression requires both a PU.1 and a novel composite NF-kappaB/PU.1/GA-binding protein binding site. J. Biol. Chem. 1998, 273, 24272–24279. [Google Scholar] [CrossRef] [PubMed]
- Carrol, E.D.; Payton, A.; Payne, D.; Miyajima, F.; Chaponda, M.; Mankhambo, L.A.; Banda, D.L.; Molyneux, E.M.; Cox, H.; Jacobson, G.; et al. The IL1RN promoter rs4251961 correlates with IL-1 receptor antagonist concentrations in human infection and is differentially regulated by GATA-1. J. Immunol. 2011, 186, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Gaal, O.I.; Leask, M.; Nica, V.; Cabău, G.; Badii, M.; Hotea, I.; de Graaf, D.M.; Zhang, Z.; Li, Y.; Pamfil, C.; et al. Gout-associated SNP at the IL1RN-IL1F10 region is associated with altered cytokine production in PBMCs of patients with gout and controls. Arthritis Res. Ther. 2024, 26, 205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, M.; Huang, K.; Zhang, Z.; Shao, N.; Zhang, Y.; Wang, W.; Wang, S. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem. Biophys. Res. Commun. 2012, 425, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014, 63, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Särndahl, E.; Andersson, H.; Eriksson, P.; Fredrikson, M.; Jönsson, J.I.; Lerm, M.; Söderkvist, P. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS ONE 2012, 7, e34977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, J.; Arnett, D.K.; Peacock, J.M.; Parnell, L.D.; Kraja, A.; Hixson, J.E.; Tsai, M.Y.; Lai, C.Q.; Kabagambe, E.K.; Straka, R.J.; et al. Interleukin1beta genetic polymorphisms interact with polyunsaturated fatty acids to modulate risk of the metabolic syndrome. J. Nutr. 2007, 137, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Teuffel, O.; Ethier, M.C.; Beyene, J.; Sung, L. Association between tumor necrosis factor-alpha promoter -308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: A systematic review and meta-analysis. Crit. Care Med. 2010, 38, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Udalova, I.A.; Richardson, A.; Denys, A.; Smith, C.; Ackerman, H.; Foxwell, B.; Kwiatkowski, D. Functional consequences of a polymorphism affecting NF-kappaB p50-p50 binding to the TNF promoter region. Mol. Cell. Biol. 2000, 20, 9113–9119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Liu, C.; Zheng, Y.; Huang, Y.; Zhong, Y.; Zhao, Z.; Ma, N.; Zhang, Z.; Zhang, L. Association of TNF-α-308G/A, -238G/A, -863C/A, -1031T/C, -857C/T polymorphisms with periodontitis susceptibility: Evidence from a meta-analysis of 52 studies. Medicine 2020, 99, e21851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majetschak, M.; Obertacke, U.; Schade, F.U.; Bardenheuer, M.; Voggenreiter, G.; Bloemeke, B.; Heesen, M. Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma patients. Clin. Diagn. Lab. Immunol. 2002, 9, 1205–1211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosales, C. Neutrophil: A Cell with Many. Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terkeltaub, R.; Banka, C.L.; Solan, J.; Santoro, D.; Brand, K.; Curtiss, L.K. Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler. Thromb. 1994, 14, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, Y.; Murakami, M.; Sugiyama, M.; Hashimoto, O.; Matsui, T.; Funaba, M. Interleukin-1β (IL-1β) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein δ (C/EBPδ) expression in hepatocytes. J. Biol. Chem. 2017, 292, 10275–10287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bandach, I.; Segev, Y.; Landau, D. Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease progression and anemia. Sci. Rep. 2021, 11, 6288. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, C.; Leleu, D.; Masson, D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front. Immunol. 2022, 13, 868958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sethi, J.K.; Hotamisligil, G.S. Metabolic Messengers: Tumour necrosis factor. Nat. Metab. 2021, 3, 1302–1312. [Google Scholar] [CrossRef]
- Jack, B.U.; Dias, S.; Pheiffer, C. Comparative Effects of Tumor Necrosis Factor Alpha, Lipopolysaccharide, and Palmitate on Mitochondrial Dysfunction in Cultured 3T3-L1 Adipocytes. Cell Biochem. Biophys. 2025, 83, 905–918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zegeye, M.M.; Nakka, S.S.; Andersson, J.S.; Söderberg, S.; Ljungberg, L.U.; Kumawat, A.K.; Sirsjö, A. Soluble LDL-receptor is induced by TNF-Œ± and inhibits hepatocytic clearance of LDL-cholesterol. J. Mol. Med. 2023, 101, 1615–1626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamashita, M.; Passegué, E. TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell 2019, 25, 357–372.e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freitas, R.D.S.; de Souza Silva, C.M.; Ferreira Fratelli, C.; Ramos de Lima, L.; Morato Stival, M.; Schwerz Funghetto, S.; Rodrigues da Silva, I.C.; Vieira de Andrade, R. IL-10 and IL-1β Serum Levels, Genetic Variants, and Metabolic Syndrome: Insights into Older Adults’ Clinical Characteristics. Nutrients 2024, 16, 1241. [Google Scholar] [CrossRef]
- Nani, A.; Tehami, W. Targeting inflammasome pathway by polyphenols as a strategy for pancreatitis, gastrointestinal and liver diseases management: An updated review. Front. Nutr. 2023, 10, 1157572. [Google Scholar] [CrossRef]
- Su, L.; Xu, C.; Huang, H.; Zhang, P.; Wang, J.; Ouyang, X.; Yang, X.; Ye, J. Effects of tumor necrosis factor-alpha inhibitors on lipid profiles in patients with psoriasis: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1354593. [Google Scholar] [CrossRef]
- Dang, P.; Wang, F.; Yu, H. Prognostic potential of neutrophil-to-lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio in acute myocardial infarction patients combined with chronic obstructive pulmonary disease. Front. Cardiovasc. Med. 2024, 11, 1401634. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Number of participants | 155 |
Age (mean ± SD) | 54.7 ± 11.6 |
Age range | 26–72 |
Male (%) | 58.1% |
Female (%) | 41.9% |
BMI | 27.4 (24.6–30.8) |
SNP | n (%) | n (%) | n (%) | χ2 | p HWE |
---|---|---|---|---|---|
rs1149222 | 5 (3.2%) TT | 44 (28.4%) TG | 106 (68.4%) GG | 0.03 | 0.87 |
rs2071645 | 115 (74.2%) GG | 36 (23.2%) GA | 4 (2.6%) AA | 0.33 | 0.56 |
SNP | Genotype | IL-1β (pg/mL) Mean ± SD | TNF-α (pg/mL) Mean ± SD | oxLDL (U/L) Mean ± SD | CRP (mg/L) Mean ± SD |
---|---|---|---|---|---|
rs1149222 | TT (n = 5) | 1.61 ± 0.33 | 0.09 ± 0.09 | 0.19 ± 0.07 | 6.56 ± 3.52 |
TG (n = 44) | 1.14 ± 0.41 | 0.09 ± 0.09 | 0.17 ± 0.08 | 7.79 ± 6.04 | |
GG (n = 106) | 1.15 ± 0.40 | 0.10 ± 0.09 | 0.14 ± 0.07 | 7.11 ± 4.56 | |
p value ANOVA | 0.042 * | 0.813 | 0.036 * | 0.711 | |
p value TT vs. TG | 0.029 | >0.999 | 0.595 | 0.659 | |
p value TT vs. GG | 0.033 * | 0.808 | 0.121 | 0.791 | |
p value TG vs. GG | 0.891 | 0.536 | 0.023 * | 0.452 | |
rs2071645 | AA (n = 4) | 1.15 ± 0.39 | 0.09 ± 0.02 | 0.17 ± 0.06 | 7.33 ± 5.60 |
GA (n = 36) | 1.13 ± 0.36 | 0.10 ± 0.03 | 0.19 ± 0.06 | 6.89 ± 3.10 | |
GG (n = 115) | 1.27 ± 0.63 | 0.15 ± 0.06 | 0.15 ± 0.08 | 6.98 ± 2.21 | |
p value | 0.535 | <0.0001 ** | 0.044 * | 0.943 | |
p value GG vs. GA | 0.917 | 0.521 | 0.530 | 0.805 | |
p value GG vs. AA | 0.753 | 0.049 * | 0.660 | 0.771 | |
p value GA vs. AA | 0.278 | <0.0001 ** | 0.013 * | 0.847 |
SNP | Genotype | RBC (×106/mm3) | Hemoglobin (g/dL) | Hematocrit (%) | PLT (×103/mm3) | WBC (×103/mm3) | Neutrophils (%) | Lymphocytes (%) | Monocytes (%) |
---|---|---|---|---|---|---|---|---|---|
rs1149222 | TT (n = 5) | 4.91 ± 0.34 | 14.83 ± 1.17 | 43.92 ± 3.29 | 223 ± 74 | 6.60 ± 1.94 | 54.74 ± 10.28 | 36.34 ± 10.24 | 6.11 ± 0.92 |
TG (n = 44) | 4.69 ± 0.40 | 14.40 ± 1.33 | 42.71 ± 3.80 | 245 ± 72 | 7.50 ± 2.20 | 58.76 ± 9.00 | 31.92 ± 8.32 | 6.11 ± 1.63 | |
GG (n = 106) | 4.89 ± 0.45 | 13.84 ± 1.46 | 42.16 ± 4.06 | 281 ± 171 | 7.36 ± 1.68 | 58.42 ± 9.03 | 31.80 ± 8.02 | 6.08 ± 1.33 | |
p value ANOVA | 0.036 * | 0.041 * | 0.502 | 0.312 | 0.581 | 0.642 | 0.479 | 0.992 | |
p value TT vs. TG | 0.244 | 0.492 | 0.498 | 0.521 | 0.385 | 0.354 | 0.276 | >0.999 | |
p value TT vs. GG | 0.922 | 0.138 | 0.342 | 0.453 | 0.328 | 0.377 | 0.224 | 0.960 | |
p value TG vs. GG | 0.011 * | 0.029* | 0.442 | 0.180 | 0.673 | 0.833 | 0.934 | 0.906 | |
rs2071645 | AA (n = 4) | 4.93 ± 0.47 | 14.53 ± 1.21 | 44.29 ± 4.83 | 262 ± 98 | 7.46 ± 2.57 | 62.50 ± 8.62 | 35.67 ± 11.45 | 5.53 ± 1.22 |
GA (n = 36) | 4.83 ± 0.40 | 14.35 ± 1.27 | 42.53 ± 3.56 | 260 ± 82 | 7.45 ± 1.95 | 58.45 ± 8.50 | 31.92 ± 7.78 | 6.09 ± 1.48 | |
GG (n = 115) | 4.84 ± 0.44 | 14.38 ± 1.48 | 42.65 ± 4.09 | 268 ± 93 | 7.37 ± 1.68 | 58.42 ± 9.23 | 31.47 ± 8.11 | 6.16 ± 1.39 | |
p value | 0.908 | 0.970 | 0.703 | 0.895 | 0.969 | 0.674 | 0.585 | 0.668 | |
p value GG vs. GA | 0.642 | 0.788 | 0.369 | 0.963 | 0.992 | 0.372 | 0.387 | 0.471 | |
p value GG vs. AA | 0.688 | 0.841 | 0.434 | 0.899 | 0.917 | 0.385 | 0.316 | 0.373 | |
p value GA vs. AA | 0.903 | 0.912 | 0.874 | 0.644 | 0.810 | 0.986 | 0.769 | 0.795 |
Biomarker | Hematologic | Cohort | TT | TG | GG |
---|---|---|---|---|---|
IL-1β | WBC | 0.13 * | 0.30 | 0.09 | 0.16 * |
% Neutrophils | 0.10 | −0.10 | 0.03 | 0.16 * | |
% Lymphocytes | −0.06 | 0.18 | 0.03 | −0.12 | |
% Monocytes | −0.10 | 0.24 | −0.09 | −0.11 | |
NLR | 0.08 | −0.12 | −0.01 | 0.14 | |
MLR | −0.03 | 0.00 | −0.07 | 0.01 | |
TNF-α | WBC | 0.10 | 0.40 | 0.11 | 0.08 |
% Neutrophils | 0.03 | 0.17 | 0.10 | 0.01 | |
% Lymphocytes | −0.02 | −0.17 | −0.14 | 0.02 | |
% Monocytes | −0.07 | 0.65 | −0.03 | −0.11 | |
NLR | 0.03 | 0.18 | 0.14 | −0.01 | |
MLR | −0.04 | 0.33 | 0.05 | −0.10 | |
oxLDL | WBC | 0.01 | −0.45 | 0.03 | 0.02 |
% Neutrophils | 0.07 | 0.14 | −0.08 | 0.12 | |
% Lymphocytes | −0.12 * | −0.23 | 0.03 | −0.18 * | |
% Monocytes | 0.12 * | −0.45 | 0.17 | 0.10 | |
NLR | 0.10 | 0.18 | −0.06 | 0.15 * | |
MLR | 0.19 ** | 0.03 | 0.14 | 0.20 ** | |
CRP | WBC | 0.11 | 0.13 | 0.28 * | 0.04 |
% Neutrophils | 0.13 * | −0.12 | 0.27 * | 0.10 | |
% Lymphocytes | −0.11 | 0.03 | −0.24 * | −0.07 | |
% Monocytes | −0.11 | 0.17 | −0.04 | −0.15 * | |
NLR | 0.12 * | −0.10 | 0.25 * | 0.09 | |
MLR | −0.02 | −0.03 | 0.15 | −0.09 |
Biomarker | Hematologic | Cohort | AA | GA | GG |
---|---|---|---|---|---|
IL-1β | WBC | 0.13 * | 0.82 * | 0.09 | 0.10 |
% Neutrophils | 0.10 | 0.46 | 0.01 | 0.15 * | |
% Lymphocytes | −0.06 | −0.46 | 0.06 | −0.10 | |
% Monocytes | −0.10 | −0.04 | −0.19 | −0.09 | |
NLR | 0.08 | 0.46 | −0.04 | 0.12 | |
MLR | −0.03 | 0.54 | −0.15 | −0.01 | |
TNF-α | WBC | 0.10 | 0.75 | 0.02 | 0.08 |
% Neutrophils | 0.03 | 0.00 | 0.12 | −0.00 | |
% Lymphocytes | −0.02 | 0.00 | −0.14 | 0.04 | |
% Monocytes | −0.07 | 0.11 | 0.07 | −0.13 | |
NLR | 0.03 | 0.00 | 0.16 | 0.01 | |
MLR | −0.04 | 0.11 | 0.01 | −0.09 | |
oxLDL | WBC | 0.01 | −0.36 | 0.07 | −0.02 |
% Neutrophils | 0.07 | 0.18 | −0.08 | 0.17 * | |
% Lymphocytes | −0.12 * | −0.18 | −0.03 | −0.24 ** | |
% Monocytes | 0.12 * | 0.10 | 0.17 | 0.20 ** | |
NLR | 0.10 | 0.15 | −0.06 | 0.21 ** | |
MLR | 0.19 ** | 0.20 | 0.14 | 0.27 ** | |
CRP | WBC | 0.11 | 0.05 | 0.30 * | 0.09 |
% Neutrophils | 0.13 * | 0.19 | 0.40 ** | 0.05 | |
% Lymphocytes | −0.11 | −0.30 | −0.38 ** | −0.07 | |
% Monocytes | −0.11 | −0.15 | −0.04 | −0.13 * | |
NLR | 0.12 * | 0.22 | 0.38 ** | 0.08 | |
MLR | −0.02 | −0.09 | 0.15 | −0.06 |
Phenotype | rs1149222 (TT → TG → GG) | rs2071645 (GG → GA → AA) | Interpretation |
---|---|---|---|
IL-1β (pg mL−1) | TT > TG ≈ GG (p = 0.042) | ns (p = 0.535) | rs1149222 modulates the upstream cytokine tone; rs2071645 does not. |
TNF-α (pg mL−1) | ns * (p = 0.813) | GG > GA > AA (p < 0.0001) | rs2071645 strongly upregulates downstream TNF-α. |
oxLDL (U L−1) | TG > TT > GG (p = 0.036) | GA > GG ≈ AA (p = 0.044) | Both SNPs influence lipid oxidation, but the heterozygous groups show the highest levels. |
CRP (mg L−1) | ns * (p = 0.711) | ns * (p = 0.943) | Neither variant alters the acute-phase protein at rest. |
RBC (×106 mm−3) | GG ≈ TT > TG (p = 0.036) | ns * (p = 0.908) | Only rs1149222 shows a small red-cell effect (heterozygote deficit). |
Hemoglobin (g dL−1) | TT > TG > GG (p = 0.041) | ns * (p = 0.970) | Mirrors the RBC pattern; effect size modest (<1 g dL−1). |
Leukocyte counts, PLT, differentials | ns genotype effect | ns genotype effect | Blood-cell ratios (NLR, MLR) are genotype-independent at baseline. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Awwad, S.-A.; Abu-Awwad, A.; Farcas, S.S.; Popa, C.A.; Tutac, P.; Zaharia, I.M.; Goina, C.A.; Mihailescu, A.; Andreescu, N. Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes. J. Clin. Med. 2025, 14, 5792. https://doi.org/10.3390/jcm14165792
Abu-Awwad S-A, Abu-Awwad A, Farcas SS, Popa CA, Tutac P, Zaharia IM, Goina CA, Mihailescu A, Andreescu N. Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes. Journal of Clinical Medicine. 2025; 14(16):5792. https://doi.org/10.3390/jcm14165792
Chicago/Turabian StyleAbu-Awwad, Simona-Alina, Ahmed Abu-Awwad, Simona Sorina Farcas, Cristina Annemari Popa, Paul Tutac, Iuliana Maria Zaharia, Claudia Alexandrina Goina, Alexandra Mihailescu, and Nicoleta Andreescu. 2025. "Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes" Journal of Clinical Medicine 14, no. 16: 5792. https://doi.org/10.3390/jcm14165792
APA StyleAbu-Awwad, S.-A., Abu-Awwad, A., Farcas, S. S., Popa, C. A., Tutac, P., Zaharia, I. M., Goina, C. A., Mihailescu, A., & Andreescu, N. (2025). Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes. Journal of Clinical Medicine, 14(16), 5792. https://doi.org/10.3390/jcm14165792