The Dimensions of the Aortic Valve Annulus Are Not Associated with Systolic Excursion of Its Plane in the Same Healthy Adults: Detailed Insights from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study
Abstract
1. Introduction
2. Subjects and Methods
- Maximum and minimum AVA diameter (AVA-Dmax and AVA-Dmin, respectively);
- AVA area (AVA-A);
- AVA perimeter (AVA-P).
3. Results
- For AAPSE: 0.87 cm (mean − SD) and 1.45 cm (mean + SD);
- For end-diastolic AVA-A: 2.21 cm2 and 3.99 cm2, respectively;
- For end-systolic AVA-A: 2.38 cm2 and 4.16 cm2, respectively (Table 2).
4. Discussion
- In the present study, the measurement accuracy of 3DSTE was not compared with that of gold-standard technologies such as cardiac computer tomography or magnetic resonance imaging; accordingly, the absolute reliability of the AVA size and AAPSE data was not confirmed, which may indicate technical and methodological errors. However, the usefulness of 3D echocardiography in the assessment of AVA dimensions has already been demonstrated in the literature [16].
- Although 3DSTE is suitable for mitral and tricuspid annular assessments in addition to volumetric and functional measurements of the heart chambers, such analyses were beyond the scope of this study [21].Although 3DSTE is suitable for mitral and tricuspid annular assessments in addition to volumetric and functional measurements of the heart chambers, such analyses were beyond the scope of this study [21].
- We did not aim to assess AVA dimensions and their spatial displacement by any other imaging techniques as well, such as STE or cardiac magnetic resonance imaging. However, this could be a topic of further investigations.
- Moreover, the study did not investigate the complex associations between the AVA and the ascending aorta.
- Gender-based comparisons were not performed due to the relatively limited sample size.
- From a statistical point of view, there was potential for selection bias, misclassification bias, and residual, unmeasured, time-varying confounding, type II errors (power), which could limit the usability and reliability of the findings.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.; Mariani, J., Jr.; Falcão, B.A.A.; Filho, A.E.; Nomura, C.H.; Avila, L.F.R.; Parga, J.R.; Lemos Neto, P.A. Differences between systolic and diastolic dimensions of the aortic valve annulus in computed tomography angiography in patients undergoing percutaneous implantation of aortic valve prosthesis by catheter. Rev. Bras. Cardiol. Invasiva 2015, 23, 130–133. [Google Scholar] [CrossRef]
- Nemes, A.; Ambrus, N.; Lengyel, C. Normal reference values of three-dimensional speckle-tracking echocardiography-derived aortic valve annular dimensions in healthy adults—A detailed analysis from the MAGYAR-Healthy Study. Quant. Imaging Med. Surg. 2025, 15. in press. [Google Scholar] [CrossRef]
- Loukas, M.; Bilinsky, E.; Bilinsky, S.; Blaak, C.; Tubbs, R.S.; Anderson, R.H. The anatomy of the aortic root. Clin. Anat. 2014, 27, 748–756. [Google Scholar] [CrossRef]
- Anderson, R.H. Clinical anatomy of the aortic root. Heart 2000, 84, 670–673. [Google Scholar] [CrossRef]
- Franke, A.; Kuhl, H.P. Second-generation real-time 3D echocardiography: A revolutionary new technology. MedicaMundi 2003, 47, 34–40. [Google Scholar]
- Ammar, K.A.; Paterick, T.E.; Khandheria, B.K.; Jan, M.F.; Kramer, C.; Umland, M.M.; Tercius, A.J.; Baratta, L.; Tajik, A.J. Myocardial mechanics: Understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography 2012, 29, 861–872. [Google Scholar] [CrossRef]
- Urbano-Moral, J.A.; Patel, A.R.; Maron, M.S.; Arias-Godinez, J.A.; Pandian, N.G. Three-dimensional speckle-tracking echocardiography: Methodological aspects and clinical potential. Echocardiography 2012, 29, 997–1010. [Google Scholar] [CrossRef]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef]
- Gao, L.; Lin, Y.; Ji, M.; Wu, W.; Li, H.; Qian, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Utility of Three-Dimensional Speckle-Tracking Echocardiography in Heart Failure. J. Clin. Med. 2022, 11, 6307. [Google Scholar] [CrossRef]
- Nemes, A.; Ambrus, N.; Lengyel, C. Does Left Ventricular Rotational Mechanics Depend on Aortic Valve Annular Dimensions in Healthy Adults?—A Three-Dimensional Speckle-Tracking Echocardiography-Derived Analysis from the MAGYAR-Healthy Study. Biomedicines 2025, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Bordács, B.; Ambrus, N.; Lengyel, C. Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study-Is There a Relationship? Life 2025, 15, 742. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F., Jr.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 254–275. [Google Scholar] [CrossRef]
- Tamborini, G.; Fusini, L.; Muratori, M.; Cefalù, C.; Gripari, P.; Ali, S.G.; Pontone, G.; Andreini, D.; Bartorelli, A.L.; Alamanni, F.; et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1316–1323. [Google Scholar] [CrossRef]
- Ash, J.; Sandhu, G.S.; Arriola-Montenegro, J.; Agakishiev, D.; Clavel, M.A.; Pibarot, P.; Duval, S.; Nijjar, P.S. Performance of Computed Tomographic Angiography-Based Aortic Valve Area for Assessment of Aortic Stenosis. J. Am. Heart Assoc. 2023, 12, e029973. [Google Scholar] [CrossRef]
- Naguib, K.I.; Attia, M.A.; Bashandy, M.S.; Reihan, M.S.; Dabash, T.A.; El-Salam, A.B.A.; Helal, H.H.; Bahbah, E.I. The role of trans-thoracic echocardiography in the assessment of aortic annular diameter. Medicine 2021, 100, e24682. [Google Scholar] [CrossRef]
- Hatle, L.; Angelsen, B.A.; Tromsdal, A. Non-invasive assessment of aortic stenosis by Doppler ultrasound. Br. Heart J. 1980, 43, 284–292. [Google Scholar] [CrossRef]
- Davis, A.; Holloway, C.; Lewandowski, A.J.; Ntusi, N.; Nethononda, R.M.; Pitcher, A.; Francis, J.M.; Leeson, P.; Neubauer, S.; Rider, O.J. Diameters of the normal thoracic aorta measured by cardiovascular magnetic resonance imaging; correlation with gender, body surface area and body mass index. J. Cardiovasc. Magn. Reson. 2013, 15 (Suppl. S1), E77. [Google Scholar] [CrossRef]
- Nemes, A.; Kormányos, Á.; Lengyel, C. Comparison of dimensions and functional features of mitral and tricuspid annuli in the same healthy adults: Insights from the three-dimensional speckle-tracking echocardiographic MAGYAR-Healthy Study. Quant. Imaging Med. Surg. 2024, 14, 6780–6791. [Google Scholar] [CrossRef]
Data | Measures |
---|---|
Clinical data | |
n | 148 |
Mean age (years) | 34.8 ± 12.4 |
Males (%) | 80 (54) |
Systolic blood pressure (mmHg) | 119 ± 3 |
Diastolic blood pressure (mmHg) | 79 ± 4 |
Heart rate (1/s) | 71 ± 3 |
Height (cm) | 72.7 ± 16.9 |
Weight (kg) | 172.1 ± 11.6 |
Two-dimensional echocardiographic data | |
LA diameter (mm) | 37.5 ± 3.7 |
LV end-diastolic diameter (mm) | 48.3 ± 3.6 |
LV end-systolic diameter (mm) | 32.1 ± 3.1 |
LV end-diastolic volume (mL) | 106.5 ± 24.0 |
LV end-systolic volume (mL) | 37.8 ± 9.0 |
Interventricular septum (mm) | 9.2 ± 1.3 |
LV posterior wall (mm) | 9.4 ± 1.5 |
LV ejection fraction (%) | 64.9 ± 3.9 |
Early diastolic mitral inflow velocity—E (cm/s) | 78.6 ± 15.7 |
Late diastolic mitral inflow velocity—A (cm/s) | 59.3 ± 14.2 |
Parameters | Measures |
---|---|
End-diastolic maximum aortic valve annular diameter (AVA-Dmax-D, cm) | 1.98 ± 0.34 |
End-diastolic minimum aortic valve annular diameter (AVAD-Dmin-D, cm) | 1.79 ± 0.29 * |
End-diastolic aortic valve annular area (AVA-A-D, cm2) | 3.10 ± 0.89 * |
End-diastolic aortic valve annular perimeter (AVA-P-D, cm) | 6.21 ± 0.94 * |
End-systolic aortic valve annular diameter (AVA-Dmax-S, cm) | 2.02 ± 0.32 |
End-systolic aortic valve annular diameter (AVA-Dmin-S, cm) | 1.84 ± 0.29 |
End-systolic aortic valve annular area (AVA-A-S, cm2) | 3.27 ± 0.89 |
End-systolic aortic valve annular perimeter (AVA-P-S, cm) | 6.42 ± 0.89 |
Aortic valve annular plane systolic excursion (AAPSE, cm) | 1.16 ± 0.29 |
AAPSE ≤ 0.87 cm (n = 21) | 0.87 cm < AAPSE < 1.45 cm (n = 104) | 1.45 cm ≤ AAPSE (n = 23) | AAPSE ≤ 0.87 cm (n = 6) | 0.87 cm < AAPSE < 1.45 cm (n = 32) | 1.45 cm ≤ AAPSE (n = 9) | AAPSE ≤ 0.87 cm (n = 12) | 0.87 cm < AAPSE < 1.45 cm (n = 64) | 1.45 cm ≤ AAPSE (n = 13) | |
---|---|---|---|---|---|---|---|---|---|
All (n = 148) | Greater End-Diastolic AVA Area (n = 47) | Greater End-Systolic AVA Area (n = 89) | |||||||
AVA-Dmax-D (cm) | 1.96 ± 0.27 | 1.99 ± 0.34 | 1.97 ± 0.39 | 2.13 ± 0.29 | 2.10 ± 0.30 * | 2.04 ± 0.31 * | 1.88 ± 0.23 * | 1.94 ± 0.35 * | 1.91 ± 0.44 * |
AVA-Dmin-D (cm) | 1.80 ± 0.23 * | 1.78 ± 0.31 * | 1.82 ± 0.30 | 1.93 ± 0.12 | 1.90 ± 0.25 * | 1.87 ± 0.21 * | 1.77 ± 0.26 | 1.73 ± 0.32 * | 1.78 ± 0.35 |
AVA-A-D (cm2) | 3.00 ± 0.74 * | 3.10 ± 0.93 * | 3.18 ± 0.84 | 3.57 ± 0.41 * | 3.46 ± 0.91 * | 3.41 ± 0.73 * | 2.81 ± 0.77 * | 2.94 ± 0.92 * | 2.98 ± 0.88 * |
AVA-P-D (cm) | 6.17 ± 0.78 * | 6.19 ± 0.99 * | 6.35 ± 0.83 | 6.78 ± 0.44 * | 6.43 ± 1.08 | 6.63 ± 0.66 * | 5.95 ± 0.80 * | 6.09 ± 0.95 * | 6.12 ± 0.88 * |
AVA-Dmax-S (cm) | 2.02 ± 0.22 | 2.03 ± 0.32 | 2.02 ± 0.35 | 2.07 ± 0.16 | 1.93 ± 0.27 | 1.86 ± 0.31 | 2.02 ± 0.26 | 2.08 ± 0.34 | 2.12 ± 0.35 |
AVA-Dmin-S (cm) | 1.86 ± 0.24 | 1.84 ± 0.30 | 1.80 ± 0.29 | 2.00 ± 0.12 | 1.79 ± 0.30 | 1.70 ± 0.26 † | 1.84 ± 0.26 | 1.87 ± 0.30 | 1.85 ± 0.30 |
AVA-A-S (cm2) | 3.16 ± 0.69 | 3.27 ± 0.93 | 3.34 ± 0.84 | 3.35 ± 0.49 | 2.96 ± 0.80 | 2.92 ± 0.69 | 3.19 ± 0.76 | 3.48 ± 0.96 | 3.60 ± 0.85 |
AVA-P-S (cm) | 6.35 ± 0.70 | 6.42 ± 0.92 | 6.50 ± 0.85 | 6.55 ± 0.52 | 6.14 ± 0.85 | 6.10 ± 0.86 | 6.36 ± 0.77 | 6.61 ± 0.93 | 6.75 ± 0.77 |
AAPSE (cm) | 0.70 ± 0.11 | 1.15 ± 0.16 † | 1.61 ± 0.15 †‡ | 0.78 ± 0.04 | 1.18 ± 0.15 † | 1.61 ± 0.15 †‡ | 0.64 ± 0.11 | 1.14 ± 0.16 † | 1.62 ± 0.15 †‡ |
AVA-A-D ≤ 2.21 cm2 (n = 22) | 2.21 cm2 < AVA-A-D < 3.99 cm2 (n = 103) | 3.99 cm2 ≤ AVA-A-D (n = 23) | AVA-A-D ≤ 2.21 cm2 (n = 1) | 2.21 cm2 < AVA-A-D < 3.99 cm2 (n = 35) | 3.99 cm2 ≤ AVA-A-D (n = 11) | AVA-A-D ≤ 2.21 cm2 (n = 19) | 2.21 cm2 < AVA-A-D < 3.99 cm2 (n = 58) | 3.99 cm2 ≤ AVA-A-D (n = 12) | |
---|---|---|---|---|---|---|---|---|---|
All (n = 148) | Greater End-Diastolic AVA Area (n = 47) | Greater End-Systolic AVA Area (n = 89) | |||||||
AVA-Dmax-D (cm) | 1.52 ± 0.22 * | 1.98 ± 0.23 † | 2.43 ± 0.23 †‡ | 1.4 | 2.02 ± 0.25 * | 2.38 ± 0.20 *‡ | 1.53 ± 0.22 * | 1.94 ± 0.21 *† | 2.48 ± 0.26 †‡ |
AVA-Dmin-D (cm) | 1.34 ± 0.12 * | 1.80 ± 0.19 † | 2.20 ± 0.15 †‡ | 1.4 | 1.83 ± 0.18 * | 2.16 ± 0.14 ‡ | 1.33 ± 0.11 * | 1.78 ± 0.19 *† | 2.23 ± 0.15 †‡ |
AVA-A-D (cm2) | 1.78 ± 0.32 * | 3.05 ± 0.44 *† | 4.57 ± 0.59 †‡ | 1.6 | 3.16 ± 0.45 * | 4.61 ± 0.61 *‡ | 1.76 ± 0.32 * | 2.98 ± 0.39 *† | 4.53 ± 0.58 *†‡ |
AVA-P-D (cm) | 4.83 ± 0.51 * | 6.24 ± 0.45 *† | 7.38 ± 1.16 †‡ | 4.6 | 6.37 ± 0.48 * | 7.12 ± 1.56 ‡ | 4.82 ± 0.54 * | 6.17 ± 0.39 *† | 7.63 ± 0.48 *†‡ |
AVA-Dmax-S (cm) | 1.70 ± 0.24 | 2.02 ± 0.27 † | 2.35 ± 0.25 †‡ | 1.3 | 1.88 ± 0.26 | 2.16 ± 0.15 ‡ | 1.73 ± 0.22 | 2.11 ± 0.25 † | 2.52 ± 0.20 †‡ |
AVA-Dmin-S (cm) | 1.54 ± 0.16 | 1.83 ± 0.25 † | 2.13 ± 0.25 †‡ | 1.3 | 1.74 ± 0.25 | 2.02 ± 0.27 ‡ | 1.57 ± 0.15 | 1.88 ± 0.25 † | 2.24 ± 0.18 †‡ |
AVA-A-S (cm2) | 2.30 ± 0.41 | 3.23 ± 0.69 † | 4.36 ± 0.82 †‡ | 1.5 | 2.80 ± 0.59 | 3.78 ± 0.64 ‡ | 2.37 ± 0.39 | 3.52 ± 0.62 † | 4.89 ± 0.56 †‡ |
AVA-P-S (cm) | 5.39 ± 0.51 | 6.41 ± 0.69 † | 7.50 ± 0.69 †‡ | 4.3 | 5.98 ± 0,67 | 7.02 ± 0.60 ‡ | 5.47 ± 0.47 | 6.69 ± 0.56 † | 7.93 ± 0.45 †‡ |
AAPSE (cm) | 1.10 ± 0.25 | 1.17 ± 0.31 | 1.14 ± 0.24 | 0.9 | 1.24 ± 0.29 | 1.14 ± 0.19 | 1.13 ± 0.25 | 1.14 ± 0.32 | 1.15 ± 0.28 |
AVA-A-S ≤ 2.38 cm2 (n = 21) | 2.38 cm2 < AVA-A-S < 4.16 cm2 (n = 102) | 4.16 cm2 ≤ AVA-A-S (n = 25) | AVA-A-S ≤ 2.38 cm2 (n = 10) | 2.38 cm2 < AVA-A-S < 4.16 cm2 (n = 34) | 4.16 cm2 ≤ AVA-A-S (n = 3) | AVA-A-S ≤ 2.38 cm2 (n = 8) | 2.38 cm2 < AVA-A-S < 4.16 cm2 (n = 59) | 4.16 cm2 ≤ AVA-A-S (n = 22) | |
---|---|---|---|---|---|---|---|---|---|
All (n = 148) | Greater End-Diastolic AVA Area (n = 47) | Greater End-Systolic AVA Area (n = 89) | |||||||
AVA-Dmax-D (cm) | 1.63 ± 0.25 | 1.97 ± 0.28 † | 2.32 ± 0.29 *†‡ | 1.75 ± 0.17 * | 2.16 ± 0.24 *† | 2.53 ± 0.05 †‡ | 1.51 ± 0.29 | 1.85 ± 0.25 *† | 2.30 ± 0.29 *†‡ |
AVA-Dmin-D (cm) | 1.46 ± 0.18 | 1.78 ± 1.24 *† | 2.12 ± 0.22 *†‡ | 1.59 ± 0.10 * | 1.94 ± 0.16 *† | 2.30 ± 0.14 †‡ | 1.30 ± 0.10 * | 1.67 ± 0.22 *† | 2.10 ± 0.22 *†‡ |
AVA-A-D (cm2) | 2.06 ± 0.48 | 3.07 ± 0.71 *† | 4.09 ± 0.76 *†‡ | 2.42 ± 0.30 * | 3.66 ± 0.64 *† | 4.77 ± 0.37 †‡ | 1.59 ± 0.33 * | 2.71 ± 0.52 *† | 4.00 ± 0.75 *†‡ |
AVA-P-D (cm) | 5.14 ± 0.65 | 6.18 ± 0.78 *† | 7.22 ± 0.68 *†‡ | 5.57 ± 0.35 * | 6.67 ± 0.89 † | 7.83 ± 0.25 †‡ | 4.59 ± 0.63 | 5.88 ± 0.57 *† | 7.13 ± 0.67 *†‡ |
AVA-Dmax-S (cm) | 1.59 ± 0.20 | 2.01 ± 0.21 † | 2.45 ± 0.21 †‡ | 1.56 ± 0.21 | 2.01 ± 0.18 † | 2.30 ± 0.14 †‡ | 1.58 ± 0.11 | 2.00 ± 0.23 † | 2.47 ± 0.20 †‡ |
AVA-Dmin-S (cm) | 1.45 ± 0.16 | 1.82 ± 0.20 † | 2.22 ± 0.18 †‡ | 1.40 ± 0.19 | 1.86 ± 0.18 † | 2.27 ± 0.17 †‡ | 1.50 ± 0.10 | 1.78 ± 0.21 † | 2.22 ± 0.18 †‡ |
AVA-A-S (cm2) | 1.96 ± 0.28 | 3.19 ± 0.45 † | 4.70 ± 0.50 †‡ | 1.91 ± 0.31 | 3.19 ± 0.40 † | 4.53 ± 0.40 †‡ | 1.96 ± 0.22 | 3.19 ± 0.45 † | 4.73 ± 0.51 †‡ |
AVA-P-S (cm) | 5.01 ± 0.39 | 6.39 ± 0.47 † | 7.75 ± 0.43 †‡ | 4.95 ± 0.44 | 6.42 ± 0.44 † | 7.67 ± 0.25 †‡ | 5.01 ± 0.33 | 6.38 ± 0.47 † | 7.76 ± 0.45 †‡ |
AAPSE (cm) | 1.16 ± 0.25 | 1.16 ± 0.31 | 1.15 ± 0.23 | 1.32 ± 0.20 | 1.19 ± 0.29 | 1.03 ± 0.21 | 1.05 ± 0.22 | 1.15 ± 0.33 | 1.16 ± 0.23 |
Intraobserver Agreement | Interobserver Agreement | |||
---|---|---|---|---|
Mean ± 2SD Difference in Values Obtained by 2 Measurements by the Same Observer | ICC Between Measurements by the Same Observer | Mean ± 2SD Difference in Values Obtained by 2 Observers | ICC Between Independent Measurements of 2 Observers | |
AVA-Dmax-D (cm) | −0.04 ± 0.21 | 0.88 (p < 0.01) | −0.05 ± 0.16 | 0.88 (p < 0.01) |
AVA-Dmin-D (cm) | −0.02 ± 0.22 | 0.91 (p < 0.01) | −0.04 ± 0.22 | 0.93 (p < 0.01) |
AVA-A-D (cm2) | −0.11 ± 0.61 | 0.93 (p < 0.01) | −0.10 ± 0.56 | 0.94 (p < 0.01) |
AVA-P-D (cm) | −0.06 ± 0.62 | 0.90 (p < 0.01) | −0.11 ± 0.68 | 0.94 (p < 0.01) |
AVA-Dmax-S (cm) | 0.02 ± 0.32 | 0.92 (p < 0.01) | 0.03 ± 0.30 | 0.94 (p < 0.01) |
AVA-Dmin-S (cm) | 0.06 ± 0.33 | 0.82 (p < 0.01) | 0.03 ± 0.36 | 0.83 (p < 0.01) |
AVA-A-S (cm2) | 0.11 ± 0.68 | 0.91 (p < 0.01) | 0.12 ± 0.76 | 0.94 (p < 0.01) |
AVA-P-S (cm) | −0.02 ± 0.56 | 0.90 (p < 0.01) | 0.03 ± 0.52 | 0.92 (p < 0.01) |
AAPSE (cm) | −0.02 ± 0.18 | 0.91 (p < 0.01) | −0.03 ± 0.18 | 0.91 (p < 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemes, A.; Ambrus, N.; Lengyel, C. The Dimensions of the Aortic Valve Annulus Are Not Associated with Systolic Excursion of Its Plane in the Same Healthy Adults: Detailed Insights from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. J. Clin. Med. 2025, 14, 5760. https://doi.org/10.3390/jcm14165760
Nemes A, Ambrus N, Lengyel C. The Dimensions of the Aortic Valve Annulus Are Not Associated with Systolic Excursion of Its Plane in the Same Healthy Adults: Detailed Insights from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. Journal of Clinical Medicine. 2025; 14(16):5760. https://doi.org/10.3390/jcm14165760
Chicago/Turabian StyleNemes, Attila, Nóra Ambrus, and Csaba Lengyel. 2025. "The Dimensions of the Aortic Valve Annulus Are Not Associated with Systolic Excursion of Its Plane in the Same Healthy Adults: Detailed Insights from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study" Journal of Clinical Medicine 14, no. 16: 5760. https://doi.org/10.3390/jcm14165760
APA StyleNemes, A., Ambrus, N., & Lengyel, C. (2025). The Dimensions of the Aortic Valve Annulus Are Not Associated with Systolic Excursion of Its Plane in the Same Healthy Adults: Detailed Insights from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. Journal of Clinical Medicine, 14(16), 5760. https://doi.org/10.3390/jcm14165760