Increased Left Ventricular Myocardial Extracellular Volume Assessed by Cardiac Computed Tomography as a Consequence of Aortic Stenosis and Coexisting Cardiovascular Risk Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Study Population and Clinical Data Collection
2.3. Cardiac Computed Tomography Protocol
2.4. Image Interpretation and Analysis
2.5. Statistical Methods
2.6. Post-Hoc Statistical Power Analysis
3. Results
4. Discussion
4.1. AVA-ECV Relationship
4.2. AVCS-ECV Relationship
4.3. Aortic Stenosis Severity Assessed by Other Parameters and Its Relationship to ECV
4.4. Hypertension-ECV Relationship
4.5. Smoking-ECV Relationship
4.6. BMI-ECV and Obesity-ECV Relationships
4.7. Age, Gender, Dyslipidemia, and Diabetes: Non-Significant ECV Associations in Our Cohort
4.8. Limitations, Strengths, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
99mTc | Technetium-99m-labelled |
AH | Arterial hypertension |
AS | Aortic stenosis |
ATTR-CA | Transthyretin cardiac amyloidosis |
AVA | Aortic valve area |
AVCS | Aortic valve calcium score |
BMI | Body mass index |
BP | Blood pressure |
CAD | Coronary artery disease |
CCT | Cardiac computed tomography |
CMR | Cardiac magnetic resonance |
CVRF | Cardiovascular risk factors |
DM | Diabetes mellitus |
DPD | 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid |
ECV | Extracellular volume |
HF | Heart failure |
HMDP | 99mTc-hydroxymethylene diphosphonate |
HU | Hounsfield units |
PYP | 99mTc-pyrophosphate |
ROI | Regions of interest |
SAVR | Surgical aortic valve replacement |
TAVI | Transcatheter aortic valve implantation |
References
- Osnabrugge, R.L.J.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.J.C.; Piazza, N.; Kappetein, A.P. Aortic Stenosis in the Elderly. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Ancona, R.; Comenale Pinto, S. Epidemiology of Aortic Valve Stenosis (AS) and of Aortic Valve Incompetence (AI): Is the Prevalence of AS/AI Similar in Different Parts of the World? Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-18/epidemiology-of-aortic-valve-stenosis-as-and-of-aortic-valve-incompetence-ai (accessed on 10 May 2025).
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac Amyloidosis and Aortic Stenosis: A State-of-the-Art Review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Loganath, K.; Bing, R.; Treibel, T.A.; McCann, G.P.; Newby, D.E.; Leipsic, J.; Fraccaro, C.; Paolisso, P.; Cosyns, B.; et al. Multi-Modality Imaging in Aortic Stenosis: An EACVI Clinical Consensus Document. Eur. Heart J.-Cardiovasc. Imaging 2023, 24, 1430–1443. [Google Scholar] [CrossRef]
- Santarelli, M.F.; Genovesi, D.; Positano, V.; Di Sarlo, R.; Scipioni, M.; Giorgetti, A.; Landini, L.; Marzullo, P. Cardiac Amyloidosis Detection by Early Bisphosphonate (99mTc-HMDP) Scintigraphy. J. Nucl. Cardiol. 2022, 29, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Gil, J.; Paeng, J.C.; Park, E.-A.; Lee, S.-P.; Choi, H.; Kang, K.W.; Cheon, G.J.; Lee, D.S. Reliability and Feasibility of Visual Grading Systems and Quantitative Indexes on [99mTc]Tc-DPD Imaging for Cardiac Amyloidosis. Sci. Rep. 2022, 12, 17271. [Google Scholar] [CrossRef]
- Hu, M.; Song, Y.; Yang, C.; Wang, J.; Zhu, W.; Kan, A.; Yang, P.; Dai, J.; Yu, H.; Gong, L. The Value of Myocardial Contraction Fraction and Long-Axis Strain to Predict Late Gadolinium Enhancement in Multiple Myeloma Patients with Secondary Cardiac Amyloidosis. Sci. Rep. 2024, 14, 16832. [Google Scholar] [CrossRef]
- Pucci, A.; Musetti, V.; Greco, F.; Dispenzieri, A.; Emdin, M. The Role of Tissue Biopsy: Identification of the Amyloid Precursor and Beyond. In Cardiac Amyloidosis; Emdin, M., Vergaro, G., Aimo, A., Fontana, M., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 183–196. ISBN 978-3-031-51756-3. [Google Scholar]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-Year Outcomes of Transcatheter Aortic Valve Replacement or Surgical Aortic Valve Replacement for High Surgical Risk Patients with Aortic Stenosis (PARTNER 1): A Randomised Controlled Trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Bax, J.J.; Delgado, V.; Hahn, R.T.; Leipsic, J.; Min, J.K.; Grayburn, P.; Sondergaard, L.; Yoon, S.-H.; Windecker, S. Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Imaging 2020, 13, 124–139. [Google Scholar] [CrossRef]
- Vaquerizo, B.; Spaziano, M.; Alali, J.; Mylote, D.; Theriault-Lauzier, P.; Alfagih, R.; Martucci, G.; Buithieu, J.; Piazza, N. Three-Dimensional Echocardiography vs. Computed Tomography for Transcatheter Aortic Valve Replacement Sizing. Eur. Heart J. Cardiovasc. Imaging 2015, 17, 15–23. [Google Scholar] [CrossRef]
- Abd Alamir, M.; Nazir, S.; Alani, A.; Golub, I.; Gilchrist, I.C.; Aslam, F.; Dhawan, P.; Changal, K.; Ostra, C.; Soni, R.; et al. Multidetector Computed Tomography in Transcatheter Aortic Valve Replacement: An Update on Technological Developments and Clinical Applications. Expert Rev. Cardiovasc. Ther. 2020, 18, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.; Crowhurst, J.; James, C.; Campbell, D.; Roper, D.; Chan, J.; Incani, A.; Clarke, A.; Tesar, P.; Aroney, C.; et al. Impact of Optimising Fluoroscopic Implant Angles on Paravalvular Regurgitation in Transcatheter Aortic Valve Replacements—Utility of Three-Dimensional Rotational Angiography. EuroIntervention 2012, 8, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Achenbach, S.; Pfeiffer, I.; Ensminger, S.; Marwan, M.; Einhaus, F.; Pflederer, T.; Ropers, D.; Schuhbaeck, A.; Anders, K.; et al. A Method to Determine Suitable Fluoroscopic Projections for Transcatheter Aortic Valve Implantation by Computed Tomography. J. Cardiovasc. Comput. Tomogr. 2012, 6, 422–428. [Google Scholar] [CrossRef]
- Yucel-Finn, A.; Nicol, E.; Leipsic, J.A.; Weir-McCall, J.R. CT in Planning Transcatheter Aortic Valve Implantation Procedures and Risk Assessment. Clin. Radiol. 2021, 76, 73.e1–73.e19. [Google Scholar] [CrossRef]
- Yacaman Mendez, D.; Zhou, M.; Brynedal, B.; Gudjonsdottir, H.; Tynelius, P.; Trolle Lagerros, Y.; Lager, A. Risk Stratification for Cardiovascular Disease: A Comparative Analysis of Cluster Analysis and Traditional Prediction Models. Eur. J. Prev. Cardiol. 2025, zwaf013. [Google Scholar] [CrossRef]
- Gao, N.; Liu, T.; Wang, Y.; Chen, M.; Yu, L.; Fu, C.; Xu, K. Assessing the Association between Smoking and Hypertension: Smoking Status, Type of Tobacco Products, and Interaction with Alcohol Consumption. Front. Cardiovasc. Med. 2023, 10, 1027988. [Google Scholar] [CrossRef]
- Palazón-Bru, A.; Ferri-Rufete, D.; Mares-García, E.; Durazo-Arvizu, R.Á.; Divisón-Garrote, J.A.; Carbayo-Herencia, J.A.; Artigao-Rodenas, L.M.; Simarro-Rueda, M.; Molina-Escribano, F.; Ponce-García, I.; et al. Clusters of Cardiovascular Risk Factors and Their Impact on the 20-Year Cardiovascular Risk in a General Population. J. Cardiovasc. Nurs. 2020, 35, 210–216. [Google Scholar] [CrossRef]
- Akbartabartoori, M.; Lean, M.E.J.; Hankey, C.R. Smoking Combined with Overweight or Obesity Markedly Elevates Cardiovascular Risk Factors. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 938–946. [Google Scholar] [CrossRef]
- Mambo, A.; Yang, Y.; Mahulu, E.; Zihua, Z. Investigating the Interplay of Smoking, Cardiovascular Risk Factors, and Overall Cardiovascular Disease Risk: NHANES Analysis 2011–2018. BMC Cardiovasc. Disord. 2024, 24, 193. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Han, P. Cardiac Cell Type-Specific Responses to Injury and Contributions to Heart Regeneration. Cell Regen. 2021, 10, 4. [Google Scholar] [CrossRef]
- Liu, T.; Song, D.; Dong, J.; Zhu, P.; Liu, J.; Liu, W.; Ma, X.; Zhao, L.; Ling, S. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure. Front. Physiol. 2017, 8, 238. [Google Scholar] [CrossRef]
- Crea, F. Cardiomyopathies and Myocardial Fibrosis: Diagnostic and Therapeutic Challenges. Eur. Heart J. 2022, 43, 4665–4668. [Google Scholar] [CrossRef]
- Bandula, S.; White, S.K.; Flett, A.S.; Lawrence, D.; Pugliese, F.; Ashworth, M.T.; Punwani, S.; Taylor, S.A.; Moon, J.C. Measurement of Myocardial Extracellular Volume Fraction by Using Equilibrium Contrast-Enhanced CT: Validation against Histologic Findings. Radiology 2013, 269, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Peker, E.; Chandrashekhar, Y.; Nagel, E. T1 Mapping in Characterizing Myocardial Disease: A Comprehensive Review. Circ. Res. 2016, 119, 277–299. [Google Scholar] [CrossRef]
- Nacif, M.S.; Kawel, N.; Lee, J.J.; Chen, X.; Yao, J.; Zavodni, A.; Sibley, C.T.; Lima, J.A.C.; Liu, S.; Bluemke, D.A. Interstitial Myocardial Fibrosis Assessed as Extracellular Volume Fraction with Low-Radiation-Dose Cardiac CT. Radiology 2012, 264, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, M.; Paolisso, P.; De Oliveira, E.K.; Bladt, O.; Terzi, R.; Mistrulli, R.; Corradetti, S.; Viscusi, M.; Marchetti, D.; Ratti, A.; et al. Association of Cardiac Damage and Computed Tomography–Derived Extracellular Volume in Patients Undergoing Transcatheter Aortic Valve Implantation. Can. J. Cardiol. 2025, S0828282X25001758. [Google Scholar] [CrossRef] [PubMed]
- Mascherbauer, K.; Kronberger, C.; Donà, C.; Koschutnik, M.; Dannenberg, V.; Poledniczek, M.; Lunzer, L.; Nitsche, C.; Duca, F.; Heitzinger, G.; et al. Comparative Assessment of CMR-Determined Extracellular Volume Metrics in Predicting Adverse Outcomes. J. Clin. Med. 2025, 14, 382. [Google Scholar] [CrossRef]
- Zhou, W.; Sin, J.; Yan, A.T.; Wang, H.; Lu, J.; Li, Y.; Kim, P.; Patel, A.R.; Ng, M.-Y. Qualitative and Quantitative Stress Perfusion Cardiac Magnetic Resonance in Clinical Practice: A Comprehensive Review. Diagnostics 2023, 13, 524. [Google Scholar] [CrossRef]
- Perone, F.; Dentamaro, I.; La Mura, L.; Alifragki, A.; Marketou, M.; Cavarretta, E.; Papadakis, M.; Androulakis, E. Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. J. Clin. Med. 2024, 13, 1017. [Google Scholar] [CrossRef]
- Si-Mohamed, S.A.; Restier, L.M.; Branchu, A.; Boccalini, S.; Congi, A.; Ziegler, A.; Tomasevic, D.; Bochaton, T.; Boussel, L.; Douek, P.C. Diagnostic Performance of Extracellular Volume Quantified by Dual-Layer Dual-Energy CT for Detection of Acute Myocarditis. J. Clin. Med. 2021, 10, 3286. [Google Scholar] [CrossRef]
- Yashima, S.; Takaoka, H.; Ota, J.; Matsumoto, M.; Nishikawa, Y.; Noguchi, Y.; Aoki, S.; Yoshida, K.; Suzuki, K.; Kinoshita, M.; et al. Extracellular Volume by Computed Tomography Is Useful for Prediction of Prognosis in Dilated Cardiomyopathy Cases with Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2024, 11, 399. [Google Scholar] [CrossRef] [PubMed]
- Body Mass Index (BMI). Available online: https://www.who.int/data/gho/data/themes/topics/GHO/body-mass-index# (accessed on 11 May 2025).
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.-R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.N.; et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Borys, S.; Broncel, M.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Cyranka, K.; Czupryniak, L.; Dąbrowski, M.; Dzida, G.; et al. Standards of Care in Diabetes. The Position of Diabetes Poland—2025. Curr. Top. Diabetes 2025, 5, 1–158. [Google Scholar] [CrossRef]
- Lisi, C.; Moser, L.J.; Mergen, V.; Klambauer, K.; Uçar, E.; Eberhard, M.; Alkadhi, H. Advanced Myocardial Characterization and Function with Cardiac CT. Int. J. Cardiovasc. Imaging 2024. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.; Kitagawa, K.; Goto, Y.; Yamada, A.; Nakamura, S.; Takafuji, M.; Nagasawa, N.; Sakuma, H. Comparison of the Different Imaging Time Points in Delayed Phase Cardiac CT for Myocardial Scar Assessment and Extracellular Volume Fraction Estimation in Patients with Old Myocardial Infarction. Int. J. Cardiovasc. Imaging 2019, 35, 917–926. [Google Scholar] [CrossRef]
- Spagnolo, P.; Giglio, M.; Di Marco, D.; Cannaò, P.M.; Agricola, E.; Della Bella, P.E.; Monti, C.B.; Sardanelli, F. Diagnosis of Left Atrial Appendage Thrombus in Patients with Atrial Fibrillation: Delayed Contrast-Enhanced Cardiac CT. Eur. Radiol. 2021, 31, 1236–1244. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, H.; Liu, G.; Wu, C.; Ma, Y.; Li, S.; Zheng, Y.; Zhang, J. CT for the Evaluation of Myocardial Extracellular Volume with MRI as Reference: A Systematic Review and Meta-Analysis. Eur. Radiol. 2023, 33, 8464–8476. [Google Scholar] [CrossRef]
- Jiang, Y.; Ye, J.; Yang, Y.; Zhang, Y.; Yan, X.; Qiang, W.; Chen, H.; Xu, S.; Zhou, L.; Qi, R.; et al. Prognostic Value of Measurement of Myocardial Extracellular Volume Using Dual-Energy CT in Heart Failure with Preserved Ejection Fraction. Sci. Rep. 2024, 14, 7504. [Google Scholar] [CrossRef]
- Scully, P.R.; Bastarrika, G.; Moon, J.C.; Treibel, T.A. Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Curr. Cardiol. Rep. 2018, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Small, G.R.; Poulin, A.; Tavoosi, A.; Small, T.D.; Crean, A.M.; Chow, B.J.W. Cardiac Computed Tomography for Amyloidosis. Curr. Cardiovasc. Imaging Rep. 2021, 14, 10. [Google Scholar] [CrossRef]
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Anandkumar, A.; Ford, C.; Volcic, R.; De Rosario, H. Pwr: Basic Functions for Power Analysis. version 1.3-0. 2020. Available online: https://cran.r-project.org/web/packages/pwr/index.html (accessed on 11 May 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 1977; ISBN 978-0-12-179060-8. [Google Scholar]
- Song, I.; Ko, S.M.; Yi, J.G.; Chee, H.K.; Kim, J.S. Differences in Aortic Valve and Left Ventricular Parameters Related to the Severity of Myocardial Fibrosis in Patients with Severe Aortic Valve Stenosis. PLoS ONE 2017, 12, e0170939. [Google Scholar] [CrossRef] [PubMed]
- Gać, P.; Jaworski, A.; Grajnert, F.; Kicman, K.; Trejtowicz-Sutor, A.; Witkowski, K.; Poręba, M.; Poręba, R. Aortic Valve Calcium Score: Applications in Clinical Practice and Scientific Research—A Narrative Review. J. Clin. Med. 2024, 13, 4064. [Google Scholar] [CrossRef]
- Evertz, R.; Hub, S.; Beuthner, B.E.; Backhaus, S.J.; Lange, T.; Schulz, A.; Toischer, K.; Seidler, T.; Von Haehling, S.; Puls, M.; et al. Aortic Valve Calcification and Myocardial Fibrosis Determine Outcome Following Transcatheter Aortic Valve Replacement. ESC Heart Fail. 2023, 10, 2307–2318. [Google Scholar] [CrossRef]
- Chin, C.W.L.; Everett, R.J.; Kwiecinski, J.; Vesey, A.T.; Yeung, E.; Esson, G.; Jenkins, W.; Koo, M.; Mirsadraee, S.; White, A.C.; et al. Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis. JACC Cardiovasc. Imaging 2017, 10, 1320–1333. [Google Scholar] [CrossRef]
- Rosa, V.E.E.; Ribeiro, H.B.; Sampaio, R.O.; Morais, T.C.; Rosa, M.E.E.; Pires, L.J.T.; Vieira, M.L.C.; Mathias, W.; Rochitte, C.E.; De Santis, A.S.A.L.; et al. Myocardial Fibrosis in Classical Low-Flow, Low-Gradient Aortic Stenosis: Insights From a Cardiovascular Magnetic Resonance Study. Circ Cardiovasc. Imaging 2019, 12, e008353. [Google Scholar] [CrossRef]
- Treibel, T.A.; Zemrak, F.; Sado, D.M.; Banypersad, S.M.; White, S.K.; Maestrini, V.; Barison, A.; Patel, V.; Herrey, A.S.; Davies, C.; et al. Extracellular Volume Quantification in Isolated Hypertension—Changes at the Detectable Limits? J. Cardiovasc. Magn. Reson. 2015, 17, 74. [Google Scholar] [CrossRef]
- Bojer, A.S.; Sørensen, M.H.; Gæde, P.; Madsen, P.L. Myocardial Extracellular Volume Expansion in Type 2 Diabetes Is Associated With Ischemic Heart Disease, Autonomic Neuropathy, and Active Smoking. Diabetes Care 2022, 45, 3032–3039. [Google Scholar] [CrossRef]
- Shah, R.V.; Abbasi, S.A.; Neilan, T.G.; Hulten, E.; Coelho-Filho, O.; Hoppin, A.; Levitsky, L.; De Ferranti, S.; Rhodes, E.T.; Traum, A.; et al. Myocardial Tissue Remodeling in Adolescent Obesity. J. Am. Hear. Assoc. 2013, 2, e000279. [Google Scholar] [CrossRef]
- Liu, J.; Qu, Y.; Li, J.; He, W.; Chen, X.; Li, X.; Wang, Y.; Tang, H.; Yuan, Y.; Deng, L.; et al. Myocardial Tissue Remodeling in Early Adult Obesity and Its Association with Regional Adipose Tissue Distribution and Ectopic Fat Deposits: A Prospective Study. Eur. Radiol. 2023, 34, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Pagano, J.J.; Chow, K.; Paterson, I.; Thompson, R.B. Aging and Gender Effects in Native T1 and Extracellular Volume Fraction Assessment Using SASHA. J. Cardiovasc. Magn. Reson. 2016, 18, Q3. [Google Scholar] [CrossRef]
- Gallo, A.; Giral, P.; Rosenbaum, D.; Mattina, A.; Kilinc, A.; Giron, A.; Bouazizi, K.; Gueda Moussa, M.; Salem, J.-E.; Carrié, A.; et al. Myocardial Fibrosis Assessed by Magnetic Resonance Imaging in Asymptomatic Heterozygous Familial Hypercholesterolemia: The Cholcoeur Study. eBioMedicine 2021, 74, 103735. [Google Scholar] [CrossRef]
- Salerno, M.; Kuruvilla, S.; Kramer, C.M. Reply. JACC Cardiovasc. Imaging 2015, 8, 749. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C. Extracellular Volume and Cardiac Mechanics: Have We Found a Missing Puzzle Piece? JACC Cardiovasc. Imaging 2015, 8, 748. [Google Scholar] [CrossRef]
- Hoffmann, U.; Massaro, J.M.; Fox, C.S.; Manders, E.; O’Donnell, C.J. Defining Normal Distributions of Coronary Artery Calcium in Women and Men (from the Framingham Heart Study). Am. J. Cardiol. 2008, 102, 1136–1141.e1. [Google Scholar] [CrossRef]
Quantitative Variables | |||||
Variable | Mean | SD | Min | Max | Median |
Age [years] | 78.82 | 9.15 | 44.00 | 91.00 | 82.00 |
Body mass index [kg/m2] | 26.24 | 3.10 | 20.18 | 35.32 | 24.83 |
Systolic BP [mmHg] | 135.49 | 31.59 | 90.00 | 230.00 | 140.00 |
Diastolic BP [mmHg] | 78.28 | 13.99 | 60.00 | 100.00 | 90.00 |
Total cholesterol [mg/dL] | 168.69 | 38.18 | 100.20 | 222.70 | 192.60 |
Triglycerides [mg/dL] | 121.11 | 65.33 | 32.20 | 374.70 | 104.40 |
Glucose [mg/dL] | 105.11 | 17.61 | 86.00 | 170.00 | 99.00 |
CVRF | 3.61 | 1.38 | 1.00 | 7.00 | 3.00 |
Qualitative Variables | |||||
Variable | Absolute Value | Percentage | |||
Gender | |||||
Male | 38 | 62.3 | |||
Female | 23 | 37.7 | |||
Body mass index | |||||
Normal body mass | 33 | 54.1 | |||
Overweight | 22 | 36.1 | |||
Obesity | 6 | 9.8 | |||
Arterial hypertension | 33 | 54.1 | |||
Hypercholesterolemia | 35 | 57.4 | |||
Hypertriglyceridemia | 20 | 32.8 | |||
Diabetes mellitus | 6 | 9.8 | |||
Smoking | 28 | 45.9 |
Variable | Absolute Value | Percentage | |||
Number of aortic valve cusps | |||||
Bicuspid valve (2 cusps) | 2 | 3.3 | |||
Tricuspid valve (3 cusps) | 59 | 96.7 | |||
Variable | Mean | SD | Min | Max | Median |
AVCS | 3321.91 | 1512.07 | 1095.70 | 7486.00 | 2975.00 |
Aortic annulus | |||||
Max diameter [mm] | 27.07 | 3.29 | 22.00 | 37.00 | 27.00 |
Min diameter [mm] | 21.66 | 2.87 | 17.00 | 30.00 | 21.00 |
Mean diameter [mm] | 24.36 | 2.76 | 20.50 | 32.00 | 24.00 |
Sinus of Valsalva | |||||
Max diameter [mm] | 33.84 | 4.07 | 27.00 | 46.00 | 33.00 |
Min diameter [mm] | 30.72 | 4.27 | 19.00 | 45.00 | 30.00 |
Mean diameter [mm] | 32.28 | 3.89 | 25.50 | 45.50 | 32.00 |
Height [mm] | 20.54 | 3.01 | 14.00 | 30.00 | 20.00 |
Coronary ostial height from the annulus | |||||
Left coronary artery [mm] | 13.18 | 2.47 | 8.50 | 20.00 | 14.00 |
Right coronary artery [mm] | 14.20 | 2.42 | 11.00 | 20.00 | 14.00 |
AVA [cm2] | 0.99 | 0.17 | 0.74 | 1.48 | 0.95 |
ECV [%] | 27.53 | 1.90 | 23.60 | 31.50 | 27.60 |
Variable | ECV [%] b | p | |
---|---|---|---|
Age a | ≥Me (≥82 years) | 27.58 ± 1.89 | ns. |
<Me (<82 years) | 27.46 ± 1.94 | ||
Gender | male | 27.80 ± 1.92 | ns. |
female | 27.08 ± 1.82 | ||
Obesity | yes | 28.82 ± 0.88 | ns. |
no | 27.39 ± 1.94 | ||
Arterial hypertension | yes | 28.01 ± 1.83 | 0.03 |
no | 26.93 ± 1.85 | ||
Hypercholesterolemia | yes | 27.62 ± 1.80 | ns. |
no | 27.40 ± 2.06 | ||
Hypertriglyceridemia | yes | 27.63 ± 1.99 | ns. |
no | 27.48 ± 1.88 | ||
Diabetes mellitus | yes | 27.92 ± 2.12 | ns. |
no | 27.49 ± 1.89 | ||
Smoking | yes | 28.71 ± 1.41 | 0.01 |
no | 26.52 ± 1.68 | ||
CVRF a | ≥Me (≥3) | 27.96 ± 1.76 | 0.01 |
<Me (<3) | 25.95 ± 1.57 | ||
AVCS a | ≥Me (≥2975.00) | 28.08 ± 1.84 | 0.02 |
<Me (<2975.00) | 26.95 ± 1.82 | ||
AVA a | ≥Me (≥0.95 cm2) | 26.53 ± 1.65 | 0.01 |
<Me (<0.95 cm2) | 28.63 ± 1.53 |
Variable | ECV [%] | |
---|---|---|
r | p | |
Age [years] | 0.16 | ns. |
BMI [kg/m2] | 0.30 | 0.01 |
Systolic BP [mmHg] | 0.31 | 0.02 |
Diastolic BP [mmHg] | 0.22 | ns. |
Total cholesterol [mg/dL] | 0.06 | ns. |
Triglycerides [mg/dL] | 0.24 | ns. |
Glucose [mg/dL] | 0.21 | ns. |
CVRF | 0.49 | 0.01 |
AVCS | 0.36 | 0.01 |
AVA [cm2] | −0.59 | 0.01 |
Variable | Intercept | Arterial Hypertension 1 | Smoking 1 | AVA [cm2] |
---|---|---|---|---|
Regression coefficient β | 30.114 | 1.218 | 1.575 | −3.986 |
Standard error of the coefficient | 1.374 | 0.344 | 0.412 | 1.213 |
p | 0.001 | 0.003 | 0.004 | 0.002 |
p for the overall model | <0.001 | |||
Adjusted R2 [%] | 51.907 | |||
Standard error of estimation | 1.319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martuszewski, A.; Paluszkiewicz, P.; Poręba, R.; Gać, P. Increased Left Ventricular Myocardial Extracellular Volume Assessed by Cardiac Computed Tomography as a Consequence of Aortic Stenosis and Coexisting Cardiovascular Risk Factors. J. Clin. Med. 2025, 14, 4435. https://doi.org/10.3390/jcm14134435
Martuszewski A, Paluszkiewicz P, Poręba R, Gać P. Increased Left Ventricular Myocardial Extracellular Volume Assessed by Cardiac Computed Tomography as a Consequence of Aortic Stenosis and Coexisting Cardiovascular Risk Factors. Journal of Clinical Medicine. 2025; 14(13):4435. https://doi.org/10.3390/jcm14134435
Chicago/Turabian StyleMartuszewski, Adrian, Patrycja Paluszkiewicz, Rafał Poręba, and Paweł Gać. 2025. "Increased Left Ventricular Myocardial Extracellular Volume Assessed by Cardiac Computed Tomography as a Consequence of Aortic Stenosis and Coexisting Cardiovascular Risk Factors" Journal of Clinical Medicine 14, no. 13: 4435. https://doi.org/10.3390/jcm14134435
APA StyleMartuszewski, A., Paluszkiewicz, P., Poręba, R., & Gać, P. (2025). Increased Left Ventricular Myocardial Extracellular Volume Assessed by Cardiac Computed Tomography as a Consequence of Aortic Stenosis and Coexisting Cardiovascular Risk Factors. Journal of Clinical Medicine, 14(13), 4435. https://doi.org/10.3390/jcm14134435