Carpal Tunnel Syndrome and Diabetes—A Comprehensive Review
Abstract
:1. Introduction
2. Neuropathy in Diabetes
3. The Increased Susceptibility to Nerve Compression in Diabetes
4. Symptoms and Clinical Signs of CTS
5. CTS and Type 1 and Type 2 Diabetes
6. Sex Differences in CTS and Diabetes
7. Value of Electrophysiology in CTS and Diabetes
8. Treatment Options
9. Outcome of Surgery
Author, Year | Study Design | N of Individuals (Hands) | Diabetes | Type of Diabetes | Neuropathy | Outcome Measure | Follow-Up Time | Results, Diabetes vs. No Diabetes |
---|---|---|---|---|---|---|---|---|
Haupt 1993 [78] | Prospective | 60 (86) | 10/60 (17%) | Not reported | Not reported | Motor function, sensory deficit, trophic changes, neurography and electro-myography | 5.5 years | Marginally less pain relief in individuals with diabetes |
al-Qattan 1994 [97] | Retrospective | 15 (20) | 15/15 (100%) | Not reported | 15/15 | Grading: excellent/good/poor | 18 months | 5 hands had poor improvement—all of these had normal/mild neurography pre-op |
Choi 1998 [98] | Retrospective | 154 (294) | 19/154 (12%) | Not reported | 3 (1.9%) | Symptom resolution (poor-excellent) | 12 months | No difference |
Ozkul 2002 [79] | Prospective | 47 (60) | 22/47 (47%) | T2D | Excluded | PROM: global symptom score, neurography | 12 months | Better PROMs and neurography recovery in individuals without diabetes |
Mondelli 2004 [99] | Prospective case series | 96 (96) | 24/96 (25%) | T1D: 19 T2D: 5 | 6/24 (25%) | BCTQ | 6 months | No difference |
Thomsen 2009 [81] | Prospective | 66 (66) | 35/66 (53%) | T1D: 15 T2D: 20 | 14/35 (40%) | Monofilament, 2PD, APB strength, grip strength, key pinch, lateral pinch, pillar pain, postoperative questionnaire (VAS questions) | 52 weeks | Individuals with diabetes had the same beneficial outcome after carpal tunnel release as non-diabetes individuals |
Thomsen 2010 [59] | Prospective | 66 (66) | 35/66 (53%) | T1D: 15 T2D: 20 | 14/35 (40%) | Electrophysiology testing | 12 months | Electrophysiology improved as much in individuals with as without diabetes |
Jenkins 2012 [83] | Prospective | 1564 (1564) | 176/1564 (11.3%) | Not reported | Not reported | QuickDASH | 12 months | Poorer functional scores after 12 months in individuals with diabetes, but doubtful whether of clinical significance |
Isik 2013 [84] | Retrospective case-control | 74 (99) | 36/74 (49%) | T2D | none | PROM questions on symptoms | 12 months | Worse post-op symptoms in individuals with diabetes |
Zyluk 2013 [85] | Retrospective | 386 (386) | 41/386 (11%) | T1D: 11 T2D: 30 | None | BCTQ | 6 months | Clinical benefit: no difference. DM individuals had weaker grip strength and poorer perception of touch |
Ebrahimzadeh 2013 [100] | Retrospective | 74 (74) | 35/74 (47%) | T1D: 14 T2D: 21 | Not reported | WHOQOL-BREEF; MHQ | 3 months | Worse results in individuals with diabetes, MHQ-scores better in T2D than T1D |
Cagle 2014 [86] | Prospective | 826 (950) | 90/950 (10%) | Not reported | 20/950 (2%) | BCTQ | 12 weeks | Individuals with diabetes improved but took longer |
Gulabi 2014 [87] | Prospective | 69 (69) | 27/69 (39%) | T1D: 18 T2D: 9 | Not reported | BCTQ | 10 years | Individuals with diabetes worse at the 10 years follow-up. No difference at 6 m. |
Thomsen 2014 [82] | Prospective | 66 (66) | 35/66 (53%) | T1D: 15 T2D: 20 | 14/35 (40%) | BCTQ, monofilament, 2PD, APB strength, grip strength, key pinch, lateral pinch, pillar pain, VAS questions | 5 years | Excellent long-term improvement in individuals with diabetes |
Yucel 2015 [101] | Retrospective | 83 (101) | 35/83 (42%) | Not reported | Not reported | VAS-questions, BCTQ, monofilament, grip and pinch strength | Not specified | Individuals with diabetes had more symptoms in BCTQ |
Zimmerman 2016 [89] | Retrospective | 493 (531) | 76/531 (14%) | T1D: 18 T2D: 58 | 18/76 | QuickDASH | 12 months | Same improvement, but more persistent symptoms in individuals with diabetes and polyneuropathy |
Thomsen 2017 [60] | Prospective | 57 (57) | 27/57 (47%) | T1D: 13 T2D: 14 | 10/27 (37%) | Electrophysiology parameters | 5 years | Long-term electrophysio-logy improvement was seen in both diabetes and non-diabetes individuals |
Watchmaker 2017 [88] | Prospective | 1031 (1037) | 133/1031 (13%) | Not reported | Not reported | Symptom survey | 6 months | Individuals with diabetes had the same symptom resolution |
Zhang 2018 [102] | Retrospective | 904 (1144) | Not reported | Not reported | Not reported | Secondary surgery | 60 months | DM associated with greater risk of secondary surgery |
Zimmerman 2019 [90] | Retrospective | 9049 (10,770) | 1508/9049 (17%) | T1D: 335 T2D: 1150 | Not reported | QuickDASH | 12 months | Individuals with diabetes benefitted from surgery, but not to same extent as patients without diabetes |
10. Controversies in Nerve Compression and Diabetes
11. Future Perspectives—The Diabetic Nerve
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Latinovic, R.; Gulliford, M.C.; Hughes, R.A. Incidence of common compressive neuropathies in primary care. J. Neurol. Neurosurg. Psychiatry 2006, 77, 263–265. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zimmerman, M.; Hall, E.; Carlsson, K.S.; Nyman, E.; Dahlin, L.B. Socioeconomic factors predicting outcome in surgically treated carpal tunnel syndrome: A national registry-based study. Sci. Rep. 2021, 11, 2581. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.; Nyman, E.; Steen Carlsson, K.; Dahlin, L.B. Socioeconomic Factors in Patients with Ulnar Nerve Compression at the Elbow: A National Registry-Based Study. BioMed Res. Int. 2020, 2020, 5928649. [Google Scholar] [CrossRef] [PubMed]
- Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosen, I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999, 282, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Atroshi, I. Incidence of physician-diagnosed carpal tunnel syndrome in the general population. Arch. Intern. Med. 2011, 171, 943–944. [Google Scholar] [CrossRef]
- Tadjerbashi, K.; Åkesson, A.; Atroshi, I. Incidence of referred carpal tunnel syndrome and carpal tunnel release surgery in the general population: Increase over time and regional variations. J. Orthop. Surg. 2019, 27, 2309499019825572. [Google Scholar] [CrossRef][Green Version]
- Nordstrom, D.L.; DeStefano, F.; Vierkant, R.A.; Layde, P.M. Incidence of diagnosed carpal tunnel syndrome in a general population. Epidemiology 1998, 9, 342–345. [Google Scholar] [CrossRef]
- Bland, J.D.; Rudolfer, S.M. Clinical surveillance of carpal tunnel syndrome in two areas of the United Kingdom, 1991–2001. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1674–1679. [Google Scholar] [CrossRef][Green Version]
- Wiberg, A.; Ng, M.; Schmid, A.B.; Smillie, R.W.; Baskozos, G.; Holmes, M.V.; Künnapuu, K.; Mägi, R.; Bennett, D.L.; Furniss, D. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat. Commun. 2019, 10, 1030. [Google Scholar] [CrossRef]
- Renard, E.; Jacques, D.; Chammas, M.; Poirier, J.L.; Bonifacj, C.; Jaffiol, C.; Simon, L.; Allieu, Y. Increased prevalence of soft tissue hand lesions in type 1 and type 2 diabetes mellitus: Various entities and associated significance. Diabete Metab. 1994, 20, 513–521. [Google Scholar]
- Papanas, N.; Maltezos, E. The diabetic hand: A forgotten complication? J. Diabetes Its Complicat. 2010, 24, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, M.; Zimmerman, M.; Gottsäter, A.; Svensson, A.; Eeg-Olofsson, K.; Dahlin, L.B. The Diabetic Hand-prevalence and incidence of diabetic hand problems using data from 1.1 million inhabitants in southern Sweden. BMJ Open Diabetes Res. Care 2022, 10, e002614. [Google Scholar] [CrossRef] [PubMed]
- Rota, E.; Morelli, N. Entrapment neuropathies in diabetes mellitus. World J. Diabetes 2016, 7, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, M.; Zimmerman, M.; Gottsäter, A.; Nilsson, P.M.; Melander, O.; Dahlin, L.B. Diabetes mellitus as a risk factor for compression neuropathy: A longitudinal cohort study from southern Sweden. BMJ Open Diabetes Res. Care 2020, 8, e001298. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Upton, A.R.; McComas, A.J. The double crush in nerve entrapment syndromes. Lancet 1973, 2, 359–362. [Google Scholar] [CrossRef]
- Thomsen, N.O.; Mojaddidi, M.; Malik, R.A.; Dahlin, L.B. Reduced myelinated nerve fibre and endoneurial capillary densities in the forearm of diabetic and non-diabetic patients with carpal tunnel syndrome. Acta Neuropathol. 2009, 118, 785–791. [Google Scholar] [CrossRef]
- Dahlin, L.; Sanden, H.; Dahlin, E.; Zimmerman, M.; Thomsen, N.; Bjorkman, A. Low myelinated nerve-fibre density may lead to symptoms associated with nerve entrapment in vibration-induced neuropathy. J. Occup. Med. Toxicol. 2014, 9, 7. [Google Scholar] [CrossRef][Green Version]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef][Green Version]
- Factors in development of diabetic neuropathy. Baseline analysis of neuropathy in feasibility phase of Diabetes Control and Complications Trial (DCCT). The DCCT Research Group. Diabetes 1988, 37, 476–481. [Google Scholar] [CrossRef]
- Salvotelli, L.; Stoico, V.; Perrone, F.; Cacciatori, V.; Negri, C.; Brangani, C.; Pichiri, I.; Targher, G.; Bonora, E.; Zoppini, G. Prevalence of neuropathy in type 2 diabetic patients and its association with other diabetes complications: The Verona Diabetic Foot Screening Program. J. Diabetes Its Complicat. 2015, 29, 1066–1070. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Partanen, J.; Niskanen, L.; Lehtinen, J.; Mervaala, E.; Siitonen, O.; Uusitupa, M. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1995, 333, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Aaberg, M.L.; Burch, D.M.; Hud, Z.R.; Zacharias, M.P. Gender differences in the onset of diabetic neuropathy. J. Diabetes Its Complicat. 2008, 22, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Albers, J.W.; Pop-Busui, R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr. Neurol. Neurosci. Rep. 2014, 14, 473. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zimmerman, M. The Diabetic Nerve. Studies on Outcome after Open Carpal Tunnel Release and the Development of Autonomic Neuropathy. Ph.D. Dissertation, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Baptista, F.I.; Pinheiro, H.; Gomes, C.A.; Ambrósio, A.F. Impairment of Axonal Transport in Diabetes: Focus on the Putative Mechanisms Underlying Peripheral and Central Neuropathies. Mol. Neurobiol. 2019, 56, 2202–2210. [Google Scholar] [CrossRef]
- Medori, R.; Autilio-Gambetti, L.; Jenich, H.; Gambetti, P. Changes in axon size and slow axonal transport are related in experimental diabetic neuropathy. Neurology 1988, 38, 597–601. [Google Scholar] [CrossRef]
- Mohseni, S.; Badii, M.; Kylhammar, A.; Thomsen, N.O.B.; Eriksson, K.F.; Malik, R.A.; Rosen, I.; Dahlin, L.B. Longitudinal study of neuropathy, microangiopathy, and autophagy in sural nerve: Implications for diabetic neuropathy. Brain Behav. 2017, 7, e00763. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Cheng, H.; Stables, C.L.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012, 11, 521–534. [Google Scholar] [CrossRef][Green Version]
- Sima, A.A.F.; Zhang, W.; Grunberger, G. Type 1 Diabetic Neuropathy and C-peptide. Exp. Diabesity Res. 2004, 5, 65–77. [Google Scholar] [CrossRef]
- Nathan, D.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Callaghan, B.C.; Little, A.A.; Feldman, E.L.; Hughes, R.A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst. Rev. 2012, 6, Cd007543. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, B.; Feldman, E. The metabolic syndrome and neuropathy: Therapeutic challenges and opportunities. Ann. Neurol. 2013, 74, 397–403. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Callaghan, B.C.; Gallagher, G.; Fridman, V.; Feldman, E.L. Diabetic neuropathy: What does the future hold? Diabetologia 2020, 63, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Eid, S.; Sas, K.M.; Abcouwer, S.F.; Feldman, E.L.; Gardner, T.W.; Pennathur, S.; Fort, P.E. New insights into the mechanisms of diabetic complications: Role of lipids and lipid metabolism. Diabetologia 2019, 62, 1539–1549. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117. [Google Scholar] [CrossRef]
- Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352, 837–853. [CrossRef]
- Osman, A.A.; Dahlin, L.B.; Thomsen, N.O.; Mohseni, S. Autophagy in the posterior interosseous nerve of patients with type 1 and type 2 diabetes mellitus: An ultrastructural study. Diabetologia 2015, 58, 625–632. [Google Scholar] [CrossRef][Green Version]
- Sunderland, S. Nerves and Nerve Injuries, 2nd ed.; Edinburgh; Churchill Livingstone: Philadelphia, PA, USA, 1978. [Google Scholar]
- Boron, W.F.B.; Emile, L. Medical Physiology, 2nd ed.; Saunders; Elsevier: Hoboken, NJ, USA, 2009. [Google Scholar]
- King, R. Peripheral Nerve Disorders; Vallat, J.-M., Weis, J., Eds.; International Society of Neuropathology Series; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Dahlin, L.B.; Shyu, B.C.; Danielsen, N.; Andersson, S.A. Effects of nerve compression or ischaemia on conduction properties of myelinated and non-myelinated nerve fibres. An experimental study in the rabbit common peroneal nerve. Acta Physiol. Scand. 1989, 136, 97–105. [Google Scholar] [CrossRef]
- Sleigh, J.N.; Rossor, A.M.; Fellows, A.D.; Tosolini, A.P.; Schiavo, G. Axonal transport and neurological disease. Nat. Rev. Neurol. 2019, 15, 691–703. [Google Scholar] [CrossRef]
- Dahlin, L.B.; Meiri, K.F.; McLean, W.G.; Rydevik, B.; Sjostrand, J. Effects of nerve compression on fast axonal transport in streptozotocin-induced diabetes mellitus. An experimental study in the sciatic nerve of rats. Diabetologia 1986, 29, 181–185. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Snedeker, J.G.; Gautieri, A. The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly. Muscles Ligaments Tendons J. 2014, 4, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Samii, A.; Unger, J.; Lange, W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci. Lett. 1999, 262, 159–162. [Google Scholar] [CrossRef]
- Lundborg, G.; Myers, R.; Powell, H. Nerve compression injury and increased endoneurial fluid pressure: A “miniature compartment syndrome”. J. Neurol. Neurosurg. Psychiatry 1983, 46, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanan, K.; Shah, R. Median nerve and carpal arch morphology changes in women with type 2 diabetes: A case–control study. J. Ultrasound 2021. [Google Scholar] [CrossRef] [PubMed]
- Mojaddidi, M.A.; Ahmed, M.S.; Ali, R.; Jeziorska, M.; Al-Sunni, A.; Thomsen, N.O.; Dahlin, L.B.; Malik, R.A. Molecular and pathological studies in the posterior interosseous nerve of diabetic and non-diabetic patients with carpal tunnel syndrome. Diabetologia 2014, 57, 1711–1719. [Google Scholar] [CrossRef][Green Version]
- Strömberg, T.; Dahlin, L.B.; Brun, A.; Lundborg, G. Structural nerve changes at wrist level in workers exposed to vibration. Occup. Environ. Med. 1997, 54, 307–311. [Google Scholar] [CrossRef][Green Version]
- Vinik, A.; Mehrabyan, A.; Colen, L.; Boulton, A. Focal entrapment neuropathies in diabetes. Diabetes Care 2004, 27, 1783–1788. [Google Scholar] [CrossRef][Green Version]
- Mackinnon, S.E. Pathophysiology of nerve compression. Hand Clin. 2002, 18, 231–241. [Google Scholar] [CrossRef]
- Dahlin, L.B. Aspects on pathophysiology of nerve entrapments and nerve compression injuries. Neurosurg. Clin. N. Am. 1991, 2, 21–29. [Google Scholar] [CrossRef]
- Gupta, R.; Rowshan, K.; Chao, T.; Mozaffar, T.; Steward, O. Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Exp. Neurol. 2004, 187, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Aboonq, M.S. Pathophysiology of carpal tunnel syndrome. Neurosciences 2015, 20, 4–9. [Google Scholar] [PubMed]
- Lundborg, G.; Dahlin, L.B. Anatomy, function, and pathophysiology of peripheral nerves and nerve compression. Hand Clin. 1996, 12, 185–193. [Google Scholar] [CrossRef]
- Tapadia, M.; Mozaffar, T.; Gupta, R. Compressive Neuropathies of the Upper Extremity: Pathophysiology, Classification, Electrodiagnostic Findings. J. Hand Surg. 2010, 35, 668–677. [Google Scholar] [CrossRef][Green Version]
- Thomsen, N.O.B.; Rosén, I.; Dahlin, L.B. Neurophysiologic recovery after carpal tunnel release in diabetic patients. Clin. Neurophysiol. 2010, 121, 1569–1573. [Google Scholar] [CrossRef]
- Thomsen, N.O.B.; Andersson, G.S.; Bjork, J.; Dahlin, L.B. Neurophysiological recovery 5 years after carpal tunnel release in patients with diabetes. Muscle Nerve 2017, 56, E59–E64. [Google Scholar] [CrossRef]
- Zhang, D.; Collins, J.; Blazar, P.; Earp, B.E. Factors Associated With Advanced Presentation for Carpal Tunnel Release. J. Hand Surg. Am. 2020, 45, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.E.; Dellon, A.L.; Hudson, A.R.; Hunter, D.A. Chronic human nerve compression—A histological assessment. Neuropathol. Appl. Neurobiol. 1986, 12, 547–565. [Google Scholar] [CrossRef]
- Wiberg, A.; Smillie, R.W.; Dupré, S.; Schmid, A.B.; Bennett, D.L.; Furniss, D. Replication of epidemiological associations of carpal tunnel syndrome in a UK population-based cohort of over 400,000 people. J. Plast. Reconstr. Aesthet. Surg. 2021; in press. [Google Scholar] [CrossRef]
- Pourmemari, M.H.; Shiri, R. Diabetes as a risk factor for carpal tunnel syndrome: A systematic review and meta-analysis. Diabet. Med. 2016, 33, 10–16. [Google Scholar] [CrossRef]
- Padua, L.; Padua, R.; Aprile; Tonali, P. Italian multicentre study of carpal tunnel syndrome. Differences in the clinical and neurophysiological features between male and female patients. J. Hand Surg. Br. 1999, 24, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Caliandro, P.; Torre, L.G.; Padua, R.; Giannini, F.; Padua, L. Treatment for ulnar neuropathy at the elbow. Cochrane Database Syst. Rev. 2016, 11, CD006839. [Google Scholar] [CrossRef] [PubMed]
- Ennis, S.L.; Galea, M.P.; O’Neal, D.N.; Dodson, M.J. Peripheral neuropathy in the hands of people with diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 119, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, N.O.; Englund, E.; Thrainsdottir, S.; Rosen, I.; Dahlin, L.B. Intraepidermal nerve fibre density at wrist level in diabetic and non-diabetic patients. Diabet. Med. 2009, 26, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Yagci, I.; Gunduz, O.H.; Sancak, S.; Agirman, M.; Mesci, E.; Akyuz, G. Comparative electrophysiological techniques in the diagnosis of carpal tunnel syndrome in patients with diabetic polyneuropathy. Diabetes Res. Clin. Pract. 2010, 88, 157–163. [Google Scholar] [CrossRef]
- Dahlin, E.; Zimmerman, M.; Bjorkman, A.; Thomsen, N.O.; Andersson, G.S.; Dahlin, L.B. Impact of smoking and preoperative electrophysiology on outcome after open carpal tunnel release. J. Plast. Surg. Hand Surg. 2016, 51, 329–335. [Google Scholar] [CrossRef][Green Version]
- Osiak, K.; Mazurek, A.; Pękala, P.; Koziej, M.; Walocha, J.A.; Pasternak, A. Electrodiagnostic Studies in the Surgical Treatment of Carpal Tunnel Syndrome-A Systematic Review. J. Clin. Med. 2021, 10, 2691. [Google Scholar] [CrossRef]
- Perkins, B.A.; Olaleye, D.; Bril, V. Carpal tunnel syndrome in patients with diabetic polyneuropathy. Diabetes Care 2002, 25, 565–569. [Google Scholar] [CrossRef][Green Version]
- Dyck, P.J.; Kratz, K.M.; Karnes, J.L.; Litchy, W.J.; Klein, R.; Pach, J.M.; Wilson, D.M.; O’Brien, P.C.; Melton, L.J., 3rd; Service, F.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology 1993, 43, 817–824. [Google Scholar] [CrossRef]
- Gerritsen, A.A.; de Vet, H.C.; Scholten, R.J.; Bertelsmann, F.W.; de Krom, M.C.; Bouter, L.M. Splinting vs surgery in the treatment of carpal tunnel syndrome: A randomized controlled trial. JAMA 2002, 288, 1245–1251. [Google Scholar] [CrossRef]
- Hui, A.C.; Wong, S.; Leung, C.H.; Tong, P.; Mok, V.; Poon, D.; Li-Tsang, C.W.; Wong, L.K.; Boet, R. A randomized controlled trial of surgery vs steroid injection for carpal tunnel syndrome. Neurology 2005, 64, 2074–2078. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, J.G.; Comstock, B.A.; Kliot, M.; Turner, J.A.; Chan, L.; Heagerty, P.J.; Hollingworth, W.; Kerrigan, C.L.; Deyo, R.A. Surgery versus non-surgical therapy for carpal tunnel syndrome: A randomised parallel-group trial. Lancet 2009, 374, 1074–1081. [Google Scholar] [CrossRef]
- Hulkkonen, S.; Lampainen, K.; Auvinen, J.; Miettunen, J.; Karppinen, J.; Ryhänen, J. Incidence and operations of median, ulnar and radial entrapment neuropathies in Finland: A nationwide register study. J. Hand Surg. Eur. Vol. 2020, 45, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Haupt, W.F.; Wintzer, G.; Schop, A.; Lottgen, J.; Pawlik, G. Long-term results of carpal tunnel decompression. Assessment of 60 cases. J. Hand Surg. Br. 1993, 18, 471–474. [Google Scholar] [CrossRef]
- Ozkul, Y.; Sabuncu, T.; Kocabey, Y.; Nazligul, Y. Outcomes of carpal tunnel release in diabetic and non-diabetic patients. Acta Neurol. Scand. 2002, 106, 168–172. [Google Scholar] [CrossRef]
- Shin, J.; Kim, Y.W.; Lee, S.C.; Yang, S.N.; Chang, J.S.; Yoon, S.Y. Effects of diabetes mellitus on the rate of carpal tunnel release in patients with carpal tunnel syndrome. Sci. Rep. 2021, 11, 15858. [Google Scholar] [CrossRef]
- Thomsen, N.O.B.; Cederlund, R.; Rosén, I.; Björk, J.; Dahlin, L.B. Clinical Outcomes of Surgical Release Among Diabetic Patients With Carpal Tunnel Syndrome: Prospective Follow-Up With Matched Controls. J. Hand Surg. 2009, 34, 1177–1187. [Google Scholar] [CrossRef]
- Thomsen, N.O.; Cederlund, R.I.; Andersson, G.S.; Rosen, I.; Bjork, J.; Dahlin, L.B. Carpal tunnel release in patients with diabetes: A 5-year follow-up with matched controls. J. Hand Surg. Am. 2014, 39, 713–720. [Google Scholar] [CrossRef]
- Jenkins, P.J.; Duckworth, A.D.; Watts, A.C.; McEachan, J.E. The outcome of carpal tunnel decompression in patients with diabetes mellitus. J. Bone Jt. Surg. Br. Vol. 2012, 94-B, 811–814. [Google Scholar] [CrossRef]
- Isik, C.; Uslu, M.; Inanmaz, M.E.; Karabekmez, F.E.; Kose, K.C. The effects of diabetes on symptoms of carpal tunnel syndrome treated with mini-open surgery. Acta Orthop. Belg. 2013, 79, 381–385. [Google Scholar]
- Zyluk, A.; Puchalski, P. A comparison of outcomes of carpal tunnel release in diabetic and non-diabetic patients. J. Hand Surg. Eur. Vol. 2013, 38, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Cagle, P.J., Jr.; Reams, M.; Agel, J.; Bohn, D. An outcomes protocol for carpal tunnel release: A comparison of outcomes in patients with and without medical comorbidities. J. Hand Surg. Am. 2014, 39, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Gulabi, D.; Cecen, G.; Guclu, B.; Cecen, A. Carpal tunnel release in patients with diabetes result in poorer outcome in long-term study. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2014, 24, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Watchmaker, J.D.; Watchmaker, G.P. Independent Variables Affecting Outcome of Carpal Tunnel Release Surgery. Hand 2017, 13, 1558944717703739. [Google Scholar] [CrossRef]
- Zimmerman, M.; Dahlin, E.; Thomsen, N.O.; Andersson, G.S.; Bjorkman, A.; Dahlin, L.B. Outcome after carpal tunnel release: Impact of factors related to metabolic syndrome. J. Plast. Surg. Hand Surg. 2016, 51, 165–171. [Google Scholar] [CrossRef]
- Zimmerman, M.; Eeg-Olofsson, K.; Svensson, A.; Astrom, M.; Arner, M.; Dahlin, L. Open carpal tunnel release and diabetes: A retrospective study using PROMs and national quality registries. BMJ Open 2019, 9, e030179. [Google Scholar] [CrossRef]
- Moradi, A.; Sadr, A.; Ebrahimzadeh, M.H.; Hassankhani, G.G.; Mehrad-Majd, H. Does diabetes mellitus change the carpal tunnel release outcomes? Evidence from a systematic review and meta-analysis. J. Hand Ther. 2020, 33, 394–401. [Google Scholar] [CrossRef]
- de Rijk, M.C.; Vermeij, F.H.; Suntjens, M.; van Doorn, P.A. Does a carpal tunnel syndrome predict an underlying disease? J. Neurol. Neurosurg. Psychiatry 2007, 78, 635–637. [Google Scholar] [CrossRef][Green Version]
- Werner, B.C.; Teran, V.A.; Deal, D.N. Patient-Related Risk Factors for Infection Following Open Carpal Tunnel Release: An Analysis of Over 450,000 Medicare Patients. J. Hand Surg. Am. 2018, 43, 214–219. [Google Scholar] [CrossRef]
- Harness, N.G.; Inacio, M.C.; Pfeil, F.F.; Paxton, L.W. Rate of Infection After Carpal Tunnel Release Surgery and Effect of Antibiotic Prophylaxis. J. Hand Surg. 2010, 35, 189–196. [Google Scholar] [CrossRef]
- Werner, B.C.; Teran, V.A.; Cancienne, J.; Deal, D.N. The Association of Perioperative Glycemic Control With Postoperative Surgical Site Infection Following Open Carpal Tunnel Release in Patients With Diabetes. Hand 2019, 14, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.S.; Apel, P.J.; Truong, A.Y.; Zarei, M.; Lozano, A.J.; Capito, A.E. The Utility of Preoperative HbA1c as a Standardized Protocol in Elective Carpal Tunnel Release: A Retrospective Review of Clinical Outcomes. Hand 2022, 17, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M.; Manktelow, R.T.; Bowen, C.V. Outcome of carpal tunnel release in diabetic patients. J. Hand Surg. Br. 1994, 19, 626–629. [Google Scholar] [CrossRef]
- Choi, S.J.; Ahn, D.S. Correlation of clinical history and electrodiagnostic abnormalities with outcome after surgery for carpal tunnel syndrome. Plast. Reconstr. Surg. 1998, 102, 2374–2380. [Google Scholar] [CrossRef]
- Mondelli, M.; Padua, L.; Reale, F.; Signorini, A.M.; Romano, C. Outcome of surgical release among diabetics with carpal tunnel syndrome. Arch. Phys. Med. Rehabil. 2004, 85, 7–13. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.H.; Mashhadinejad, H.; Moradi, A.; Kachooei, A.R. Carpal tunnel release in diabetic and non-diabetic patients. Arch. Bone Jt. Surg. 2013, 1, 23–27. [Google Scholar]
- Yucel, H. Factors affecting symptoms and functionality of patients with carpal tunnel syndrome: A retrospective study. J. Phys. Ther. Sci. 2015, 27, 1097–1101. [Google Scholar] [CrossRef][Green Version]
- Zhang, D.; Blazar, P.; Earp, B.E. Rates of Complications and Secondary Surgeries of Mini-Open Carpal Tunnel Release. Hand 2018, 14, 471–476. [Google Scholar] [CrossRef]
- Dellon, A.L. Susceptibility of nerve in diabetes to compression: Implications for pain treatment. Plast. Reconstr. Surg. 2014, 134, 142s–150s. [Google Scholar] [CrossRef]
- Sarmiento, S.; Pierre, J.A., Jr.; Dellon, A.L.; Frick, K.D. Tibial nerve decompression for the prevention of the diabetic foot: A cost-utility analysis using Markov model simulations. BMJ Open 2019, 9, e024816. [Google Scholar] [CrossRef]
- Dellon, A.L.; Muse, V.L.; Nickerson, D.S.; Akre, T.; Anderson, S.R.; Barrett, S.L.; Biddinger, K.R.; Bregman, P.J.; Bullard, B.P.; Dauphinee, D.M.; et al. Prevention of ulceration, amputation, and reduction of hospitalization: Outcomes of a prospective multicenter trial of tibial neurolysis in patients with diabetic neuropathy. J. Reconstr. Microsurg. 2012, 28, 241–246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cornblath, D.R.; Vinik, A.; Feldman, E.; Freeman, R.; Boulton, A.J. Surgical decompression for diabetic sensorimotor polyneuropathy. Diabetes Care 2007, 30, 421–422. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nickerson, D.S. Nerve decompression and neuropathy complications in diabetes: Are attitudes discordant with evidence? Diabet. Foot Ankle 2017, 8, 1367209. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, V.; Stevens, J.C.; Kincaid, J.; So, Y.T. Practice Advisory: Utility of surgical decompression for treatment of diabetic neuropathy: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2006, 66, 1805–1808. [Google Scholar] [CrossRef][Green Version]
- Rinkel, W.D.; Fakkel, T.M.; Castro Cabezas, M.; Birnie, E.; Coert, J.H. (Cost-)effectiveness of lower extremity nerve decompression surgery in subjects with diabetes: The DeCompression (DECO) trial-study protocol for a randomised controlled trial. BMJ Open 2020, 10, e035644. [Google Scholar] [CrossRef]
- Dahlin, L.B.; Rix, K.R.; Dahl, V.A.; Dahl, A.B.; Jensen, J.N.; Cloetens, P.; Pacureanu, A.; Mohseni, S.; Thomsen, N.O.B.; Bech, M. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci. Rep. 2020, 10, 7592. [Google Scholar] [CrossRef]
- Ising, E.; Åhrman, E.; Thomsen, N.O.B.; Eriksson, K.F.; Malmström, J.; Dahlin, L.B. Quantitative proteomic analysis of human peripheral nerves from subjects with type 2 diabetes. Diabet. Med. 2021, 38, e14658. [Google Scholar] [CrossRef]
OR (95% CI) | Men with Diabetes | Women with Diabetes | ||
---|---|---|---|---|
1.99 (1.81–2.19) | 2.63 (2.42–2.86) | |||
T1D | T2D | T1D | T2D | |
Prevalence | 6.8% | 5.0% | 13.5% | 10.1% |
Incidence rate/ 10,000 person-years | 58.1 | 31.6 | 95.5 | 52.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmerman, M.; Gottsäter, A.; Dahlin, L.B. Carpal Tunnel Syndrome and Diabetes—A Comprehensive Review. J. Clin. Med. 2022, 11, 1674. https://doi.org/10.3390/jcm11061674
Zimmerman M, Gottsäter A, Dahlin LB. Carpal Tunnel Syndrome and Diabetes—A Comprehensive Review. Journal of Clinical Medicine. 2022; 11(6):1674. https://doi.org/10.3390/jcm11061674
Chicago/Turabian StyleZimmerman, Malin, Anders Gottsäter, and Lars B. Dahlin. 2022. "Carpal Tunnel Syndrome and Diabetes—A Comprehensive Review" Journal of Clinical Medicine 11, no. 6: 1674. https://doi.org/10.3390/jcm11061674