The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Construction of PB Transposon Vectors
2.3. Generation of GM HDDPCs via Transfection with PB-Based Vectors
2.4. Preparation of MMC-Treated Feeder Cells
2.5. PCR Analysis
2.6. Immunocytochemical Staining
2.7. Cell Growth Assay
2.8. In vitro Differentiation Assay
2.9. Alkaline Phosphatase (ALP) Assay
3. Results
3.1. Preparation of GM HDDPCs
3.2. HDDPC-Derived Feeder Cells Enhanced the Proliferation of HDDPCs
3.3. HDDPC-Derived Feeder Cells Maintained the Pluripotency of HDDPCs
3.4. HDDPC-Derived Feeder Cells Maintained the Stemness of HDDPCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.B.; Lee, J.E.; Park, J.H.; Kim, S.J.; Kim, M.K.; Roh, S.I.; Yoon, H.S. Establishment and Maintenance of Human Embryonic Stem Cell Lines on Human Feeder Cells Derived from Uterine Endometrium Under Serum-Free Condition. Biol. Reprod. 2005, 72, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, S.J.; Oh, E.J.; Moon, S.Y.; Roh, S.I.; Kim, C.G.; Yoon, H.S. Establishment and Maintenance of Human Embryonic Stem Cells on STO, a Permanently Growing Cell Line. Biol. Reprod. 2003, 69, 2007–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitoh, I.; Inada, E.; Iwase, Y.; Noguchi, H.; Murakami, T.; Soda, M.; Kubota, N.; Hasegawa, H.; Akasaka, E.; Matsumoto, Y.; et al. Choice of Feeders Is Important When First Establishing iPSCs Derived from Primarily Cultured Human Deciduous Tooth Dental Pulp Cells. Cell Med. 2015, 8, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oie, Y.; Hayashi, R.; Takagi, R.; Yamato, M.; Takayanagi, H.; Tano, Y.; Nishida, K. A Novel Method of Culturing Human Oral Mucosal Epithelial Cell Sheet Using Post-Mitotic Human Dermal Fibroblast Feeder Cells and Modified Keratinocyte Culture Medium for Ocular Surface Reconstruction. Br. J. Ophthalmol. 2010, 94, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, F.; Inoue, T.; Li, Y.; Hori, Y.; Maeda, N.; Tano, Y.; Nishida, K. New Culture Technique of Human Eliminable Feeder-Assisted Target Cell Sheet Production. Biochem. Biophys. Res. Commun. 2010, 399, 373–378. [Google Scholar] [CrossRef]
- Seandel, M.; James, D.; Shmelkov, S.V.; Falciatori, I.; Kim, J.; Chavala, S.; Scherr, D.S.; Zhang, F.; Torres, R.; Gale, N.W.; et al. Generation of Functional Multipotent Adult Stem Cells from GPR125+ Germline Progenitors. Nature 2007, 449, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Rheinwald, J.G.; Green, H. Serial Cultivation of Strains of Human Epidermal Keratinocytes: The Formation of Keratinizing Colonies from Single Cells. Cell 1975, 6, 331–343. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of Silver on Burn Wound Infection Control and Healing: Review of the Literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef]
- Flores-Guzmán, P.; Fernández-Sánchez, V.; Mayani, H. Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine. Stem Cells Transl. Med. 2013, 2, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.N.; Ng, J.; Niu, T.; Yang, H.; Mcmannis, J.D.; Karandish, S.; Kaur, I.; Fu, P.; Del Angel, M.; Messinger, R.; et al. Superior Ex Vivo Cord Blood Expansion Following Co-culture with Bone Marrow-Derived Mesenchymal Stem Cells. Bone Marrow Transplant. 2006, 37, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salati, S.; Lisignoli, G.; Manferdini, C.; Pennucci, V.; Zini, R.; Bianchi, E.; Norfo, R.; Facchini, A.; Ferrari, S.; Manfredini, R. Co-culture of Hematopoietic Stem/Progenitor Cells with Human Osteblasts Favours Mono/Macrophage Differentiation at the Expense of the Erythroid Lineage. PLoS ONE 2013, 8, e53496. [Google Scholar] [CrossRef] [Green Version]
- Rosler, E.; Brandt, J.; Chute, J.V.; Hoffman, R. Co Cultivation of Umbilical Cord Blood Cells with Endothelial Cells Leads to Extensive Amplification of Competent CD34+CD38−Cells. Exp. Hematol. 2000, 28, 841–852. [Google Scholar] [CrossRef]
- Kawada, H.; Ando, K.; Tsuji, T.; Shimakura, Y.; Nakamura, Y.; Chargui, J.; Hagihara, M.; Itagaki, H.; Shimizu, T.; Inokuchi, S.; et al. Rapid Ex Vivo Expansion of Human Umbilical Cord Hematopoietic Progenitors Using a Novel Culture System. Exp. Hematol. 1999, 27, 904–915. [Google Scholar] [CrossRef]
- Tateno, H.; Saito, S.; Hiemori, K.; Kiyoi, K.; Hasehira, K.; Toyoda, M.; Onuma, Y.; Ito, Y.; Akutsu, H.; Hirabayashi, J. Alpha2-6 Sialylation Is a Marker of the Differentiation Potential of Human Mesenchymal Stem Cells. Glycobiology 2016, 26, 1328–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazini, L.; Wunder, E.; Sovalat, H.; Bourderont, D.; Baerenzung, M.; Bachorz, J.; Hénon, P. Mature Accessory Cells Influence Long-Term Growth of Human Hematopoietic Progenitors on a Murine Stromal Cell Feeder Layer. Stem Cells 1998, 16, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.R.; Evans, M.J. Differentiation of Clonal Lines of Teratocarcinoma Cells: Formation of Embryoid Bodies In Vitro. Proc. Natl. Acad. Sci. USA 1975, 72, 1441–1445. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.M.; Axelrad, A.A. Inherited Resistance to N- and B-Tropic Murine Leukemia Viruses In Vitro: Evidence That Congenic Mouse Strains SIM and SIM.R Differ at the Fv-1 Locus. Virology 1972, 50, 339–348. [Google Scholar] [CrossRef]
- Smith, A.G.; Heath, J.K.; Donaldson, D.D.; Wong, G.G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of Pluripotential Embryonic Stem Cell Differentiation by Purified Polypeptides. Nature 1988, 336, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, I.; Sato, M.; Iwase, Y.; Inada, E.; Nomura, T.; Akasaka, E.; Yamasaki, Y.; Noguchi, H. Generation of Mouse STO Feeder Cell Lines That Confer Resistance to Several Types of Selective Drugs. Cell Med. 2012, 3, 97–102. [Google Scholar] [CrossRef]
- Murakami, T.; Saitoh, I.; Inada, E.; Kurosawa, M.; Iwase, Y.; Noguchi, H.; Terao, Y.; Yamasaki, Y.; Hayasaki, H.; Sato, M. STO Feeder Cells Are Useful for Propagation of Primarily Cultured Human Deciduous Dental Pulp Cells by Eliminating Contaminating Bacteria and Promoting Cellular Outgrowth. Cell Med. 2013, 6, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, A.P.; Bradley, A. The Wnt-1 (int-1) Proto-Oncogene Is Required for Development of a Large Region of the Mouse Brain. Cell 1990, 62, 1073–1085. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Chen, D.; Lin, X.; Li, J.; Wang, J.; Peng, Y.; Wang, S.; Wang, Y. Leukemia Inhibitory Factor-Expressing Human Embryonic Lung Fibroblasts as Feeder Cells for Human Embryonic Germ Cells. Cells Tissues Organs. 2007, 186, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Hanwate, M.; Deb, K.; Sharma, V.; Totey, S. FGF2 Secreting Human Fibroblast Feeder Cells: A Novel Culture System for Human Embryonic Stem Cells. Mol. Reprod. Dev. 2008, 75, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Unger, C.; Gao, S.; Cohen, M.; Jaconi, M.; Bergstrom, R.; Holm, F.; Galan, A.; Sanchez, E.; Irion, O.; Dubuisson, J.B.; et al. Immortalized Human Skin Fibroblast Feeder Cells Support Growth and Maintenance of Both Human Embryonic and Induced Pluripotent Stem Cells. Hum. Reprod. 2009, 24, 2567–2581. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Wang, Y.; Zhang, P.; He, L.; Nan, X.; Yue, W.; Pei, X. Human Fetal Liver Stromal Cells That Overexpress bFGF Support Growth and Maintenance of Human Embryonic Stem Cells. PLoS ONE 2010, 5, e14457. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H.; Lee, G.R.; Choi, H.I.; Park, N.H.; Chung, H.T.; Han, I.S. Overexpression of Bone Morphogenetic Protein 4 in STO Fibroblast Feeder Cells Represses the Proliferation of Mouse Embryonic Stem Cells In Vitro. Exp. Mol. Med. 2012, 44, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Inada, E.; Saitoh, I.; Watanabe, S.; Nakamura, S. PiggyBac-Based Non-viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020, 12, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, E.; Saitoh, I.; Watanabe, S.; Aoki, R.; Miura, H.; Ohtsuka, M.; Murakami, T.; Sawami, T.; Yamasaki, Y.; Sato, M. PiggyBac Transposon-Mediated Gene Delivery Efficiently Generates Stable Transfectants Derived from Cultured Primary Human Deciduous Tooth Dental Pulp Cells (HDDPCs) and HDDPC-Derived iPS Cells. Int. J. Oral Sci. 2015, 7, 144–154. [Google Scholar] [CrossRef]
- Sato, M.; Inada, E.; Saitoh, I.; Matsumoto, Y.; Ohtsuka, M.; Miura, H.; Nakamura, S.; Sakurai, T.; Watanabe, S. A Combination of Targeted Toxin Technology and the PiggyBac-Mediated Gene Transfer System Enables Efficient Isolation of Stable Transfectants in Nonhuman Mammalian Cells. Biotechnol. J. 2015, 10, 143–153. [Google Scholar] [CrossRef]
- Hitoshi, N.; Ken-ichi, Y.; Jun-ichi, M. Efficient Selection for High-Expression Transfectants with a Novel Eukaryotic Vector. Gene 1991, 108, 193–200. [Google Scholar] [CrossRef]
- Pelletier, J.; Sonenberg, N. Internal Initiation of Translation of Eukaryotic mRNA Directed by a Sequence Derived from Poliovirus RNA. Nature 1988, 334, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Ishikawa, A.; Kimura, M. Direct Injection of Foreign DNA into Mouse Testis as a Possible In Vivo Gene Transfer System via Epididymal Spermatozoa. Mol. Reprod. Dev. 2002, 61, 49–56. [Google Scholar] [CrossRef]
- Sato, M.; Akasaka, E.; Saitoh, I.; Ohtsuka, M.; Nakamura, S.; Sakurai, T.; Watanabe, S. A Simplified Protocol for the Semi-Large-Scale Recovery of Plasmids from Escherichia coli Grown on Agar Plates. J. Biomed. Sci. Eng. 2012, 5, 406–408. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, A.; Sato, M.; Shinohara, M.; Matsubara, S.; Yokomine, T.; Akasaka, E.; Yoshida, M.; Takao, S. Efficient Transfection of Primarily Cultured Porcine Embryonic Fibroblasts Using the Amaxa Nucleofection System™. Cloning Stem Cells 2007, 9, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.R. Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proc. Natl. Acad. Sci. USA 1981, 78, 7634–7638. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.J.; Kaufman, M.H. Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 1981, 292, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef]
- Ueda, S.; Kawamata, M.; Teratani, T.; Shimizu, T.; Tamai, Y.; Ogawa, H.; Hayashi, K.; Tsuda, H.; Ochiya, T. Establishment of Rat Embryonic Stem Cells and Making of Chimera Rats. PLoS ONE 2008, 3, e2800. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tong, C.; Mehrian-Shai, R.; Jia, L.; Wu, N.; Yan, Y.; Maxson, R.E.; Schulze, E.N.; Song, H.; Hsieh, C.L.; et al. Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts. Cell 2008, 135, 1299–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wei, W.; Zhu, S.; Zhu, J.; Shi, Y.; Lin, T.; Hao, E.; Hayek, A.; Deng, H.; Ding, S. Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell 2009, 4, 16–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.T.; Li, W.; Hayashida, Y.; He, H.; Chen, S.Y.; Tseng, D.Y.; Kheirkhah, A.; Tseng, S.C. Human Amniotic Epithelial Cells as Novel Feeder Layers for Promoting Ex Vivo Expansion of Limbal Epithelial Progenitor Cells. Stem Cells 2007, 25, 1995–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omoto, M.; Miyashita, H.; Shimmura, S.; Higa, K.; Kawakita, T.; Yoshida, S.; McGrogan, M.; Shimazaki, J.; Tsubota, K. The Use of Human Mesenchymal Stem Cell-Derived Feeder Cells for the Cultivation of Transplantable Epithelial Sheets. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Inoue, T.; Takamatsu, F.; Maeda, N.; Ohashi, Y.; Nishida, K. Development of Genetically Modified Eliminable Human Dermal Fibroblast Feeder Cells for Ocular Surface Regeneration Medicine. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7522–7531. [Google Scholar] [CrossRef] [Green Version]
- Ang, L.P.; Jain, P.; Phan, T.T.; Reza, H.M. Human Umbilical Cord Lining Cells as Novel Feeder Layer for Ex Vivo Cultivation of Limbal Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4697–4704. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Q.; Huang, Y.; Huang, Q.; Jiang, L.; Guo, L. Low microRNA-199a Expression in Human Amniotic Epithelial Cell Feeder Layers Maintains Human-Induced Pluripotent Stem Cell Pluripotency via Increased Leukemia Inhibitory Factor Expression. Acta Biochim. Biophys. Sin. 2012, 44, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Shuwei, L.; Ge, L.; Guangxiu, L. The Comparison of Human Embryonic Stem Cells Cultured in Feeder-Containing Culture System and Feeder-Free Culture System. Cell Res. 2008, 18, S121. [Google Scholar]
- Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid Leukaemia Inhibitory Factor Maintains the Developmental Potential of Embryonic Stem Cells. Nature 1988, 336, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Amit, M.; Carpenter, M.K.; Inokuma, M.S.; Chiu, C.P.; Harris, C.P.; Waknitz, M.A.; Itskovitz-Eldor, J.; Thomson, J.A. Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture. Dev. Biol. 2000, 227, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, Q.L.; Nichols, J.; Chambers, I.; Smith, A. BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3. Cell 2003, 115, 281–292. [Google Scholar] [CrossRef]
- Meng, G.L.; Zur Nieden, N.I.; Liu, S.Y.; Cormier, J.T.; Kallos, M.S.; Rancourt, D.E. Properties of Murine Embryonic Stem Cells Maintained on Human Foreskin Fibroblasts Without LIF. Mol. Reprod. Dev. 2008, 75, 614–622. [Google Scholar] [CrossRef]
- Eiselleova, L.; Peterkova, I.; Neradil, J.; Slaninova, I.; Hampl, A.; Dvorak, P. Comparative Study of Mouse and Human Feeder Cells for Human Embryonic Stem Cells. Int. J. Dev. Biol. 2008, 52, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Horie, M.; Ito, A.; Kiyohara, T.; Kawabe, Y.; Kamihira, M. E-Cadherin Gene-Engineered Feeder Systems for Supporting Undifferentiated Growth of Mouse Embryonic Stem Cells. J. Biosci. Bioeng. 2010, 110, 582–587. [Google Scholar] [CrossRef] [PubMed]
- van Roy, F.; Berx, G. The Cell-Cell Adhesion Molecule E-Cadherin. Cell. Mol. Life Sci. 2008, 65, 3756–3788. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Naziruddin, B.; Jackson, A.; Shimoda, M.; Ikemoto, T.; Fujita, Y.; Chujo, D.; Takita, M.; Kobayashi, N.; Onaca, N.; et al. Characterization of human pancreatic progenitor cells. Cell Transplant. 2010, 19, 879–886. [Google Scholar] [CrossRef]
- Miura, H.; Inoko, H.; Inoue, I.; Okada, Y.; Tanaka, M.; Sato, M.; Ohtsuka, M. PiggyBac-Mediated Generation of Stable Transfectants with Surface Human Leukocyte Antigen Expression from a Small Number of Cells. Anal. Biochem. 2013, 437, 29–31. [Google Scholar] [CrossRef]
- Fraser, M.J.; Cary, L.; Boonvisudhi, K.; Wang, H.G.H. Assay for Movement of Lepidopteran Transposon IFP2 in Insect Cells Using a Baculovirus Genome as a Target DNA. Virology 1995, 211, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Fraser, M.J.; Ciszczon, T.; Elick, T.; Bauser, C. Precise Excision of TTAA-Specific Lepidopteran Transposons PiggyBac (IFP2) and Tagalong (TFP3) from the Baculovirus Genome in Cell Lines from Two Species of Lepidoptera. Insect Mol. Biol. 1996, 5, 141–151. [Google Scholar] [CrossRef]
- Atari, M.; Gil-Recio, C.; Fabregat, M.; García-Fernández, D.; Barajas, M.; Carrasco, M.A.; Jung, H.S.; Alfaro, F.H.; Casals, N.; Prosper, F.; et al. Dental pulp of the third molar: A new source of pluripotent-like stem cells. J. Cell Sci. 2012, 125, 3343–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, E.; Saitoh, I.; Kubota, N.; Soda, M.; Matsueda, K.; Murakami, T.; Sawami, T.; Kagoshima, A.; Yamasaki, Y.; Sato, M. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells. J. Investig. Clin. Dent. 2017, 8, e12236. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Maeda, K.; Koriyama, M.; Inada, E.; Saitoh, I.; Miura, H.; Ohtsuka, M.; Nakamura, S.; Sakurai, T.; Watanabe, S.; et al. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs. Int. J. Mol. Sci. 2016, 17, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, E.; Saitoh, I.; Kubota, N.; Iwase, Y.; Kiyokawa, Y.; Noguchi, H.; Yamasaki, Y.; Sato, M. RNA Analysis Based on a Small Number of Manually Isolated Fixed Cells (RNA-snMIFxC) to Profile Stem Cells from Human Deciduous Tooth-Derived Dental Pulp Cells. Biol. Proced. Online 2021, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Toldrà, R.; Dosta, P.; Montori, S.; Ramos, V.; Atari, M.; Borrós, S. Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s. Acta Biomater. 2017, 53, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Inokuma, M.S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J.D.; Carpenter, M.K. Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells. Nat. Biotechnol. 2001, 19, 971–974. [Google Scholar] [CrossRef]
- Furue, M.K.; Na, J.; Jackson, J.P.; Okamoto, T.; Jones, M.; Baker, D.; Hata, R.; Moore, H.D.; Sato, J.D.; Andrews, P.W. Heparin Promotes the Growth of Human Embryonic Stem Cells in a Defined Serum-Free Medium. Proc. Natl. Acad. Sci. USA 2008, 105, 13409–13414. [Google Scholar] [CrossRef] [Green Version]
- Hayata, Y.; Ueki, R.; Sando, S. Feeder-Free Human Induced Pluripotent Stem Cell Culture Using a DNA Aptamer-Based Mimic of Basic Fibroblast Growth Factor. Methods Mol. Biol. 2021, 2312, 301–305. [Google Scholar] [CrossRef]
- Lewis, F.C.; Bryan, N.; Hunt, J.A. A Feeder-Free, Human Plasma-Derived Hydrogel for Maintenance of a Human Embryonic Stem Cell Phenotype In Vitro. Cell Regen. 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Amit, M.; Shariki, C.; Margulets, V.; Itskovitz-Eldor, J. Feeder Layer- and Serum-Free Culture of Human Embryonic Stem Cells. Biol. Reprod. 2004, 70, 837–845. [Google Scholar] [CrossRef]
- Li, Y.; Lin, C.; Wang, L.; Liu, Y.; Mu, X.; Ma, Y.; Li, L. Maintenance of Human Embryonic Stem Cells on Gelatin. Chin. Sci. Bull. 2009, 54, 4214–4220. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, S.E.; Lee, J.H.; Lim, D.S.; Kim, K.S.; Chung, H.M.; Lee, S.H. A Novel Culture Technique for Human Embryonic Stem Cells Using Porous Membranes. Stem Cells 2007, 25, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Villa-Diaz, L.G.; Kim, J.K.; Lahann, J.; Krebsbach, P.H. Derivation and Long-Term Culture of Transgene-Free Human Induced Pluripotent Stem Cells on Synthetic Substrates. Stem Cells Transl. Med. 2014, 3, 1410–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Nam, D.; Choi, J.K.; Araúzo-Bravo, M.J.; Kwon, S.Y.; Zaehres, H.; Lee, T.; Park, C.Y.; Kang, H.W.; Schöler, H.R.; et al. Establishment of Feeder-Free Culture System for Human Induced Pluripotent Stem Cell on DAS Nanocrystalline Graphene. Sci. Rep. 2016, 6, 20708. [Google Scholar] [CrossRef] [PubMed]
Primer (Orientation) | Target Gene | Sequence (5′–3′) |
---|---|---|
E7-S (sense) | E7 | CTC CTG GGC AAC GTG CTG GT |
E7-RV (reverse) | E7 | TGG CTT CAC ACT TAC AAC ACA |
neo-3S (sense) | neo | TTT CTG GAT TTG CAG GTG AAC |
neo-3RV (reverse) | neo | GTG ATG TCC AGC TTG GTG TCC |
bsr-S (sense) | bsr | TCT ACG AGC GGC TCG GCT TCA |
bsr-RV (reverse) | bsr | TCA GGC ACC GGG CTT GCG GGT |
BMP4/IRES-S (sense) | IRES | TGT ACC TGG ATG AGT ATG AT |
BMP4/IRES-RV (reverse) | IRES | CCT CAC ATT GCC AAA AGA CG |
bFGF-S (sense) | bFGF | TCT ACG AGC GGC TCG GCT TCA |
bFGF-RV (reverse) | bFGF | TCA GGC ACC GGG CTT GCG GGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibano, N.; Inada, E.; Otake, S.; Kiyokawa, Y.; Sakata, K.; Sato, M.; Kubota, N.; Noguchi, H.; Iwase, Y.; Murakami, T.; et al. The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J. Clin. Med. 2022, 11, 6087. https://doi.org/10.3390/jcm11206087
Ibano N, Inada E, Otake S, Kiyokawa Y, Sakata K, Sato M, Kubota N, Noguchi H, Iwase Y, Murakami T, et al. The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. Journal of Clinical Medicine. 2022; 11(20):6087. https://doi.org/10.3390/jcm11206087
Chicago/Turabian StyleIbano, Natsumi, Emi Inada, Shinji Otake, Yuki Kiyokawa, Kensuke Sakata, Masahiro Sato, Naoko Kubota, Hirofumi Noguchi, Yoko Iwase, Tomoya Murakami, and et al. 2022. "The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells" Journal of Clinical Medicine 11, no. 20: 6087. https://doi.org/10.3390/jcm11206087
APA StyleIbano, N., Inada, E., Otake, S., Kiyokawa, Y., Sakata, K., Sato, M., Kubota, N., Noguchi, H., Iwase, Y., Murakami, T., Sawami, T., Kakihara, Y., Maeda, T., Terunuma, M., Terao, Y., & Saitoh, I. (2022). The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. Journal of Clinical Medicine, 11(20), 6087. https://doi.org/10.3390/jcm11206087