Novel Candidate Genes for Non-Syndromic Tooth Agenesis Identified Using Targeted Next-Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Next-Generation Sequencing (NGS)
2.2.1. Variant Detection and Annotation
2.2.2. Variant Filtering and Prioritizing
2.2.3. Confirmation Analyses
2.3. Common Variant Association Analysis
3. Results
NGS Analysis of 423-Panel Genes
Association Analysis of Common Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, Y.; Jia, S.; Jiang, R. Molecular patterning of the mammalian dentition. Semin. Cell Dev. Biol. 2014, 25–26, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Balic, A.; Thesleff, I. Tissue Interactions Regulating Tooth Development and Renewal. Curr. Top. Dev. Biol. 2015, 115, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Letra, A.; Chiquet, B.; Hansen-Kiss, E.; Menezes, S.; Hunter, E. Nonsyndromic Tooth Agenesis Overview. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572295/ (accessed on 1 March 2022).
- Polder, B.J.; Van’t Hof, M.A.; Van der Linden, F.P.; Kuijpers-Jagtman, A.M. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent. Oral Epidemiol. 2004, 32, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.H.; Antoun, J.S.; Thomson, W.M.; Merriman, T.R.; Farella, M. Maternal Smoking during Pregnancy Is Associated with Offspring Hypodontia. J. Dent. Res. 2017, 96, 1014–1019. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Shen, Y.; Xu, Y.; Xie, J.; Huang, R.; Zhang, Y.; Xu, C.; Zhang, X.; Wang, R.; et al. DNA methylation is critical for tooth agenesis: Implications for sporadic non-syndromic anodontia and hypodontia. Sci. Rep. 2016, 6, 19162. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Millar, S.E. Wnt/beta-catenin signaling in oral tissue development and disease. J. Dent. Res. 2010, 89, 318–330. [Google Scholar] [CrossRef]
- Tamura, M.; Nemoto, E.; Sato, M.M.; Nakashima, A.; Shimauchi, H. Role of the Wnt signaling pathway in bone and tooth. Front. Biosci. 2010, 2, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- Mostowska, A.; Biedziak, B.; Zadurska, M.; Dunin-Wilczynska, I.; Lianeri, M.; Jagodzinski, P.P. Nucleotide variants of genes encoding components of the Wnt signalling pathway and the risk of non-syndromic tooth agenesis. Clin. Genet. 2013, 84, 429–440. [Google Scholar] [CrossRef]
- Gaczkowska, A.D.; Jagodziński, P.P.; Mostowska, A. The molecular basis of non-syndromic orofacial clefts and tooth agenesis. JMS 2017, 86, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Dinckan, N.; Du, R.; Petty, L.E.; Coban-Akdemir, Z.; Jhangiani, S.N.; Paine, I.; Baugh, E.H.; Erdem, A.P.; Kayserili, H.; Doddapaneni, H.; et al. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. J. Dent Res. 2018, 97, 49–59. [Google Scholar] [CrossRef]
- Du, R.; Dinckan, N.; Song, X.; Coban-Akdemir, Z.; Jhangiani, S.N.; Guven, Y.; Aktoren, O.; Kayserili, H.; Petty, L.E.; Muzny, D.M.; et al. Identification of likely pathogenic and known variants in TSPEAR, LAMB3, BCOR, and WNT10A in four Turkish families with tooth agenesis. Hum. Genet. 2018, 137, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Arte, S.; Parmanen, S.; Pirinen, S.; Alaluusua, S.; Nieminen, P. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS ONE 2013, 8, e73705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Han, D.; Feng, H.; Qu, H.; Song, S.; Bai, B.; Zhang, Z. Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS ONE 2013, 8, e80393. [Google Scholar] [CrossRef] [Green Version]
- Salvi, A.; Giacopuzzi, E.; Bardellini, E.; Amadori, F.; Ferrari, L.; De Petro, G.; Borsani, G.; Majorana, A. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. Int. J. Mol. Med. 2016, 38, 1338–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, K.Y.; Wang, Y.L.; Chou, Y.R.; Chen, J.T.; Wang, Y.P.; Simmer, J.P.; Hu, J.C.; Wang, S.K. Synergistic Mutations of LRP6 and WNT10A in Familial Tooth Agenesis. J. Pers. Med. 2021, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Letra, A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes 2018, 9, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication ethics of human studies in the light of the Declaration of Helsinki—A mini-review. JMS 2022, 91, e700. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Biedziak, B.; Szponar-Żurowska, A.; Budner, M.; Jagodziński, P.P.; Płoski, R.; Mostowska, A. Identification of novel susceptibility genes for non-syndromic cleft lip with or without cleft palate using NGS-based multigene panel testing. Mol. Genet. Genomics. 2022, 297, 1315–1327. [Google Scholar] [CrossRef]
- Sasaki, T.; Ito, Y.; Xu, X.; Han, J.; Bringas, P.; Maeda, T., Jr.; Slavkin, H.C.; Grosschedl, R.; Chai, Y. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol. 2005, 278, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, A.; Inthal, A.; Herrmann, D.; Cheng, S.; Nakatomi, M.; Peters, H.; Neubüser, A. Regulation of Tbx22 during facial and palatal development. Dev. Dyn. 2010, 239, 2860–2874. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, B.; Zhou, X. Expression patterns of histone acetyltransferases p300 and CBP during murine tooth development. In Vitro Cell. Dev. Biol. Anim. 2012, 48, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rostampour, N.; Appelt, C.M.; Abid, A.; Boughner, J.C. Expression of new genes in vertebrate tooth development and p63 signaling. Dev. Dyn. 2019, 248, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Q.; Xiao, Q.; Gong, P.; Kang, N. CHD7 Regulates Osteogenic Differentiation of Human Dental Follicle Cells via PTH1R Signaling. Stem Cells Int. 2020, 2020, 8882857. [Google Scholar] [CrossRef] [PubMed]
- Louie, K.W.; Mishina, Y.; Zhang, H. Molecular and Cellular Pathogenesis of Ellis-van Creveld Syndrome: Lessons from Targeted and Natural Mutations in Animal Models. J. Dev. Biol. 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Tokavanich, N.; Wein, M.N.; English, J.D.; Ono, N.; Ono, W. The Role of Wnt Signaling in Postnatal Tooth Root Development. Front. Dent. Med. 2021, 2, 769134. [Google Scholar] [CrossRef] [PubMed]
- van Genderen, C.; Okamura, R.M.; Fariñas, I.; Quo, R.G.; Parslow, T.G.; Bruhn, L.; Grosschedl, R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994, 8, 2691–2703. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Jing, J.; Feng, J.; Yuan, Y.; Wen, Q.; Han, X.; He, J.; Chen, S.; Ho, T.V.; Chai, Y. Ror2-mediated non-canonical Wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development 2021, 148, dev196360. [Google Scholar] [CrossRef]
- Yang, A.; Schweitzer, R.; Sun, D.; Kaghad, M.; Walker, N.; Bronson, R.T.; Tabin, C.; Sharpe, A.; Caput, D.; Crum, C.; et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999, 398, 714–718. [Google Scholar] [CrossRef]
- Laurikkala, J.; Mikkola, M.L.; James, M.; Tummers, M.; Mills, A.A.; Thesleff, I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 2006, 133, 1553–1563. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Perez, V.L.; Blair, H.J.; Rodriguez-Andres, M.E.; Blanco, M.J.; Wilson, A.; Liu, Y.N.; Miles, C.; Peters, H.; Goodship, J.A. Evc is a positive mediator of Ihh-regulated bone growth that localizes at the base of chondrocyte cilia. Development 2007, 134, 2903–2912. [Google Scholar] [CrossRef]
- Lévy, J.; Capri, Y.; Rachid, M.; Dupont, C.; Vermeesch, J.R.; Devriendt, K.; Verloes, A.; Tabet, A.C.; Bailleul-Forestier, I. LEF1 haploinsufficiency causes ectodermal dysplasia. Clin. Genet. 2020, 97, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Dufour, W.; Alawbathani, S.; Jourdain, A.S.; Asif, M.; Baujat, G.; Becker, C.; Budde, B.; Gallacher, L.; Georgomanolis, T.; Ghoumid, J.; et al. Monoallelic and biallelic variants in LEF1 are associated with a new syndrome combining ectodermal dysplasia and limb malformations caused by altered WNT signaling. Genet. Med. 2022, 24, 1708–1721. [Google Scholar] [CrossRef] [PubMed]
- Mikels, A.; Minami, Y.; Nusse, R. Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J. Biol. Chem. 2009, 284, 30167–30176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raivola, J.; Dini, A.; Salokas, K.; Karvonen, H.; Niininen, W.; Piki, E.; Varjosalo, M.; Ungureanu, D. New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cell. Mol. Life Sci. 2022, 79, 276. [Google Scholar] [CrossRef]
- Brogna, S.; Wen, J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 2009, 16, 107–113. [Google Scholar] [CrossRef]
- Jain, P.S.; Gupte, T.S.; Jetpurwala, A.M.; Dedhia, S.P. Robinow Syndrome and Fusion of Primary Teeth. Contemp. Clin. Dent. 2017, 8, 479–481. [Google Scholar] [CrossRef]
- Gui, B.; Yu, C.; Li, X.; Zhao, S.; Zhao, H.; Yan, Z.; Cheng, X.; Lin, J.; Zheng, H.; Shao, J.; et al. Heterozygous Recurrent Mutations Inducing Dysfunction of ROR2 Gene in Patients With Short Stature. Front. Cell Dev. Biol. 2021, 9, 661747. [Google Scholar] [CrossRef]
- Pauws, E.; Hoshino, A.; Bentley, L.; Prajapati, S.; Keller, C.; Hammond, P.; Martinez-Barbera, J.P.; Moore, G.E.; Stanier, P. Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Hum. Mol. Genet. 2009, 18, 4171–4179. [Google Scholar] [CrossRef]
- Kantaputra, P.N.; Paramee, M.; Kaewkhampa, A.; Hoshino, A.; Lees, M.; McEntagart, M.; Masrour, N.; Moore, G.E.; Pauws, E.; Stanier, P. Cleft lip with cleft palate, ankyloglossia, and hypodontia are associated with TBX22 mutations. J. Dent. Res. 2011, 90, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Kaewkhampa, A.; Jotikasthira, D.; Malaivijitnond, S.; Kantaputra, P. TBX22 mutation associated with cleft lip/palate, hypodontia, and limb anomaly. Cleft Palate Craniofac. J. 2012, 49, 240–244. [Google Scholar] [CrossRef]
- Dai, J.; Xu, C.; Wang, G.; Liang, Y.; Wan, T.; Zhang, Y.; Xu, X.; Yu, L.; Che, Z.; Han, Q.; et al. Novel TBX22 mutations in Chinese nonsyndromic cleft lip/palate families. J. Genet. 2018, 97, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Braybrook, C.; Lisgo, S.; Doudney, K.; Henderson, D.; Marçano, A.C.; Strachan, T.; Patton, M.A.; Villard, L.; Moore, G.E.; Stanier, P.; et al. Craniofacial expression of human and murine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients. Hum. Mol. Genet. 2002, 11, 2793–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gils, J.; Magdinier, F.; Fergelot, P.; Lacombe, D. Rubinstein-Taybi Syndrome: A Model of Epigenetic Disorder. Genes 2021, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.A. Rubinstein-Taybi Syndrome. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1526/ (accessed on 1 March 2022).
- Cross, E.; Duncan-Flavell, P.J.; Howarth, R.J.; Hobbs, J.I.; Thomas, N.S.; Bunyan, D.J. Screening of a large Rubinstein-Taybi cohort identified many novel variants and emphasizes the importance of the CREBBP histone acetyltransferase domain. Am. J. Med. Genet. A. 2020, 182, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Perez, V.L.; Ide, S.E.; Strom, T.M.; Lorenz, B.; Wilson, D.; Woods, K.; King, L.; Francomano, C.; Freisinger, P.; Spranger, S.; et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat. Genet. 2000, 24, 283–286. [Google Scholar] [CrossRef]
- Nakatomi, M.; Hovorakova, M.; Gritli-Linde, A.; Blair, H.J.; MacArthur, K.; Peterka, M.; Lesot, H.; Peterkova, R.; Ruiz-Perez, V.L.; Goodship, J.A.; et al. Evc regulates a symmetrical response to Shh signaling in molar development. J. Dent. Res. 2013, 92, 222–228. [Google Scholar] [CrossRef]
- Harazono, Y.; Morita, K.; Tonouchi, E.; Anzai, E.; Takahara, N.; Kohmoto, T.; Imoto, I.; Yoda, T. TP63 mutation mapping information in TP63 mutation-associated syndromes. Adv. Oral Maxillofac. Surg. 2022, 5, 100253. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, H.; Zhan, Y.; Liu, Y.; Wong, S.W.; Cai, T.; Feng, H.; Han, D. Tooth defects of EEC and AEC syndrome caused by heterozygous TP63 mutations in three Chinese families and genotype-phenotype correlation analyses of TP63-related disorders. Mol. Genet. Genomic Med. 2019, 7, e704. [Google Scholar] [CrossRef] [Green Version]
- Carroll, D.K.; Carroll, J.S.; Leong, C.O.; Cheng, F.; Brown, M.; Mills, A.A.; Brugge, J.S.; Ellisen, L.W. p63 regulates an adhesion programme and cell survival in epithelial cells. Nat. Cell. Biol. 2006, 8, 551–561. [Google Scholar] [CrossRef]
- Truong, A.B.; Kretz, M.; Ridky, T.W.; Kimmel, R.; Khavari, P.A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006, 20, 3185–3197. [Google Scholar] [CrossRef]
- Lin-Shiao, E.; Lan, Y.; Welzenbach, J.; Alexander, K.A.; Zhang, Z.; Knapp, M.; Mangold, E.; Sammons, M.; Ludwig, K.U.; Berger, S.L. p63 establishes epithelial enhancers at critical craniofacial development genes. Sci. Adv. 2019, 5, eaaw0946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, E.; Zhou, H. Master regulatory role of p63 in epidermal development and disease. Cell. Mol. Life Sci. 2018, 75, 1179–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Boogaard, M.J.; Créton, M.; Bronkhorst, Y.; van der Hout, A.; Hennekam, E.; Lindhout, D.; Cune, M.; Ploos van Amstel, H.K. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J. Med. Genet. 2012, 49, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magruder, S.; Carter, E.; Williams, M.A.; English, J.; Akyalcin, S.; Letra, A. Further evidence for the role of WNT10A, WNT10B and GREM2 as candidate genes for isolated tooth agenesis. Orthod. Craniofac. Res. 2018, 21, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.; Conte, F.; Khandelwal, K.D.; Ockeloen, C.W.; Bartzela, T.; Kleefstra, T.; van Bokhoven, H.; Rubini, M.; Zhou, H.; Carels, C.E. Tooth agenesis and orofacial clefting: Genetic brothers in arms? Hum. Genet. 2016, 135, 1299–1327. [Google Scholar] [CrossRef] [Green Version]
- Möller, L.H.; Pradel, W.; Gedrange, T.; Botzenhart, U.U. Prevalence of hypodontia and supernumerary teeth in a German cleft lip with/without palate population. BMC Oral. Health 2021, 21, 60. [Google Scholar] [CrossRef]
- Konstantonis, D.; Nassika, M.; Athanasiou, M.; Vastardis, H. Subphenotypes in Non-Syndromic Orofacial Cleft Patients Based on the Tooth Agenesis Code (TAC). Children 2022, 9, 437. [Google Scholar] [CrossRef]
- Eerens, K.; Vlietinck, R.; Heidbüchel, K.; Van Olmen, A.; Derom, C.; Willems, G.; Carels, C. Hypodontia and tooth formation in groups of children with cleft, siblings without cleft, and nonrelated controls. Cleft Palate Craniofac. J. 2001, 38, 374–378. [Google Scholar] [CrossRef]
- Aspinall, A.; Raj, S.; Jugessur, A.; Marazita, M.; Savarirayan, R.; Kilpatrick, N. Expanding the cleft phenotype: The dental characteristics of unaffected parents of Australian children with non-syndromic cleft lip and palate. Int. J. Paediatr. Dent. 2014, 24, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, K.; Zhang, S.; Sun, B.; Garland, M.A.; Ji, Y.; Zhou, C.J. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res. 2020, 112, 1588–1634. [Google Scholar] [CrossRef]
- Nasreddine, G.; El Hajj, J.; Ghassibe-Sabbagh, M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108373. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.T.; Dionísio, T.J.; Garbieri, T.F.; Parisi, V.A.; Oliveira, F.V.; Oliveira, T.M.; Santos, C.F. Novel rare variations in IRF6 in subjects with non-syndromic cleft lip and palate and dental agenesis. Oral Dis. 2019, 25, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.R.; Modesto, A.; Meira, R.; Barbosa, A.R.; Lidral, A.C.; Murray, J.C. Interferon regulatory factor 6 (IRF6) and fibroblast growth factor receptor 1 (FGFR1) contribute to human tooth agenesis. Am. J. Med. Genet. A. 2007, 143A, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.R.; Seymen, F.; Patir, A.; Menezes, R. Evidence of linkage disequilibrium between polymorphisms at the IRF6 locus and isolate tooth agenesis, in a Turkish population. Arch. Oral. Biol. 2008, 53, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.; Ohazama, A.; Kawasaki, K.; Otsuka-Tanaka, Y.; Liu, B.; Honda, K.; Rountree, R.B.; Hu, Y.; Kawasaki, M.; Birchmeier, W.; et al. The role of Irf6 in tooth epithelial invagination. Dev. Biol. 2012, 365, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Chu, E.Y.; Tamasas, B.; Fong, H.; Foster, B.L.; LaCourse, M.R.; Tran, A.B.; Martin, J.F.; Schutte, B.C.; Somerman, M.J.; Cox, T.C. Full Spectrum of Postnatal Tooth Phenotypes in a Novel Irf6 Cleft Lip Model. J. Dent. Res. 2016, 95, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
N | % | |
---|---|---|
Tooth Agenesis (n = 65) | ||
Gender distribution | ||
Males | 32 | 49.23 |
Females | 33 | 50.77 |
Family history | ||
YES | 36 | 55.39 |
NO | 18 | 27.69 |
Unknown | 11 | 16.92 |
Type of tooth agenesis 1 | ||
Hypodontia (1–5 permanent teeth missing) | 32 | 49.23 |
Oligodontia (≥6 permanent teeth missing) | 33 | 50.77 |
Type of permanent teeth missing (total teeth missing = 469) | ||
Second premolar | 128 | 27.29 |
Lateral incisor | 109 | 23.24 |
First premolar | 67 | 14.29 |
Canine | 47 | 10.02 |
Central incisor | 47 | 10.02 |
Second molar | 45 | 9.60 |
First molar | 26 | 5.54 |
Number of missing premolars | 195 | 41.58 |
Number of missing incisors | 156 | 33.26 |
Number of missing molars | 71 | 15.14 |
Number of missing canines | 47 | 10.02 |
CONTROLS (n = 127) | ||
Gender distribution | ||
Males | 58 | 45.67 |
Females | 69 | 54.33 |
GENE | VARIANT | In Silico Pathogenicity Prediction 3 | CADD | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | rs Number | DNA Change | Protein Change | Protein Domain/Repeat 1 | Freq. 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Score 4 |
NOVEL risk genes | ||||||||||||||||||||||
CHD7 | na | c.5566G>C | p.Glu1856Gln | none | no data | Dc | D | D | D | D | T | P | P | D | D | N | B | B | T | D | D | 24.7 |
CREBBP | na | c.1030C>T | p.Pro344Ser | none | no data | Dc | D | D | D | D | D | P | P | T | T | D | B | B | D | T | D | 24.7 |
CREBBP | na | c.4678G>A 5 | p.Glu1560Lys | CBP/p300-type HAT domain | no data | Dc | D | D | D | D | D | P | P | D | D | D | B | P | D | D | D | 29.0 |
EVC | rs753014919 | c.1694delC 5 | p.Ala565ValfsTer23 | none | 7.35 × 10−5 | na | ||||||||||||||||
LEF1 | na | c.285G>C | p.Lys95Asn | none | no data | Dc | D | D | D | D | D | B | P | D | D, T | D | B | P | T | D | D | 23.4 |
ROR2 | na | c.1895delC | p.Ser632Ter | Protein kinase domain | no data | na | ||||||||||||||||
TBX22 | na | c.725C>T | p.Pro242Leu | T-box domain | no data | Dc | D | D | D | D | D | D | D | D | B | P | D | D | 22.9 | |||
TP63 | na | c.1594C>G 5 | p.Pro532Ala | none | no data | Dc | D | D | N | D | T | B | P | T | T | N | B | B | T | D | D | 18.8 |
KNOWN risk genes | ||||||||||||||||||||||
AXIN2 | na | c.2023dupC | p.Arg675ProfsTer32 | none | no data | na | ||||||||||||||||
AXIN2 | na | c.2292_2302delGGTTGTCACTT | p.Val765LeufsTer24 | DIX domain | no data | na | ||||||||||||||||
EDA | CM960503 | c.206G>C | p.Arg69Pro | none | no data | P | D | D | N | T | D | T, D | D, N | P | P | D | D | 23.5 | ||||
EDA | na | c.840C>A | p.Asn280Lys | none | no data | Dc | D | D | D | T | D | T, D | N | P | B | D | D | 24.5 | ||||
EDA | rs876657641 | c.866G>A | p.Arg289His | none | 0.00 | Dc | D | D | D | D | D | D | T | N | P | P | D | D | 31.0 | |||
EDAR | na | c.256A>C | p.Ile86Leu | TNFR-Cys repeat | no data | Dc | D | D | D | D | T | P | P | T | D | N | P | P | D | D | D | 24.6 |
IRF6 | na | c.1015A>G | p.Arg339Gly | none | no data | Dc | D | D | D | D | D | P | P | D | D | D | P | P | T | D | D | 28.7 |
LAMA3 | rs771405735 | c.916G>T | p.Glu306Ter | Laminin EGF-like domain | 0.00 | Dc | D | N | P | P | T | 38.0 | ||||||||||
LRP6 | na | c.1418G>C | p.Arg473Pro | LDL-receptor class B repeat | no data | Dc | D | D | D | D | D | P | P | T | D | D | B | P | D | D | D | 25.0 |
LRP6 | na | c.1629C>G | p.Asp543Glu | LDL-receptor class B repeat | no data | Dc | D | D | N | D | T, D | B | B | D | T | D | B | B | T | T | D | 21.2 |
LRP6 | na | c.1735A>G | p.Lys579Glu | LDL-receptor class B repeat | no data | Dc | D | D | D | D | D, T | P | P | D | D | D | P | P | T | D | D | 24.8 |
MSX1 | na | c.365dupG | p.Leu123ThrfsTer52 | none | no data | na | ||||||||||||||||
PAX9 | na 6 | c.406C>T | p.Gln136Ter | none | no data | Dc | D | N | D | P | P | T | 39.0 | |||||||||
WNT10A | rs121908119 | c.321C>A | p.Cys107Ter | none | 1.60 × 10−3 | Dc | D | N | D | P | P | T | 35.0 | |||||||||
WNT10A | rs141074983 | c.337C>T | p.Arg113Cys | none | 2.65 × 10−4 | Dc | T | D | D | D | B | B | D | D | D | B | B | T | T | T | 16.2 | |
WNT10A | rs143424659 | c.668G>A | p.Arg223His | none | 0.00 | Dc | T | D | N | D | T | B | P | D | D | N | B | B | D | D | D | 22.8 |
WNT10A | rs121908120 | c.682T>A | p.Phe228Ile | none | 2.23 × 10−2 | Dc | D | D | D | D | D | P | P | D | D | D | P | P | T | D | D | 28.4 |
WNT10A | rs772154760 | c.695G>A | p.Arg232Gln | none | 1.47 × 10−5 | Dc | T | D | D | D | D | P | P | D | D | D | P | B | D | D | D | 31.0 |
WNT10A | rs1553623335 | c.1034T>C | p.Phe345Ser | none | no data | Dc | D | D | D | D | D | P | P | D | D | D | P | P | D | D | D | 33.0 |
Right Upper Jaw (q1) | Left Upper Jaw (q2) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 16 | 15 | 14 | 13 | 12 | 11 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |||||
Family | Number of | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | |||
Patient | Gender | History | Missing Teeth 1 | Identified Variant 2 | Right Lower Jaw (q4) | Left Lower Jaw (q3) | ||||||||||||
NOVEL candidate genes | ||||||||||||||||||
TA_1 | Female | Yes | 7 | CBP_p.Pro344Ser_HET | X | X | X | |||||||||||
X | X | X | X | |||||||||||||||
TA_2 | Male | No | 7 | TBX22_p.Pro242Leu_HEMI | X | X | ||||||||||||
X | X | X | X | X | ||||||||||||||
TA_3 | Female | Yes | 5 | ROR2_p.Ser632Ter_HET | X | X | ||||||||||||
X | X | X | ||||||||||||||||
TA_4 | Male | na | 2 | CHD7_p.Glu1856Gln_HET | X | X | ||||||||||||
TA_5 | Female | No | 2 | LEF1_p.Lys95Asn_HET | X | p | ||||||||||||
KNOWN candidate genes | ||||||||||||||||||
TA_6 | Female | Yes | 24 | EDA_p.Asn280Lys_HET | X | X | X | X | X | X | X | X | X | X | ||||
X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||
TA_7 | Female | Yes | 21 | AXIN2_p.Arg675ProfsTer32_HET | X | X | X | X | X | X | X | X | X | X | ||||
X | X | X | X | X | X | X | X | X | X | X | ||||||||
TA_8 | Female | Yes | 15 | MSX1_p.Leu123ThrfsTer52_HET | X | X | X | X | X | X | ||||||||
X | X | X | X | X | X | X | X | X | ||||||||||
TA_9 | Female | No | 13 | LRP6_Lys579Glu_HET | X | X | X | X | X | X | X | X | ||||||
X | X | X | X | X | ||||||||||||||
TA_10 | Female | No | 10 | IRF6_p.Arg339Gly_HET 3 | X | X | X | X | X | X | ||||||||
X | X | X | X | |||||||||||||||
TA_11 | Male | na | 10 | LRP6_p.Asp543Glu_HET | X | X | X | X | X | |||||||||
X | X | X | X | X | ||||||||||||||
TA_12 | Male | No | 7 | AXIN2_p.Val765LeufsTer24_HET | X | X | ||||||||||||
X | X | X | X | X | ||||||||||||||
TA_13 | Female | Yes | 7 | LAMA3_p.Glu306Ter_HET | X | X | X | X | ||||||||||
X | X | X | ||||||||||||||||
TA_14 | Female | Yes | 6 | LRP6_p.Arg473Pro_HET | X | X | X | X | X | |||||||||
X | ||||||||||||||||||
TA_15 4 | Male | Yes | 6 | PAX9_p.Gln136Ter_HET | X | X | X | |||||||||||
X | X | X | ||||||||||||||||
TA_16 | Male | Yes | 5 | EDA_p.Arg69Pro_HEMI | X | X | ||||||||||||
X | X | X | ||||||||||||||||
TA_17 | Male | Yes | 5 | EDA_p.Arg289His_HEMI | X | X | X | |||||||||||
X | X | |||||||||||||||||
TA_18 | Male | Yes | 4 | EDA_p.Arg289His_HEMI | X | |||||||||||||
X | X | X | ||||||||||||||||
TA_19 | Male | na | 2 | EDAR_p.Ile86Leu_HET | X | X |
Right Upper Jaw (q1) | Left Upper Jaw (q2) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 16 | 15 | 14 | 13 | 12 | 11 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |||||
Family | Number of | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | |||
Patient | Gender | History | Missing Teeth 1 | Identified Variant 2 | Right Lower Jaw (q4) | Left Lower Jaw (q3) | ||||||||||||
TA_20 | Female | na | 20 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | X | X | X | X | X | X | ||||
X | X | X | X | X | X | X | X | X | X | |||||||||
TA_21 | Male | Yes | 19 | WNT10A_p.Phe228Ile_HET + WNT10A_p.Phe345Ser_HET | X | X | X | X | X | X | X | X | ||||||
X | X | X | X | X | X | X | X | X | X | X | ||||||||
TA_22 | Male | No | 16 | WNT10A_p.Cys107Ter_HET + WNT10A_p.Phe228Ile_HET | X | X | X | X | X | X | X | |||||||
X | X | X | X | X | X | X | X | X | ||||||||||
TA_23 | Male | Yes | 16 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | X | X | X | |||||||
X | X | X | X | X | X | X | X | X | ||||||||||
TA_24 | Female | Yes | 14 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | X | X | X | X | ||||||
X | X | X | X | X | X | |||||||||||||
TA_25 | Female | No | 14 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | X | X | X | |||||||
X | X | X | X | X | X | X | ||||||||||||
TA_26 | Female | Yes | 12 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | X | X | X | |||||||
X | X | X | X | X | ||||||||||||||
TA_27 | Male | Yes | 10 | WNT10A_p.Phe228Ile_HOM | X | X | X | X | ||||||||||
X | X | X | X | X | X | |||||||||||||
TA_28 | Female | No | 9 | WNT10A_p.Arg113Cys_HET + WNT10A_p.Phe228Ile_HET | X | X | X | X | X | |||||||||
X | X | X | X | |||||||||||||||
TA_29 | Female | Yes | 9 | WNT10A_p.Phe228Ile_HET | X | X | X | X | X | X | ||||||||
X | X | X | ||||||||||||||||
TA_30 | Male | Yes | 8 | WNT10A_p.Cys107Ter_HET | X | X | X | X | ||||||||||
X | X | X | X | |||||||||||||||
TA_31 | Male | No | 6 | WNT10A_p.Phe228Ile_HOM | X | X | ||||||||||||
X | X | X | X | |||||||||||||||
TA_32 | Female | Yes | 5 | WNT10A_p.Arg232Gln_HET | X | X | ||||||||||||
X | X | X | ||||||||||||||||
TA_33 | Female | No | 5 | WNT10A_p.Phe228Ile_HET + TP63_p.Pro532Ala_HET | X | X | p | X | ||||||||||
X | X | |||||||||||||||||
TA_34 | Female | Yes | 4 | WNT10A_p.Phe228Ile_HET + CBP_p.Glu1560Lys_HET | p | |||||||||||||
X | X | X | X | |||||||||||||||
TA_35 | Female | Yes | 3 | WNT10A_p.Phe228Ile_HET | X | X | X | |||||||||||
TA_36 | Female | Yes | 2 | WNT10A_p.Arg113Cys_HET + EVC_p.Ala565ValfsTer23_HET | X | X | ||||||||||||
TA_37 | Male | No | 2 | WNT10A_p.Arg223His_HET + WNT10A_p.Phe228Ile_HET | X | X |
MAF Cases | ||||||
---|---|---|---|---|---|---|
Gene | Variant ID | Protein Effect 1 | Alleles 2 | /MAF Controls | Ptrend value | OR (95%CI) |
AXIN2 | rs2240308 | p.Pro50Ser | C/T | 0.48 (C)/0.46 (T) | 3.17 × 10−1 | 1.24 (0.82–1.90) |
AXIN2 | rs9915936 | p.Pro455Pro | A/G | 0.17 (A)/0.12 (A) | 1.90 × 10−1 | 1.49 (0.82–2.71) |
AXIN2 | rs1133683 | p.Pro462Pro | C/T | 0.41 (C)/0.38 (C) | 5.89 × 10−1 | 1.12 (0.73–1.72) |
EDAR | rs260632 | p.Ser250Ser | C/T | 0.13 (C)/0.11 (C) | 6.68 × 10−1 | 1.15 (0.61–2.17) |
EDAR | rs12623957 | p.Cys352Cys | C/T | 0.16 (C)/0.17 (C) | 7.12 × 10−1 | 1.11 (0.63–1.96) |
EVC | rs35870680 | p.Ser83Ser | A/G | 0.17 (G)/0.16 (G) | 6.66 × 10−1 | 1.13 (0.64–1.98) |
EVC | rs6414624 | p.Tyr258His | T/C | 0.24 (T)/0.21 (T) | 5.13 × 10−1 | 1.19 (0.72–1.95) |
EVC | rs4688963 | p.Asn323Asn | T/C | 0.23 (C)/0.32 (C) | 4.90 × 10−2 | 1.62 (1.00–2.63) |
EVC | rs4688962 | p.Leu342Leu | G/C | 0.29 (C)/0.37 (C) | 1.18 × 10−1 | 1.43 (0.91–2.25) |
EVC | rs33929747 | p.Leu356Leu | A/G | 0.40 (G)/0.37 (G) | 4.99 × 10−1 | 1.16 (0.75–1.79) |
EVC | rs2302075 | p.Thr449Lys | C/A | 0.31 (C)/0.24 (C) | 1.50 × 10−1 | 1.43 (0.89–2.28) |
EVC | rs1383180 | p.Arg576Gln | G/A | 0.41 (A)/0.45 (A) | 4.48 × 10−1 | 1.18 (0.77–1.80) |
EVC | rs11737221 | p.Gly618Gly | C/T | 0.27 (T)/0.32 (T) | 3.76 × 10−1 | 1.23 (0.77–1.95) |
IRF6 | rs2013162 | p.Ser153Ser | G/T | 0.40 (T)/0.30 (T) | 3.29 × 10−2 | 1.60 (1.03–2.49) |
LAMA3 | rs9962023 | p.Ala967Ala | T/C | 0.36 (T)/0.32 (T) | 4.32 × 10−1 | 1.20 (0.77–1.86) |
LAMA3 | rs867449 | p.Gly1420Gly | G/C | 0.42 (G)/0.42 (G) | 9.54 × 10−1 | 1.01 (0.66–1.55) |
LAMA3 | rs12965685 | p.Pro1510Pro | C/T | 0.42 (C)/0.42 (C) | 8.94 × 10−1 | 1.03 (0.67–1.58) |
LAMA3 | rs1154226 | p.Ala2049Ala | C/G | 0.33 (G)/0.31 (G) | 7.11 × 10−1 | 1.09 (0.69–1.71) |
LAMA3 | rs1154232 | p.Asn2815Lys | C/A | 0.26 (A)/0.23 (A) | 5.86 × 10−1 | 1.15 (0.70–1.87) |
LAMA3 | rs1131521 | p.Leu2911Leu | C/T | 0.26 (T)/0.23 (T) | 5.86 × 10−1 | 1.15 (0.70–1.87) |
LRP6 | rs2302685 | p.Val1062Ile | G/A | 0.18 (G)/0.22 (G) | 4.29 × 10−1 | 1.24 (0.73–2.12) |
MSX1 | rs36059701 | p.Ala40Gly | C/G | 0.14 (G)/0.14 (G) | 8.72 × 10−1 | 1.05 (0.58–1.92) |
PAX9 | rs12881240 | p.His239His | C/T | 0.27 (C)/0.37 (C) | 7.58 × 10−2 | 1.54 (0.97–2.44) |
PAX9 | rs4904210 | p.Ala240Pro | G/C | 0.27 (G)/0.19 (G) | 6.95 × 10−2 | 1.59 (0.96–2.62) |
ROR2 | rs10820900 | p.Thr245Ala | A/G | 0.31 (A)/0.31 (A) | 9.42 × 10−1 | 1.02 (0.65–1.60) |
ROR2 | rs10761129 | p.Val819Ile | G/A | 0.27 (G)/0.32 (G) | 2.44 × 10−1 | 1.32 (0.83–2.11) |
ROR2 | rs10992063 | p.Tyr696Tyr | C/T | 0.48 (T)/0.44 (T) | 4.93 × 10−1 | 1.16 (0.76–1.77) |
ROR2 | rs2230577 | p.Pro718Pro | C/T | 0.12 (T)/0.10 (T) | 4.89 × 10−1 | 1.26 (0.65–2.46) |
WNT10A | rs121908120 | p.Phe228Ile | T/A | 0.16 (A)/0.004 (A) | 9.15 × 10−7 | 47.86 (6.36–360.45) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biedziak, B.; Firlej, E.; Dąbrowska, J.; Bogdanowicz, A.; Zadurska, M.; Mostowska, A. Novel Candidate Genes for Non-Syndromic Tooth Agenesis Identified Using Targeted Next-Generation Sequencing. J. Clin. Med. 2022, 11, 6089. https://doi.org/10.3390/jcm11206089
Biedziak B, Firlej E, Dąbrowska J, Bogdanowicz A, Zadurska M, Mostowska A. Novel Candidate Genes for Non-Syndromic Tooth Agenesis Identified Using Targeted Next-Generation Sequencing. Journal of Clinical Medicine. 2022; 11(20):6089. https://doi.org/10.3390/jcm11206089
Chicago/Turabian StyleBiedziak, Barbara, Ewa Firlej, Justyna Dąbrowska, Agnieszka Bogdanowicz, Małgorzata Zadurska, and Adrianna Mostowska. 2022. "Novel Candidate Genes for Non-Syndromic Tooth Agenesis Identified Using Targeted Next-Generation Sequencing" Journal of Clinical Medicine 11, no. 20: 6089. https://doi.org/10.3390/jcm11206089