Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program
Abstract
:1. Introduction
2. Preclinical Research Projects Aiming at the Transition to Clinical Trials
3. Social Framework for Clinical Trials of Stem Cell Therapy
3.1. Legislation
3.2. Japan Agency for Medical Research and Development (AMED)
3.3. iPS Cell Stock Project
4. Clinical Trials That Transitioned from Preclinical Projects
No. in Table 1 1 | Disclosure Date | Project Title, Source of Cells 2, (Registration ID 3), Last Follow-Up Date | Phase | Sample Size | Report of First-In-Human Test |
---|---|---|---|---|---|
Projects with human somatic stem cells | |||||
1-1 | 1 October 2013 | Healing acceleration of repaired meniscus by synovial stem cells “Clinical study to assess the safety and efficacy of transplantation of autologous synovial mesenchymal stem cells in patients with knee meniscal tear”, Autologous articular synovial tissue, (UMIN000011881), 21 April 2015 | Safety, Efficacy | 5 | Published [45] |
1-2 | 12 June 2015 | Enhancement of healing for extruded injured meniscus by transplantation of synovial stem cells after meniscus surgery, Autologous articular synovial tissue, (UMIN000017890), 31 May 2016 | 10 | Published [45] | |
1-3 | 1 May 2017 | Investigator initiated clinical trial of autologous synovial stem cells for meniscus lesions, Autologous articular synovial tissue, (UMIN000026383), 21 February 2019 | I | 10 | |
1-4 | 1 June 2017 | Intraarticular injections of synovial stem cells for osteoarthritis of the knee, Autologous articular synovial tissue, (UMIN000026732), 10 March 2020 | I | 10 | Published [46,47] |
2-1 | 9 December 2013 | Clinical application of corneal endothelial regenerative medicine by means of cultured human corneal endothelial cell transplantation, Allogeneic corneal endothelium, (UMIN000012534), 31 May 2023 | 45 | Published [48] | |
2-2 | 21 July 2017 | Investigator initiated trial of cultivated human corneal endothelial cell injection, Allogeneic corneal endothelium, (UMIN000028324), 19 November 2018 | II | 15 | |
2-3 | 1 October 2018 | Investigator initiated confirmatory trial of cultivated human corneal endothelial cell injection, Allogeneic corneal endothelium, (UMIN000034334), 8 July 2019 | III | 12 | |
2-4 | 5 April 2019 | Clinical application of corneal endothelial regenerative medicine by means of cultured human corneal endothelial cell transplantation: long-term follow up, Allogeneic corneal endothelium, (UMIN000036422), 31 March 2024 | 45 | Published [48,49] | |
3-1 | 2 March 2015 | Safety study of a less invasive liver regeneration therapy using cultured autologous bone marrow-derived mesenchymal stem cells for decompensated liver cirrhotic patient, Autologous bone marrow, (UMIN000016686), date not listed | I | 10 | Conference presentation 16 April 2016 |
3-2 | 15 January 2019 | Study on the safety of hepatic arterial infusion of cultured autologous bone marrow cells in patients with decompensated liver cirrhosis, Autologous bone marrow, (UMIN000035528), 19 August 2021 | I | 5 | |
3-3 | 31 August 2020 | An open-label, uncontrolled study to evaluate the efficacy and safety of autologous bone marrow mesenchymal stem cells (LS-ABMSC1) in patients with decompensated liver cirrhosis, Autologous bone marrow, (Phase I/II study) (UMIN000041461), 17 February 2023 | I/II | 10 | |
4 | 5 October 2021 | Investigator-initiated clinical trial to evaluate the safety and efficacy of AX-1911, magnetic field generator for magnetic targeting, in knee osteoarthritis, Autologous bone marrow, (jRCT2062210039), 30 September 2022 | I | 5 | |
5 | 1 April 2018 | Mucosal regeneration therapy by autologous intestinal stem cell transplantation to inflammatory bowel disease patients, Autologous intestinal tissue, (UMIN000030117), date not listed | Safety | 8 | Press release 6 July 2022 |
Projects with human iPS or ES cells | |||||
6-1 | 2 October 2013 | A study of transplantation of autologous induce d pluripotent stem cell (iPSC) derived retinal pigment epithelium (RPE) cell sheet in subjects with exudative age-related macular degeneration, Autologous skin fibroblasts, (UMIN000011929), 28 February 2019 | Exploratory | 2 (5) 4 | Published [50] |
6-2 | 6 February 2017 | A study of transplantation of allogenic induced pluripotent stem cell (iPSC) derived retinal pigment epithelium (RPE) cell suspension in subjects with neovascular age related macular degeneration, HLA homozygous allogeneic iPS cells from the iPS cell stock, (UMIN000026003), 20 September 2021 | Exploratory | 5 | Published [51] |
7 | 23 May 2019 | First-in-human clinical research of iPS derived corneal epithelial cell sheet transplantation for patients with limbal stem-cell deficiency, HLA homozygous allogeneic iPS cells from the iPS cell stock, (UMIN000036539), 13 December 2021 | I | 4 | Press release 29 August 2019 |
8 | 1 April 2022 | A prospective observational study of induced pluripotent stem cell-derived cardiac spheres transplantation EXTENDed Follow-up, HLA homozygous allogeneic iPS cells from the iPS cell stock, (UMIN000047335), 31 March 2029 | Safety, Efficacy | 3 | |
9 | 12 September 2018 | Kyoto trial to evaluate the safety and efficacy of iPSC-derived dopaminergic progenitors in the treatment of Parkinson’s disease, HLA homozygous allogeneic iPS cells from the iPS cell stock, (UMIN000033564), 31 December 2023 | I/II | 7 | Press release 9 November 2018 |
10 | 27February 2019 | Clinical study of HAES transplantation in patients with neonatal onset urea cycle disorder, Allogeneic human ES cells, SEES series [23,24], (JMA-IIA00412), 30 September 2022 | I/II | 5 | Press release 21 May 2020 |
11 | 5 March 2020 | Clinical study of autologous transfusion of iPS cell-derived platelets for thrombocytopenia (iPLAT1), Autologous peripheral blood mononuclear cells, (jRCTa050190117), 20 January 2021 | 1 | Published [52] | |
12 | 1 December 2020 | Regenerative medicine for spinal cord injury at subacute stage using human induced pluripotent stem cell-derived neural stem/progenitor cells, HLA homozygous allogeneic iPS cells from the iPS cell stock, (UMIN000035074), 30 November 2023 | Safety | 4 | |
14-1 | 11 December 2019 | Clinical trial of human (allogeneic) iPS cell-derived cardiomyocytes sheet for ischemic cardiomyopathy, HLA homozygous allogeneic iPS cells from the iPS cell stock, (jRCT2053190081), 30 May 2024 | I | 10 | Press release 25 December 2020 |
14-2 | 22 June 2022 | Clinical trial of human (allogeneic) iPS cell-derived cardiomyocytes sheet for ischemic cardiomyopathy (Follow-up trial), HLA homozygous allogeneic iPS cells from the iPS cell stock, (jRCT2053220055), 31 March 2029 | I | 10 | |
16 | 11 September 2020 | A Phase I study of iPS-NKT cell intra-arterial infusion therapy in patients with recurrent or advanced head and neck cancer (First in human study), Allogeneic iPS cells from NKT cells of healthy volunteers, (jRCT2033200116), 31 March 2022 | I | 9 | Press release 29 June 2020 |
17 | 7 February 2020 | A clinical study for treatment of articular cartilage damage in knee joints with allogeneic induced pluripotent stem (iPS) cell-derived cartilage (TACK-iPS), HLA homozygous allogeneic iPS cells from the iPS cell stock, (jRCTa050190104), 31 December 2023 | 4 |
5. Approved Stem Cell Therapies
6. Next Generation Research in Stem Cell Therapy
7. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, C.R. Biotechnology in the 21st century. Trends Biotechnol. 2000, 18, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Submission of Final Report by the Biotechnology Strategy Council. Friday. 6 December 2002. Available online: https://japan.kantei.go.jp/koizumiphoto/2002/12/06bt_e.html (accessed on 17 October 2022).
- Priority Strategies for Science and Technology. Available online: https://www.mext.go.jp/en/publication/whitepaper/title03/detail03/sdetail03/sdetail03/1372929.htm (accessed on 17 October 2022).
- Strategies for the Development of Biotechnology. Available online: https://warp.da.ndl.go.jp/info:ndljp/pid/998223/www.kantei.go.jp/jp/singi/bt/kettei/021206/taikou.pdf (accessed on 17 October 2022). (In Japanese)
- Research Center Network for Realization of Regenerative Medicine. Available online: https://www.jst.go.jp/saisei-nw/en/document/saisei-nw_2015_en.pdf (accessed on 17 October 2022).
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis Rheum. 2005, 52, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Muneta, T.; Ju, Y.J.; Nagase, T.; Nimura, A.; Mochizuki, T.; Ichinose, S.; von der Mark, K.; Sekiya, I. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells 2007, 25, 689–696. [Google Scholar] [CrossRef]
- Koizumi, N.; Sakamoto, Y.; Okumura, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.; Ban, Y.; Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial transplantation in a primate: Possible future clinical application in corneal endothelial regenerative medicine. Cornea 2008, S1, S48–S55. [Google Scholar] [CrossRef]
- Okumura, N.; Koizumi, N.; Ueno, M.; Sakamoto, Y.; Takahashi, H.; Tsuchiya, H.; Hamuro, J.; Kinoshita, S. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am. J. Pathol. 2012, 181, 268–277. [Google Scholar] [CrossRef]
- Terai, S.; Ishikawa, T.; Omori, K.; Aoyama, K.; Marumoto, Y.; Urata, Y.; Yokoyama, Y.; Uchida, K.; Yamasaki, T.; Fujii, Y.; et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006, 24, 2292–2298. [Google Scholar] [CrossRef]
- Terai, S.; Tanimoto, H.; Maeda, M.; Zaitsu, J.; Hisanaga, T.; Iwamoto, T.; Fujisawa, K.; Mizunaga, Y.; Matsumoto, T.; Urata, Y.; et al. Timeline for development of autologous bone marrow infusion (ABMi) therapy and perspective for future stem cell therapy. J. Gastroenterol. 2012, 47, 491–497. [Google Scholar] [CrossRef]
- Hori, J.; Deie, M.; Kobayashi, T.; Yasunaga, Y.; Kawamata, S.; Ochi, M. Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J. Orthop. Res. 2011, 29, 531–538. [Google Scholar] [CrossRef]
- Yui, S.; Nakamura, T.; Sato, T.; Nemoto, Y.; Mizutani, T.; Zheng, X.; Ichinose, S.; Nagaishi, T.; Okamoto, R.; Tsuchiya, K.; et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell. Nat. Med. 2012, 18, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Osakada, F.; Watanabe, K.; Mizuseki, K.; Haraguchi, T.; Miyoshi, H.; Kamiya, D.; Honda, Y.; Sasai, N.; Yoshimura, N.; et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. USA 2005, 102, 11331–11336. [Google Scholar] [CrossRef] [Green Version]
- Osakada, F.; Jin, Z.B.; Hirami, Y.; Ikeda, H.; Danjyo, T.; Watanabe, K.; Sasai, Y.; Takahashi, M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 2009, 122, 3169–3179. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, R.; Ishikawa, Y.; Ito, M.; Kageyama, T.; Takashiba, K.; Fujioka, T.; Tsujikawa, M.; Miyoshi, H.; Yamato, M.; Nakamura, Y.; et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS ONE 2012, 7, e45435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, R.; Ishikawa, Y.; Katori, R.; Sasamoto, Y.; Taniwaki, Y.; Takayanagi, H.; Tsujikawa, M.; Sekiguchi, K.; Quantock, A.J.; Nishida, K. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat. Protoc. 2017, 12, 683–696. [Google Scholar] [CrossRef]
- Tohyama, S.; Hattori, F.; Sano, M.; Hishiki, T.; Nagahata, Y.; Matsuura, T.; Hashimoto, H.; Suzuki, T.; Yamashita, H.; Satoh, Y.; et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013, 12, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, D.; Morizane, A.; Kikuchi, T.; Onoe, H.; Hayashi, T.; Kawasaki, T.; Motono, M.; Sasai, Y.; Saiki, H.; Gomi, M.; et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 2012, 30, 935–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enosawa, S.; Horikawa, R.; Yamamoto, A.; Sakamoto, S.; Shigeta, T.; Nosaka, S.; Fujimoto, J.; Nakazawa, A.; Tanoue, A.; Umezawa, A.; et al. Hepatocyte transplantation using a living donor reduced graft in a baby with ornithine transcarbamylase deficiency: A novel source of hepatocytes. Liver Transpl. 2014, 20, 391–393. [Google Scholar] [CrossRef]
- Akutsu, H.; Nasu, M.; Morinaga, S.; Motoyama, T.; Homma, N.; Machida, M.; Yamazaki-Inoue, M.; Okamura, K.; Nakabayashi, K.; Takada, S.; et al. In vivo maturation of human embryonic stem cell-derived teratoma over time. Regen. Ther. 2016, 5, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, A.; Sato, Y.; Kusakawa, S.; Amagase, R.; Akutsu, H.; Nakamura, K.; Kasahara, M.; Matsubara, Y.; Igarashi, T. Research and Development Strategy for Future Embryonic Stem Cell-Based Therapy in Japan. JMA J. 2020, 3, 287–294. [Google Scholar] [CrossRef]
- Nakamura, S.; Takayama, N.; Hirata, S.; Seo, H.; Endo, H.; Ochi, K.; Fujita, K.; Koike, T.; Harimoto, K.; Dohda, T.; et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014, 14, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, O.; Miura, K.; Okada, Y.; Fujiyoshi, K.; Mukaino, M.; Nagoshi, N.; Kitamura, K.; Kumagai, G.; Nishino, M.; Tomisato, S.; et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 2010, 107, 12704–12709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osakada, F.; Ikeda, H.; Mandai, M.; Wataya, T.; Watanabe, K.; Yoshimura, N.; Akaike, A.; Sasai, Y.; Takahashi, M. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 2008, 26, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; Miyagawa, S.; Miki, K.; Saito, A.; Fukushima, S.; Higuchi, T.; Kawamura, T.; Kuratani, T.; Daimon, T.; Shimizu, T.; et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012, 126, S29–S37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013, 499, 481–484. [Google Scholar] [CrossRef]
- Yamada, D.; Iyoda, T.; Vizcardo, R.; Shimizu, K.; Sato, Y.; Endo, T.A.; Kitahara, G.; Okoshi, M.; Kobayashi, M.; Sakurai, M.; et al. Efficient Regeneration of Human Vα24+ Invariant Natural Killer T Cells and Their Anti-Tumor Activity In Vivo. Stem Cells 2016, 34, 2852–2860. [Google Scholar] [CrossRef]
- Takei, Y.; Morioka, M.; Yamashita, A.; Kobayashi, T.; Shima, N.; Tsumaki, N. Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage. Sci. Rep. 2020, 10, 12794. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Takeuchi, M.; Chida, K.; Miyajima, A. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS ONE 2011, 6, e28209. [Google Scholar] [CrossRef] [Green Version]
- CiRA Foundation. iPS Cell Stock Project. Available online: https://www.cira-foundation.or.jp/e/research-institution/ips-stock-project/ (accessed on 17 October 2022).
- Hanatani, T.; Takasu, N. CiRA iPSC seed stocks (CiRA’s iPSC Stock Project). Stem Cell Res. 2020, 50, 102033. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, H.; Osafune, K. Current status and future directions of clinical applications using iPS cells-focus on Japan. FEBS J. 2021. [Google Scholar] [CrossRef]
- Freedman, S.F.; Rojas, M.; Toth, C.A. Strabismus surgery for large-angle cyclotorsion after macular translocation surgery. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2002, 6, 154–162. [Google Scholar] [CrossRef]
- Sayles, M.; Jain, M.; Barker, R.A. The cellular repair of the brain in Parkinson’s disease—Past, present and future. Transpl. Immunol. 2004, 12, 321–342. [Google Scholar] [CrossRef]
- Winkler, C.; Kirik, D.; Björklund, A. Cell transplantation in Parkinson’s disease: How can we make it work? Trends Neurosci. 2005, 28, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Zimmer Biomet. DeNovo® NT Natural Tissue Graft. Available online: https://www.zimmerbiomet.com/en/products-and-solutions/specialties/biologics/denovo-nt-natural-tissue.html (accessed on 12 November 2022).
- Adkisson, H.D.; Martin, J.A.; Amendola, R.L.; Milliman, C.; Mauch, K.A.; Katwal, A.B.; Seyedin, M.; Amendola, A.; Streeter, P.R.; Buckwalter, J.A. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am. J. Sports Med. 2010, 38, 1324–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japanese Law Translation. Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and Medical Devices. Available online: https://www.japaneselawtranslation.go.jp/ja/laws/view/3213 (accessed on 17 October 2022).
- Tobita, M.; Konomi, K.; Torashima, Y.; Kimura, K.; Taoka, M.; Kaminota, M. Japan’s challenges of translational regenerative medicine: Act on the safety of regenerative medicine. Regen. Ther. 2016, 4, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, H. Clinical Islet Transplantation Covered by Health Insurance in Japan. J. Clin. Med. 2022, 11, 3977. [Google Scholar] [CrossRef] [PubMed]
- Japan Agency for Medical Research and Development. Available online: https://www.amed.go.jp/en/index.html (accessed on 17 October 2022).
- Mizuno, M.; Endo, K.; Katano, H.; Amano, N.; Nomura, M.; Hasegawa, Y.; Ozeki, N.; Koga, H.; Takasu, N.; Ohara, O.; et al. Transplantation of human autologous synovial mesenchymal stem cells with trisomy 7 into the knee joint and 5 years of follow-up. Stem Cells Transl. Med. 2021, 10, 1530–1543. [Google Scholar] [CrossRef]
- Sekiya, I.; Katano, H.; Mizuno, M.; Koga, H.; Masumoto, J.; Tomita, M.; Ozeki, N. Alterations in cartilage quantification before and after injections of mesenchymal stem cells into osteoarthritic knees. Sci. Rep. 2021, 11, 13832. [Google Scholar] [CrossRef]
- Sekiya, I.; Katano, H.; Ozeki, N. Characteristics of MSCs in Synovial Fluid and Mode of Action of Intra-Articular Injections of Synovial MSCs in Knee Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 2838. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Toda, M.; Numa, K.; Tanaka, H.; Imai, K.; Bush, J.; Teramukai, S.; Okumura, N.; Koizumi, N.; Yamamoto, A.; et al. Superiority of Mature Differentiated Cultured Human Corneal Endothelial Cell Injection Therapy for Corneal Endothelial Failure. Am. J. Ophthalmol. 2022, 237, 267–277. [Google Scholar] [CrossRef]
- Numa, K.; Imai, K.; Ueno, M.; Kitazawa, K.; Tanaka, H.; Bush, J.D.; Teramukai, S.; Okumura, N.; Koizumi, N.; Hamuro, J.; et al. Five-Year Follow-up of First 11 Patients Undergoing Injection of Cultured Corneal Endothelial Cells for Corneal Endothelial Failure. Ophthalmology 2021, 128, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef]
- Sugita, S.; Mandai, M.; Hirami, Y.; Takagi, S.; Maeda, T.; Fujihara, M.; Matsuzaki, M.; Yamamoto, M.; Iseki, K.; Hayashi, N.; et al. HLA-Matched Allogeneic iPS Cells-Derived RPE Transplantation for Macular Degeneration. J. Clin. Med. 2020, 9, 2217. [Google Scholar] [CrossRef]
- Sugimoto, N.; Kanda, J.; Nakamura, S.; Kitano, T.; Hishizawa, M.; Kondo, T.; Shimizu, S.; Shigemasa, A.; Hirai, H.; Arai, Y.; et al. iPLAT1: The first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood 2022. [Google Scholar] [CrossRef] [PubMed]
- Oh, H. Cell Therapy Trials in Congenital Heart Disease. Circ. Res. 2017, 120, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Hata, K. Current issues regarding skin substitutes using living cells as industrial materials. J. Artif. Organs 2007, 10, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Uchio, Y.; Kawasaki, K.; Wakitani, S.; Iwasa, J. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J. Bone Jt. Surg. Br. Vol. 2002, 84, 571–578. [Google Scholar] [CrossRef]
- Pharmaceuticals and Medical Devices Agency. List of Approved Products, Regenerative Medical Products. Available online: https://www.pmda.go.jp/english/review-services/reviews/approved-information/0002.html (accessed on 17 October 2022).
- Mizutani-Akimoto, A.; Hasuike-Niitsu, E.; Nagase, K.; Okano, T.; Kanazawa, H.; Yoshida, R. Mesenchylmal Stem Cell Culture on Poly(Nisopropylacrylamide) Hydrogel with Repeated Thermo-Stimulation. Int. J. Mol. Sci. 2018, 19, 1253. [Google Scholar] [CrossRef] [Green Version]
- Editorials. Racing hearts. Japan must show that a promising therapy damaged hearts works as claimed. Nature 2018, 557, 611–612. [CrossRef]
- Ito, A.; Nagoshi, N.; Kamata, Y.; Kojima, K.; Nori, S.; Matsumoto, M.; Takei, K.; Nakamura, M.; Okano, H. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Rep. 2021, 16, 2703–2717. [Google Scholar] [CrossRef]
- Kawai, M.; Imaizumi, K.; Ishikawa, M.; Shibata, S.; Shinozaki, M.; Shibata, T.; Hashimoto, S.; Kitagawa, T.; Ago, K.; Kajikawa, K.; et al. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep. 2021, 37, 110019. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzawa, S.; Zhao, C.; Ikeguchi, R.; Aoyama, T.; Kamiya, D.; Ando, M.; Takeuchi, H.; Akieda, S.; Nakayama, K.; Matsuda, S.; et al. Pro-angiogenic scaffold-free Bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci. Rep. 2020, 10, 12034. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Yamanaka, S.; Matsumoto, N.; Takamura, T.; Fujimoto, T.; Matsui, K.; Tajiri, S.; Matsumoto, K.; Kobayashi, E.; Yokoo, T. Generation of functional chimeric kidney containing exogenous progenitor-derived stroma and nephron via a conditional empty niche. Cell Rep. 2022, 39, 110933. [Google Scholar] [CrossRef]
- Ryosaka, M.; Mae, S.I.; Osafune, K. Protocol for the generation and expansion of human iPS cell-derived ureteric bud organoids. STAR Protoc. 2022, 3, 101484. [Google Scholar] [CrossRef] [PubMed]
- Ikeo, S.; Yamamoto, Y.; Ikeda, K.; Sone, N.; Korogi, Y.; Tomiyama, L.; Matsumoto, H.; Hirai, T.; Hagiwara, M.; Gotoh, S. Core-shell hydrogel microfiber-expanded pluripotent stem cell-derived lung progenitors applicable to lung reconstruction in vivo. Biomaterials 2021, 276, 121031. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Chaturvedi, P.; Kishimoto, K.; Koike, H.; Nasr, T.; Iwasawa, K.; Giesbrecht, K.; Witcher, P.C.; Eicher, A.; Haines, L.; et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun. 2020, 11, 4158. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, K.; Furukawa, K.T.; Luz-Madrigal, A.; Yamaoka, A.; Matsuoka, C.; Habu, M.; Alev, C.; Zorn, A.M.; Morimoto, M. Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells. Nat. Commun. 2020, 11, 4159. [Google Scholar] [CrossRef] [PubMed]
- Tamura, R.; Miyoshi, H.; Imaizumi, K.; Yo, M.; Kase, Y.; Sato, T.; Sato, M.; Morimoto, Y.; Sampetrean, O.; Kohyama, J.; et al. Gene therapy using genome-edited iPS cells for targeting malignant glioma. Bioeng. Transl. Med. 2022, e10406. [Google Scholar] [CrossRef]
- Noguchi, H.; Miyagi-Shiohira, C.; Nakashima, Y. Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2018, 19, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibano, N.; Inada, E.; Otake, S.; Kiyokawa, Y.; Sakata, K.; Sato, M.; Kubota, N.; Noguchi, H.; Iwase, Y.; Murakami, T.; et al. The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J. Clin. Med. 2022, 11, 6087. [Google Scholar] [CrossRef]
No. | Inaugural Year | Project Title, Source of Cells 1, Representative Publication Related to the Proposal | Principal Investigator | Affiliation 2 |
---|---|---|---|---|
Projects with human somatic stem cells | ||||
1 | 2011 | Meniscal regeneration in the knee using synovial stem cells, Autologous articular synovial tissue, [8,9] | Ichiro Sekiya | Tokyo Medical and Dental University |
2 | 2011 | Clinical application of corneal endothelial regenerative medicine by means of cultured human corneal endothelial cell transplantation, Allogeneic corneal endothelium, [10,11] | Shigeru Kinoshita | Kyoto Prefectural University of Medicine |
3 | 2011 | Development of a less invasive liver regeneration therapy using cultured human bone marrow derived cells, Autologous bone marrow, [12,13] | Isao Sakaida | Yamaguchi University |
4 | 2012 | Bone and cartilage regeneration using magnetic targeting system of magnetically labeled bone marrow mesenchymal cells, Autologous bone marrow, [14] | Mitsuo Ochi | Hiroshima University |
5 | 2013 | Center for development of mucosal regenerative therapies for inflammatory bowel diseases using cultured intestinal epithelial stem cells, Autologous colonic crypts, [15] | Mamoru Watanabe | Tokyo Medical and Dental University |
Projects with human iPS 3 and ES cells | ||||
6 | 2011 | Development of methods for treating age-related macular degeneration by transplantation of retinal pigment epithelial (RPE) cells derived from induced pluripotent stem (iPS) cells [16,17] | Masayo Takahashi | RIKEN 4 |
7 | 2011 | Development of corneal regenerative treatment methods using iPS cells [18,19] | Koji Nishida | Osaka University |
8 | 2011 | Establishment of regenerative therapies for severe heart failure by transplantation of iPS cells-derived cardiomyocytes [20] | Keiichi Fukuda | Keio University |
9 | 2011 | Development of cell replacement therapy using iPS cell-derived neural cells against Parkinson’s disease and stroke [21] | Jun Takahashi | CiRA 5 |
10 | 2011 | Clinical research on human embryonic stem (ES) cell formulations for treatment of congenital metabolic disorders giving rise to severe hyperammonemia, Allogeneic ES cells (SEES series) [22,23,24] | Akihiro Umezawa | National Center for Child Health and Development |
11 | 2012 | Development of and clinical studies on platelet preparations based on induced pluripotent stem (iPS) cell techniques [25] | Koji Eto | CiRA |
12 | 2013 | Regenerative medicine for spinal cord injury and stroke using neural precursor cells of iPS cell origin [26] | Hideyuki Okano | Keio University |
13 | 2013 | Research and development center for clinical application of complex tissue formation technologies to restore visual function [27] | Masayo Takahashi | CiRA |
14 | 2013 | Center for the development of myocardial regenerative treatments using iPS cells [28] | Yoshiki Sawa | Osaka University |
15 | 2013 | Center for development of innovative technologies for metabolic organs using induced pluripotent stem (iPS) cells [29] | Hideki Taniguchi | Yokohama City University |
16 | 2013 | Center for development of cancer immunotherapy technology by regenerating natural killer T-cells (NKT cells) [30] | Haruhiko Koseki | RIKEN |
17 | 2013 | Center for development of regenerative therapies for cartilage diseases using induced pluripotent stem (iPS) -cell-derived chondrocytes [31] | Noriyuki Tsumaki | CiRA |
18 | 2013 | Center for development of next-generation pancreatic islet transplantation methods based on induced pluripotent stem (iPS) cell technology [32] | Atsushi Miyajima | University of Tokyo |
Core Center for iPS Cell Research | ||||
19 | 2013 | Center of excellence in development of iPS cell stock for regenerative medicine, Mononuclear cells of peripheral or umbilical cord blood from donors of which human leukocyte antigen (HLA) haplotype is homozygous [33,34,35] | Shinya Yamanaka | CiRA |
Regulation support | ||||
20 | 2011 | Support for research and development with the aim of early-stage realization and overseas expansion of regenerative medicine | Akifumi Matsuyama | National Institute of Biomedical Innovation |
Ethical support | ||||
21 | 2011 | Research on the ethical, legal and social implications related to regenerative medicine | Kaori Muto | University of Tokyo |
No. | Approval Date | Nonproprietary Name, Material, and Indication | Brand Name (Company) | Decision |
---|---|---|---|---|
Human somatic cell-processed products | ||||
1 | 29 September 2016, 28 December 2018 | Human autologous epidermis-derived cell sheet Material: Patient’s own healthy skin tissue co-cultured with mouse embryo-derived 3T3-J2 feeder cells Indication: Severe heat burn, giant congenital melanocytic nevus, dystrophic epidermolysis bullosa, and junctional epidermolysis bullosa | JACE (Japan Tissue Engineering Co., Ltd. Gamagori, Japan) | Change approved |
2 | 26 March 2019 | Tisagenlecleucel Material: T cells derived from patient’s peripheral blood Indication: CD19-positive relapsed or refractory B-cell acute lymphoblastic leukemia and CD19-positive relapsed or refractory diffuse large B-cell lymphoma | Kymriah Suspension for Intravenous Infusion (Novartis Pharma K.K. Tokyo, Japan) | Approval |
3 | 22 January 2021 | Axicabtagene ciloleucel Material: T cells derived from patient’s peripheral blood Indication: Relapsed or refractory large B-cell lymphoma | YESCARTA Intravenous Drip Infusion (Daiichi Sankyo Company, Limited, Tokyo, Japan) | Approval |
4 | 22 March 2021 | Lisocabtagene maraleucel Material: T cells derived from patient’s peripheral blood Indication: Relapsed or refractory large B-cell lymphoma and relapsed or refractory follicular lymphoma | Breyanzi Suspension for Intravenous Infusion (Celgene Corporation, Tokyo, Japan) | Approval |
5 | 20 January 2022 | Idecabtagene vicleucel Material: T cells derived from patient’s peripheral blood Indication: Relapsed or refractory multiple myeloma | Abecma Intravenous Infusion (Bristol-Myers Squibb K.K. Tokyo, Japan) | Approval |
6 | 20 June 2022 | Human autologous tissue for transplantation Material: Patient’s own cartilage tissue mixed with gel-form atelocollagen Indication: Traumatic cartilage defects or osteochondritis dissecans of the knee excluding knee osteoarthritis | JACC (Japan Tissue En-gineering Co., Ltd. Gamagori, Japan) | Change approved |
Human somatic stem cell-processed products | ||||
7 | 18 September 2015 | Human allogeneic bone-marrow-derived mesenchymal stem cell Material: Human allogeneic bone-marrow-derived mesenchymal stem cell from healthy adult donor Indication: Acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation | TEMCELL HS Inj. (JCR Pharmaceuticals Co., Ltd. Ashiya, Japan) | Approval |
8 | 18 September 2015 | Human autologous skeletal myoblast-derived cell sheet Material: Patient’s own skeletal myoblasts that were cultured in sheet form using temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm) Indication: Serious heart failure caused by ischemic heart disease when standard therapies are not sufficiently effective | HeartSheet (Terumo Corporation, Tokyo, Japan) | Conditional time-limited approval |
9 | 28 December 2018 | Human autologous bone-marrow-derived mesenchymal stem cell Material: Patient’s own bone-marrow-derived mesenchymal stem cells Indication: Spinal cord injury only for use in patients with traumatic spinal cord injury and ASIA Impairment Scale A, B, or C | STEMIRAC Inj. (Nipro Corporation, Osaka, Japan) | Conditional time-limited approval |
10 | 19 March 2020 | Human autologous corneal limbus-derived corneal epithelial cell sheet Material: Patient’s own corneal epithelial cells from limbal tissue that were cultured in sheet form using temperature-responsive polymer, PIPAAm Indication: Limbal stem cell deficiency | Nepic (Japan Tissue Engineering Co., Ltd. Gamagori, Japan) | Approval |
11 | 11 June 2021 | Human autologous oral mucosa-derived epithelial cell sheet Material: Patient’s own oral mucosal epithelial cells that were cultured in sheet form using temperature-responsive polymer, PIPAAm Indication: Repair of corneal epithelium defects onto the ocular surface of patients with limbal stem cell deficiency | Ocural (Japan Tissue Engineering Co., Ltd. Gamagori, Japan) | Approval |
12 | 27 September 2021 | Darvadstrocel Material: Human allogenic adipose tissue-derived stem cells from subcutaneous adipose tissue of healthy adult donor Indication: Crohn’s disease | Alofisel Injection (Takeda Pharmaceutical Company Limited, Osaka, Japan) | Approval |
13 | 20 January 2022 | Human autologous oral mucosa-derived epithelial cell sheet using a human amniotic membrane substrate Material: Patient’s own oral mucosal epithelial cells that are cultured on allogeneic amniotic membrane substrate Indication: Limbal stem cell deficiency | Sakracy (Hirosaki Lifescience Innovation, Inc. Hirosaki, Japan) | Approval |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enosawa, S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. J. Clin. Med. 2022, 11, 7030. https://doi.org/10.3390/jcm11237030
Enosawa S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. Journal of Clinical Medicine. 2022; 11(23):7030. https://doi.org/10.3390/jcm11237030
Chicago/Turabian StyleEnosawa, Shin. 2022. "Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program" Journal of Clinical Medicine 11, no. 23: 7030. https://doi.org/10.3390/jcm11237030