Endothelial Activation and Stress Index (EASIX) as an Early Predictor for Mortality and Overall Survival in Hematological and Non-Hematological Patients with COVID-19: Multicenter Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Statistical Analyses
3. Results
3.1. Clinical Characteristics of Hematological versus Non-Hematological Patients with COVID-19
3.2. Clinical Characteristics of High EASIX versus Low EASIX COVID-19 Patients
3.3. EASIX and COVID-19 Complications and Outcome
3.4. EASIX as a Predictor of Overall Survival in Hematological and Non-Hematological COVID-19 Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; I Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef]
- Kalicińska, E.; Szymczak, D.; Andrasiak, I.; Bogucka-Fedorczuk, A.; Zińczuk, A.; Szymański, W.; Biernat, M.; Rymko, M.; Semeńczuk, G.; Jabłonowska, P.; et al. Lymphocyte subsets in haematological patients with COVID-19: Multicentre prospective study. Transl. Oncol. 2021, 14, 100943. [Google Scholar] [CrossRef]
- Li, Y.; Ashcroft, T.; Chung, A.; Dighero, I.; Dozier, M.; Horne, M.; McSwiggan, E.; Shamsuddin, A.; Nair, H. Risk factors for poor outcomes in hospitalised COVID-19 patients: A systematic review and meta-analysis. J. Glob. Health 2021, 11, 10001. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, S.; Fu, Y.; Gao, Z.; Long, H.; Ren, H.-W.; Zuo, Y.; Wang, J.; Li, H.; Xu, Q.-B.; et al. Risk Factors Associated with Clinical Outcomes in 323 Coronavirus Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clin. Infect. Dis. 2020, 71, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Luft, T.; Benner, A.; Jodele, S.; E Dandoy, C.; Storb, R.; Gooley, T.; Sandmaier, B.M.; Becker, N.; Radujkovic, A.; Dreger, P.; et al. EASIX in patients with acute graft-versus-host disease: A retrospective cohort analysis. Lancet Haematol. 2017, 4, e414–e423. [Google Scholar] [CrossRef]
- Merz, A.; Germing, U.; Kobbe, G.; Kaivers, J.; Jauch, A.; Radujkovic, A.; Hummel, M.; Benner, A.; Merz, M.; Dreger, P.; et al. EASIX for prediction of survival in lower-risk myelodysplastic syndromes. Blood Cancer J. 2019, 9, 85. [Google Scholar] [CrossRef]
- Song, G.-Y.; Jung, S.-H.; Kim, K.; Kim, S.J.; Yoon, S.E.; Lee, H.S.; Kim, M.; Ahn, S.-Y.; Ahn, J.-S.; Yang, D.-H.; et al. Endothelial activation and stress index (EASIX) is a reliable predictor for overall survival in patients with multiple myeloma. BMC Cancer 2020, 20, 803. [Google Scholar] [CrossRef]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cao, Y.; Chen, L.; Wu, D.; Yu, J.; Wang, H.; He, W.; Dong, F.; Chen, W.; Chen, W.; et al. Hematological features of persons with COVID-19. Leukemia 2020, 34, 2163–2172. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, Q.; Xie, W.; Lv, C.; Quan, X. The association between severe COVID-19 and low platelet count: Evidence from 31 observational studies involving 7613 participants. Br. J. Haematol. 2020, 190, e29–e33. [Google Scholar] [CrossRef]
- Bajwa, H.; Riaz, Y.; Ammar, M.; Farooq, S.; Yousaf, A. The Dilemma of Renal Involvement in COVID-19: A Systematic Review. Cureus 2020, 12, e8632. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 1 April 2021).
- Jin, Y.; Ji, W.; Yang, H.; Chen, S.; Zhang, W.; Duan, G. Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal Transduct. Target. Ther. 2020, 5, 293. [Google Scholar] [CrossRef]
- Teuwen, L.-A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; Almansa, R.; Torres, A.; González-Rivera, M.; Kelvin, D.J. COVID-19 as a cardiovascular disease: The potential role of chronic endothelial dysfunction. Cardiovasc. Res. 2020, 116, e132–e133. [Google Scholar] [CrossRef]
- Chang, R.; Mamun, A.; Dominic, A.; Le, N.-T. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front. Physiol. 2021, 11, 605908. [Google Scholar] [CrossRef]
- Boisramé-Helms, J.; Kremer, H.; Schini-Kerth, V.; Meziani, F. Endothelial dysfunction in sepsis. Curr. Vasc. Pharmacol. 2013, 11, 150–160. [Google Scholar]
- Vassiliou, A.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S. ICU Admission Levels of Endothelial Biomarkers as Predictors of Mortality in Critically Ill COVID-19 Patients. Cells 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Van Guldener, C.; Lambert, J.; Janssen, M.J.; Donker, A.J.; Stehouwer, C.D. Endothelium-dependent vasodilatation and distensibility of large arteries in chronic haemodialysis patients. Nephrol. Dial. Transplant. 1997, 12 (Suppl. 2), 14–18. [Google Scholar] [PubMed]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Anyfanti, P.; Gavriilaki, M.; Lazaridis, A.; Douma, S.; Gkaliagkousi, E. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr. Hypertens. Rep. 2020, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Maio, R.; Sciacqua, A.; Bruni, R.; Pascale, A.; Carullo, G.; Scarpino, P.E.; Addesi, D.; Spinelli, I.; Leone, G.G.; Perticone, F. Association between Hemoglobin Level and Endothelial Function in Uncomplicated, Untreated Hypertensive Patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 648–655. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients with COVID-19, n = 523 | Hematological Cancer Patients with COVID-19, n = 125 | Non-Hematological Patients with COVID-19, n = 398 | p |
---|---|---|---|---|
Age (years) | 65 (54–75) | 62 (48–70) | 66 (56–77) | <0.001 |
Male, n (%) | 284 (54%) | 80 (64%) | 204 (51%) | 0.013 |
Hematological cancer Acute Leukemia/MDS EB2, n (%) CLL/indolent lymphoma, n (%) High-grade lymphoma, n (%) Multiple myeloma, n (%) Other, n (%) | 49 (39%) 27 (22%) 23 (18%) 19 (15%) 7 (6%) | |||
Comorbidities Hypertension, n (%) Diabetes mellitus, n (%) Coronary artery disease, n (%) Chronic heart failure, n (%) Supraventricular arrhythmia, n (%) Chronic kidney disease, n (%) COPD/asthma, n (%) | 241 (46%) 85 (16%) 109 (21%) 57 (11%) 50 (10%) 36 (7%) 25 (5%) | 60 (48%) 25 (20%) 11 (9%) 50 (13%) 14 (11%) 17 (14%) 4 (3%) | 181 (46%) 60 (15%) 98 (25%) 7 (6%) 36 (9%) 19 (5%) 21 (5%) | 0.622 0.194 <0.001 0.029 0.459 0.001 0.343 |
Symptoms/signs of SARS-CoV-2 infection Cough, n (%) Dyspnea, n (%) Fever, n (%) Arthralgia/myalgia, n (%) | 301 (58%) 294 (56%) 342 (66%) 140 (27%) | 76 (61%) 60 (48%) 71 (57%) 40 (32%) | 225 (57%) 234 (59%) 271 (68%) 100 (25%) | 0.417 0.041 0.019 0.13 |
COVID-19 complications DIC, n (%) Bacterial coinfection, n (%) Sepsis, n (%) Cardiological complications, n (%) Pulmonary embolism, n (%) Acute kidney failure, n (%) Hemodialysis, n (%) | 11 (2%) 131 (25%) 42 (8%) 463 (89%) 19 (4%) 88 (17%) 19 (4%) | 5 (4%) 35 (29%) 18 (14%) 106 (86%) 5 (4%) 25 (20%) 7 (6%) | 6 (2%) 96 (24%) 24 (6%) 357 (90%) 14 (4%) 63 (16%) 12 (3%) | 0.142 0.334 0.003 0.429 0.785 0.261 0.179 |
White blood cells (G/L) Lymphocytes (G/L) Neutrophils (G/L) Basophils (G/L) Eosinophils (G/L) Monocytes (G/L) | 6.49 (4.44–8.80) 1.10 (0.70–1.60) 4.20 (2.60–6.43) 0.01 (0.01–0.03) 0.01 (0.00–0.06) 0.50 (0.30–0.70) | 6.55 (2.20–9.99) 1.10 (0.3.15) 2.37 (0.69–5.62) 0.02 (0.00–0.10) 0.01 (0.00–0.10) 0.34 (0.10–0.85) | 6.46 (4.73- 8.65) 1.10 (0.70–1.50) 4.51 (3.00–6.60) 0.01 (0.01–0.02) 0.01 (0.00–0.04) 0.50 (0.30–0.70) | 0.061 0.515 <0.001 0.037 0.027 0.009 |
Platelets (G/L) | 186 (126–253) | 95 (41–165) | 199 (156–262) | <0.001 |
Creatinine (mg/dl) | 0.91 (0.73–1.19) | 0.87 (0.71–1.20) | 0.93 (0.74–1.19) | 0.182 |
LDH (U/L) | 304 (234–431) | 252 (184–376) | 327 (251–443) | <0.001 |
Coagulation INR Fibrinogen (mg/l) D-dimer (ng/mL) | 1.11 (1.01–1.26) 3.87 (2.65–5.39) 1.10 (0.59–2.33) | 1.15 (1.02–1.35) 3.16 (2.20–4.56) 1.41 (0.76–2.83) | 1.10 (1.01–1.24) 4.95 (3.93–6.03) 1.05 (0.58–2.20) | 0.026 <0.001 0.073 |
EASIX score (median log2 EASIX) | 0.81 (0.05–1.81) | 1.48 (0.36–2.98) | 0.68 (0.07–1.55) | <0.001 |
COVID-19 severity 0—Asymptomatic, n (%) 1—Mild, n (%) 2—Moderate, n (%) 3—Severe, n (%) 4—Critical, n (%) | 28 (5%) 53 (10%) 129 (25%) 240 (46%) 72 (14%) | 13 (10%) 23 (18%) 23 (18%) 43 (34%) 23 (18%) | 15 (4%) 30 (8%) 106 (27%) 197 (50%) 49 (12%) | 0.006 0.001 0.062 0.003 0.089 |
Time of hospitalization, days | 12 (5–18) | 11 (1–20) | 12 (9–16) | 0.094 |
Clinical outcome, death, n (%) | 136 (27%) | 46 (40%) | 90 (23%) | <0.001 |
COVID-19 specific treatment Oxygen therapy, n (%) High-flow nasal oxygen, n (%) Mechanical ventilation, n (%) Hydroxychloroquine, n (%) Lopinavir/Ritonavir, n (%) Remdesivir, n (%) Convalescent plasma, n (%) Tocilizumab, n (%) Dexamethasone, n (%) Ribavirin, n (%) Calcifediol, n (%) No treatment, n (%) | 356 (68%) 74 (14%) 74 (14%) 142 (27%) 54 (10%) 67 (13%) 133 (26%) 13 (3%) 150 (29%) 23 (4%) 12 (2%) 146 (28%) | 66 (53%) 36 (30%) 24 (19%) 24 (19%) 2 (2%) 17 (14%) 68 (55%) 4 (3%) 13 (11%) 0 (0%) 0 (0%) 21 (17%) | 290 (73%) 38 (10%) 50 (13%) 118 (30%) 52 (13%) 50 (13%) 65 (16%) 9 (2%) 137 (34%) 23 (6%) 12 (3%) 125 (31%) | <0.001 <0.001 0.065 0.025 <0.001 0.739 <0.001 0.519 <0.001 0.006 0.079 0.002 |
Variable | All Patients n = 523 | High EASIX (log2EASIX ≥ 1.60), n = 155 | Low EASIX (log2EASIX < 1.60), n = 367 | p |
---|---|---|---|---|
Age (years) | 65 (54–75) | 67 (57–77) | 64 (53–75) | 0.073 |
Male, n (%) | 284 (54%) | 98 (63%) | 186 (51%) | 0.009 |
Comorbidities Hypertension, n (%) Diabetes mellitus, n (%) Coronary artery disease, n (%) Chronic heart failure, n (%) Supraventricular arrhythmia, n (%) Chronic kidney disease, n (%) COPD/asthma, n (%) | 241 (46%) 85 (16%) 109 (21%) 57 (11%) 50 (10%) 36 (7%) 25 (5%) | 87 (56%) 31 (20%) 36 (23%) 24 (15%) 20 (13%) 20 (13%) 6 (4%) | 154 (42%) 54 (15%) 73 (20%) 33 (9%) 30 (8%) 16 (4%) 19 (5%) | 0.003 0.135 0.392 0.030 0.095 <0.001 0.523 |
Symptoms/signs Cough, n (%) Dyspnea, n (%) Fever, n (%) Arthralgia/myalgia, n (%) Loss of smell, n (%) | 300 (58%) 293 (56%) 341 (65%) 140 (27%) 84 (16) | 79 (51%) 101 (66%) 98 (63%) 39 (25%) 26 (17%) | 221 (60%) 192 (52%) 243 (66%) 101 (28%) 58 (16%) | 0.047 0.005 0.487 0.578 0.291 |
Complications DIC, n (%) Bacterial coinfection, n (%) Sepsis, n (%) Cardiological complications, n (%) Pulmonary embolism, n (%) Acute kidney failure, n (%) Hemodialysis, n (%) | 11 (2%) 131 (25%) 42 (8%) 58 (11%) 19 (4%) 88 (17%) 19 (4%) | 7 (5%) 58 (38%) 23 (15%) 30 (19%) 9 (6%) 58 (38%) 16 (10%) | 4 (1%) 73 (20%) 19 (5%) 28 (8%) 10 (3%) 30 (8%) 3 (1%) | 0.012 <0.001 <0.001 0.001 0.080 <0.001 <0.001 |
White blood cells (G/L) Lymphocytes (G/L) Neutrophils (G/L) Basophils (G/L) Eosinophils (G/L) Monocytes (G/L) | 6.49 (4.44–8.80) 1.10 (0.70–1.60) 4.20 (2.60–6.43) 0.01 (0.01–0.03) 0.01 (0.00–0.06) 0.50 (0.30–0.70) | 5.54 (3.09–8.63) 0.79 (0.40–1.20) 3.55 (1.37–6.70) 0.01 (0.00–0.03) 0.00 (0.00–0.02) 0.30 (0.19–0.65) | 6.80 (4.83–8.80) 1.20 (0.89–1.80) 4.40 (2.90–6.40) 0.01 (0.01–0.03) 0.01 (0.00–0.07) 0.50 (0.34–0.70) | 0.001 <0.001 0.002 0.004 <0.001 <0.001 |
Platelets (G/L) | 186 (126–253) | 110 (42–166) | 208 (163–288) | <0.001 |
Coagulation INR Fibrinogen (mg/l) D-dimer (ng/mL) | 1.11 (1.01–1.26) 3.87 (2.65–5.39) 1.10 (0.59–2.33) | 1.20 (1.08–1.37) 4.19 (2.38–5.65) 1.93 (0.98–3.47) | 1.09 (1.00–1.22) 3.74 (2.73–4.99) 0.91 (0.49–1.76) | <0.001 0.768 <0.001 |
COVID-19 severity 0—Asymptomatic, n (%) 1—Mild, n (%) 2—Moderate, n (%) 3—Severe, n (%) 4—Critical, n (%) | 28 (5%) 53 (10%) 129 (25%) 240 (46%) 72 (14%) | 3 (2%) 11 (7%) 32 (21%) 65 (42%) 44 (28%) | 25 (7%) 42 (11%) 97 (27%) 174 (48%) 28 (8%) | 0.034 0.137 0.163 0.252 <0.001 |
Time of hospitalization, days | 12 (5–18) | 13 (5–21) | 12 (5–17) | 0.380 |
Clinical outcome, death, n (%) | 136 (27%) | 80 (52%) | 56 (16%) | <0.001 |
Treatment Oxygen therapy, n (%) High-flow nasal oxygen, n (%) Mechanical ventilation, n (%) Hydroxychloroquine, n (%) Lopinavir/Ritonavir, n (%) Remdesivir, n (%) Convalescent plasma, n (%) Tocilizumab, n (%) Dexamethasone, n (%) Ribavirin, n (%) Calcifediol, n (%) No treatment, n (%) | 355 (68%) 74 (14%) 74 (14%) 141 (27%) 53 (10%) 67 (13%) 133 (26%) 13 (3%) 150 (29%) 23 (4%) 12 (2%) 146 (28%) | 121 (78%) 42 (27%) 45 (29%) 33 (21%) 17 (11%) 24 (16%) 53 (34%) 6 (4%) 48 (31%) 9 (6%) 2 (1%) 39 (25%) | 234 (64%) 32 (9%) 29 (8%) 108 (29%) 36 (10%) 43 (12%) 80 (22%) 7 (2%) 102 (28%) 14 (4%) 10 (3%) 107 (29%) | 0.001 <0.001 <0.001 0.061 0.655 0.229 0.003 0.184 0.437 0.296 0.327 0.374 |
Factor | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Male | 1.333 | 0.975–1.823 | 0.072 | 1.310 | 0.949–1.807 | 0.100 |
Age, years | 1.039 | 1.028–1.051 | <0.001 | 1.034 | 1.021–1.047 | <0.001 |
Hb, g/dl | 0.815 | 0.769–0.863 | <0.001 | 0.860 | 0.807–0.917 | <0.001 |
Log2 EASIX ≤ 1.6 | 0.274 | 0.202–0.373 | <0.001 | 0.346 | 0.252–0.476 | <0.001 |
No CAD | 0.430 | 0.310–0.596 | <0.001 | 0.653 | 0.454–0.940 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalicińska, E.; Biernat, M.; Rybka, J.; Zińczuk, A.; Janocha-Litwin, J.; Rosiek-Biegus, M.; Morawska, M.; Waszczuk-Gajda, A.; Drozd-Sokołowska, J.; Szukalski, Ł.; et al. Endothelial Activation and Stress Index (EASIX) as an Early Predictor for Mortality and Overall Survival in Hematological and Non-Hematological Patients with COVID-19: Multicenter Cohort Study. J. Clin. Med. 2021, 10, 4373. https://doi.org/10.3390/jcm10194373
Kalicińska E, Biernat M, Rybka J, Zińczuk A, Janocha-Litwin J, Rosiek-Biegus M, Morawska M, Waszczuk-Gajda A, Drozd-Sokołowska J, Szukalski Ł, et al. Endothelial Activation and Stress Index (EASIX) as an Early Predictor for Mortality and Overall Survival in Hematological and Non-Hematological Patients with COVID-19: Multicenter Cohort Study. Journal of Clinical Medicine. 2021; 10(19):4373. https://doi.org/10.3390/jcm10194373
Chicago/Turabian StyleKalicińska, Elżbieta, Monika Biernat, Justyna Rybka, Aleksander Zińczuk, Justyna Janocha-Litwin, Marta Rosiek-Biegus, Marta Morawska, Anna Waszczuk-Gajda, Joanna Drozd-Sokołowska, Łukasz Szukalski, and et al. 2021. "Endothelial Activation and Stress Index (EASIX) as an Early Predictor for Mortality and Overall Survival in Hematological and Non-Hematological Patients with COVID-19: Multicenter Cohort Study" Journal of Clinical Medicine 10, no. 19: 4373. https://doi.org/10.3390/jcm10194373
APA StyleKalicińska, E., Biernat, M., Rybka, J., Zińczuk, A., Janocha-Litwin, J., Rosiek-Biegus, M., Morawska, M., Waszczuk-Gajda, A., Drozd-Sokołowska, J., Szukalski, Ł., Rymko, M., Jabłonowska, P., Simon, K., & Wróbel, T. (2021). Endothelial Activation and Stress Index (EASIX) as an Early Predictor for Mortality and Overall Survival in Hematological and Non-Hematological Patients with COVID-19: Multicenter Cohort Study. Journal of Clinical Medicine, 10(19), 4373. https://doi.org/10.3390/jcm10194373