Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment
Abstract
:1. Introduction
2. Preterm Birth Interrupts the Normal Development and Function of the Cardiovascular System
2.1. Potential for Preterm Birth to Programme for Long-Term Cardiovascular Disease
2.2. Maladaptive Structural Remodelling and Functioning of the Heart Following Preterm Birth
2.3. Improved Survival of the Most Vulnerable Preterm Infants—Implications for Cardiac Health
3. Corticosteroids
3.1. Exogenous Glucocorticoids as an Antenatal Treatment to Women at Risk of Preterm Birth
3.2. Antenatal Corticosteroids Influence Maturation of the Immature Heart
3.3. Use of Steroids in Postnatal Treatment for Preterm Infants
3.4. Transient Hypertrophic Cardiomyopathy in Preterm Infants
3.5. Dexamethasone-Induced Cardiac Changes in Experimental Models
3.6. Neonatal Dexamethasone Effects May Persist or Reappear in Adult Animal Models
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bensley, J.G.; De Matteo, R.; Harding, R.; Black, M.J. The effects of preterm birth and its antecedents on the cardiovascular system. Acta Obstet. Gynecol. Scand. 2016, 95, 652–663. [Google Scholar] [CrossRef] [Green Version]
- Brade, T.; Pane, L.S.; Moretti, A.; Chien, K.R.; Laugwitz, K.L. Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harb. Perspect. Med. 2013, 3, a013847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattergoon, N.N.; Louey, S.; Stork, P.J.; Giraud, G.D.; Thornburg, K.L. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1216–H1225. [Google Scholar] [CrossRef] [Green Version]
- Jonker, S.S.; Louey, S.; Giraud, G.D.; Thornburg, K.L.; Faber, J.J. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J. 2015, 29, 4346–4357. [Google Scholar] [CrossRef] [Green Version]
- Oparil, S.; Bishop, S.P.; Clubb, F.J., Jr. Myocardial cell hypertrophy or hyperplasia. Hypertension 1984, 6, III38–III43. [Google Scholar] [CrossRef] [PubMed]
- Jonker, S.S.; Zhang, L.B.; Louey, S.; Giraud, G.D.; Thornburg, K.L.; Faber, J.J. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J. Appl. Physiol. 2007, 102, 1130–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrell, J.H.; Boyn, A.M.; Kumarasamy, V.; Hsieh, A.; Head, S.I.; Lumbers, E.R. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat. Rec. Part A 2003, 274A, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Smolich, J.J.; Walker, A.M.; Campbell, G.R.; Adamson, T.M. Left and right ventricular myocardial morphometry in fetal, neonatal, and adult sheep. Am. J. Physiol. 1989, 257, H1–H9. [Google Scholar] [CrossRef]
- Clubb, F.J., Jr.; Bishop, S.P. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab. Invest. 1984, 50, 571–577. [Google Scholar] [PubMed]
- Mollova, M.; Bersell, K.; Walsh, S.; Savla, J.; Das, L.T.; Park, S.Y.; Silberstein, L.E.; Dos Remedios, C.G.; Graham, D.; Colan, S.; et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 2013, 110, 1446–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabe-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.Q.; Wang, X.J.; Capasso, J.M.; Gerdes, A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 1996, 28, 1737–1746. [Google Scholar] [CrossRef]
- Soonpaa, M.H.; Kim, K.K.; Pajak, L.; Franklin, M.; Field, L.J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 1996, 271, H2183–H2189. [Google Scholar] [CrossRef] [PubMed]
- Alkass, K.; Panula, J.; Westman, M.; Wu, T.D.; Guerquin-Kern, J.L.; Bergmann, O. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell 2015, 163, 1026–1036. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, X.; Bunger, P.C.; Gerdes, A.M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J. Mol. Cell. Cardiol. 1997, 29, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, X.; Gerdes, A.M. Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J. Mol. Cell. Cardiol. 1997, 29, 1553–1565. [Google Scholar] [CrossRef]
- Ahuja, P.; Perriard, E.; Pedrazzini, T.; Satoh, S.; Perriard, J.C.; Ehler, E. Re-expression of proteins involved in cytokinesis during cardiac hypertrophy. Exp. Cell Res. 2007, 313, 1270–1283. [Google Scholar] [CrossRef]
- Paradis, A.N.; Gay, M.S.; Zhang, L.B. Binucleation of cardiomyocytes: The transition from a proliferative to a terminally differentiated state. Drug Discov. Today 2014, 19, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, V.; Sarkisov, D.S.; Arefyeva, A.M.; Panova, N.W.; Gvasava, I.G. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch. 1994, 424, 429–435. [Google Scholar] [CrossRef]
- Derks, W.; Bergmann, O. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration? Circ. Res. 2020, 126, 552–565. [Google Scholar] [CrossRef]
- Behrman, R.E.; Butler, A.S. Mortality and Acute Complications in Preterm Infants. In Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Steinhorn, R.H. Neonatal pulmonary hypertension. Pediatr. Crit. Care Med. 2010, 11, S79–S84. [Google Scholar] [CrossRef] [Green Version]
- Kluckow, M. The Pathophysiology of Low Systemic Blood Flow in the Preterm Infant. Front. Pediatr. 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, B.H.; Nestaas, E.; Hole, T.; Liestol, K.; Stoylen, A.; Fugelseth, D. Myocardial function in term and preterm infants. Influence of heart size, gestational age and postnatal maturation. Early Hum. Dev. 2014, 90, 359–364. [Google Scholar] [CrossRef]
- Saleemi, M.S.H.; El-Khuffash, A.; Franklin, O.; Corcoran, J.D. Serial changes in myocardial function in preterm infants over a four week period: The effect of gestational age at birth. Early Hum. Dev. 2014, 90, 349–352. [Google Scholar] [CrossRef]
- Negrine, R.J.S.; Chikermane, A.; Wright, J.G.C.; Ewer, A.K. Assessment of myocardial function in neonates using tissue Doppler imaging. Arch. Dis. Child.-Fetal 2012, 97, F304–F306. [Google Scholar] [CrossRef]
- Eriksen, B.H.; Nestaas, E.; Hole, T.; Liestol, K.; Stoylen, A.; Fugelseth, D. Myocardial function in premature infants: A longitudinal observational study. BMJ Open 2013, 3, e002441. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The developmental origins of chronic adult disease. Acta Paediatr. Suppl. 2004, 93, 26–33. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A. Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatr. Res. 2004, 56, 311–317. [Google Scholar] [CrossRef]
- Bonamy, A.K.; Kallen, K.; Norman, M. High blood pressure in 2.5-year-old children born extremely preterm. Pediatrics 2012, 129, e1199–e1204. [Google Scholar] [CrossRef] [Green Version]
- Bonamy, A.K.E.; Martin, H.; Jorneskog, G.; Norman, M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J. Intern. Med. 2007, 262, 635–642. [Google Scholar] [CrossRef]
- Gunay, F.; Alpay, H.; Gokce, I.; Bilgen, H. Is late-preterm birth a risk factor for hypertension in childhood? Eur. J. Pediatr. 2014, 173, 751–756. [Google Scholar] [CrossRef]
- Bonamy, A.K.E.; Bendito, A.; Martin, H.; Andolf, E.; Sedin, G.; Norman, M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr. Res. 2005, 58, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Dalziel, S.R.; Parag, V.; Rodgers, A.; Harding, J.E. Cardiovascular risk factors at age 30 following pre-term birth. Int. J. Epidemiol. 2007, 36, 907–915. [Google Scholar] [CrossRef]
- Johansson, S.; Iliadou, A.; Bergvall, N.; Tuvemo, T.; Norman, M.; Cnattingius, S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation 2005, 112, 3430–3436. [Google Scholar] [CrossRef] [Green Version]
- Levy, D. Clinical significance of left ventricular hypertrophy: Insights from the Framingham Study. J. Cardiovasc. Pharmacol. 1991, 17 (Suppl. S2), S1–S6. [Google Scholar] [CrossRef]
- Schillaci, G.; Verdecchia, P.; Porcellati, C.; Cuccurullo, O.; Cosco, C.; Perticone, F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000, 35, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.W.; Giles, W.H.; Croft, J.B. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am. Heart J. 2000, 140, 848–856. [Google Scholar] [CrossRef]
- Iribarren, C.; Round, A.D.; Lu, M.; Okin, P.M.; McNulty, E.J. Cohort Study of ECG Left Ventricular Hypertrophy Trajectories: Ethnic Disparities, Associations With Cardiovascular Outcomes, and Clinical Utility. J. Am. Heart Assoc. 2017, 6, e004954. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.; Wong, F.Y.; Horne, R.S.; Yiallourou, S.R. Intrauterine growth restriction: Impact on cardiovascular development and function throughout infancy. Pediatr. Res. 2016, 79, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, J.G.; Forsen, T.; Tuomilehto, J.; Winter, P.D.; Osmond, C.; Barker, D.J.P. Catch-up growth in childhood and death from coronary heart disease: Longitudinal study. BMJ 1999, 318, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P.; Winter, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in Infancy and Death from Ischemic Heart-Disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Rich-Edwards, J.W.; Stampfer, M.J.; Manson, J.E.; Rosner, B.; Hankinson, S.E.; Colditz, G.A.; Willett, W.C.; Hennekens, C.H. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997, 315, 396–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, D.A.; Lithell, H.O.; Vagero, D.; Koupilova, I.; Mohsen, R.; Berglund, L.; Lithell, U.B.; McKeigue, P.M. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: Cohort study of 15 000 Swedish men and women born 1915-29. BMJ 1998, 317, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.E.; Fall, C.H.D.; Kumaran, K.; Osmond, C.; Cox, V.; Barker, D.J.P. Fetal growth and coronary heart disease in South India. Lancet 1996, 348, 1269–1273. [Google Scholar] [CrossRef]
- Carr, H.; Cnattingius, S.; Granath, F.; Ludvigsson, J.F.; Edstedt Bonamy, A.K. Preterm Birth and Risk of Heart Failure Up to Early Adulthood. J. Am. Coll. Cardiol. 2017, 69, 2634–2642. [Google Scholar] [CrossRef]
- Crump, C.; Howell, E.A.; Stroustrup, A.; McLaughlin, M.A.; Sundquist, J.; Sundquist, K. Association of Preterm Birth With Risk of Ischemic Heart Disease in Adulthood. JAMA Pediatr. 2019, 173, 736–743. [Google Scholar] [CrossRef]
- Bensley, J.G.; Stacy, V.K.; De Matteo, R.; Harding, R.; Black, M.J. Cardiac remodelling as a result of pre-term birth: Implications for future cardiovascular disease. Eur. Heart J. 2010, 31, 2058–2066. [Google Scholar] [CrossRef]
- Bertagnolli, M.; Dios, A.; Beland-Bonenfant, S.; Gascon, G.; Sutherland, M.; Lukaszewski, M.A.; Cloutier, A.; Paradis, P.; Schiffrin, E.L.; Nuyt, A.M. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction. Hypertension 2016, 67, 774–782. [Google Scholar] [CrossRef]
- Mrocki, M.M.; Nguyen, V.B.; Lombardo, P.; Sutherland, M.R.; Bensley, J.G.; Nitsos, I.; Allison, B.J.; Harding, R.; De Matteo, R.; Schneider, M.; et al. Moderate preterm birth affects right ventricular structure and function and pulmonary artery blood flow in adult sheep. J. Physiol. 2018, 596, 5965–5975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiby, Y.A.; Shrimpton, N.Y.; Wright, I.M.; Lumbers, E.R.; Colditz, P.B.; Duncombe, G.J.; Lingwood, B.E. Inotropes do not increase cardiac output or cerebral blood flow in preterm piglets. Pediatr. Res. 2016, 80, 870–879. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm Heart in Adult Life Cardiovascular Magnetic Resonance Reveals Distinct Differences in Left Ventricular Mass, Geometry, and Function. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, A.J.; Bradlow, W.M.; Augustine, D.; Davis, E.F.; Francis, J.; Singhal, A.; Lucas, A.; Neubauer, S.; McCormick, K.; Leeson, P. Right Ventricular Systolic Dysfunction in Young Adults Born Preterm. Circulation 2013, 128, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Lamata, P.; Williamson, W.; Alsharqi, M.; Tan, C.M.J.; Burchert, H.; Huckstep, O.J.; Suriano, K.; Francis, J.M.; Pelado, J.L.; et al. Multimodality Imaging Demonstrates Reduced Right-Ventricular Function Independent of Pulmonary Physiology in Moderately Preterm-Born Adults. JACC Cardiovasc. Imaging 2020, 13, 2046–2048. [Google Scholar] [CrossRef] [PubMed]
- Huckstep, O.J.; Williamson, W.; Telles, F.; Burchert, H.; Bertagnolli, M.; Herdman, C.; Arnold, L.; Smillie, R.; Mohamed, A.; Boardman, H.; et al. Physiological Stress Elicits Impaired Left Ventricular Function in Preterm-Born Adults. J. Am. Coll. Cardiol. 2018, 71, 1347–1356. [Google Scholar] [CrossRef]
- Haider, A.W.; Larson, M.G.; Benjamin, E.J.; Levy, D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 1998, 32, 1454–1459. [Google Scholar] [CrossRef] [Green Version]
- Maron, M.S.; Hauser, T.H.; Dubrow, E.; Horst, T.A.; Kissinger, K.V.; Udelson, J.E.; Manning, W.J. Right ventricular involvement in hypertrophic cardiomyopathy. Am. J. Cardiol. 2007, 100, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 1990, 322, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Lorell, B.H.; Carabello, B.A. Left ventricular hypertrophy-Pathogenesis, detection, and prognosis. Circulation 2000, 102, 470–479. [Google Scholar] [CrossRef]
- Harris, S.L.; Bray, H.; Troughton, R.; Elliott, J.; Frampton, C.; Horwood, J.; Darlow, B.A. Cardiovascular Outcomes in Young Adulthood in a Population-Based Very Low Birth Weight Cohort. J. Pediatr. 2020, 225, 74–79.e3. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.R.; Beare, R.; Doyle, L.; Smolich, J.J.; Cheung, M.M.; Callanan, C.; Davis, N.; De Luca, C.R.; Duff, J.; Hutchinson, E.; et al. Elevated Blood Pressure with Reduced Left Ventricular and Aortic Dimensions in Adolescents Born Extremely Preterm. J. Pediatr. 2016, 172, 75–80.e2. [Google Scholar] [CrossRef]
- Aye, C.Y.L.; Lewandowski, A.J.; Lamata, P.; Upton, R.; Davis, E.; Ohuma, E.O.; Kenworthy, Y.; Boardman, H.; Wopperer, S.; Packham, A.; et al. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Pediatr. Res. 2017, 82, 36–46. [Google Scholar] [CrossRef]
- Cox, D.J.; Bai, W.; Price, A.N.; Edwards, A.D.; Rueckert, D.; Groves, A.M. Ventricular remodeling in preterm infants: Computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res. 2018, 85, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Kozák-Bárány, A.; Jokinen, E.; Saraste, M.; Tuominen, J.; Välimäki, I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: A prospective follow-up study. J. Pediatr. 2001, 139, 539–545. [Google Scholar] [CrossRef]
- Mikkola, K.; Leipala, J.; Boldt, T.; Fellman, V. Fetal growth restriction in preterm infants and cardiovascular function at five years of age. J. Pediatr. 2007, 151, 494–499.e2. [Google Scholar] [CrossRef]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Sjöberg, G.; Rydberg, A.; Liuba, P.; Fellman, V.; Domellöf, M.; Norman, M.; Halvorsen, C.P. Right Heart Structure, Geometry and Function Assessed by Echocardiography in 6-Year-Old Children Born Extremely Preterm-A Population-Based Cohort Study. J. Clin. Med. 2020, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Goss, K.N.; Beshish, A.G.; Barton, G.P.; Haraldsdottir, K.; Levin, T.S.; Tetri, L.H.; Battiola, T.J.; Mulchrone, A.M.; Pegelow, D.F.; Palta, M.; et al. Early Pulmonary Vascular Disease in Young Adults Born Preterm. Am. J. Respir. Crit. Care Med. 2018, 198, 1549–1558. [Google Scholar] [CrossRef]
- Huckstep, O.J.; Burchert, H.; Williamson, W.; Telles, F.; Tan, C.M.J.; Bertagnolli, M.; Arnold, L.; Mohamed, A.; McCormick, K.; Hanssen, H.; et al. Impaired myocardial reserve underlies reduced exercise capacity and heart rate recovery in preterm-born young adults. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Bensley, J.G.; Moore, L.; De Matteo, R.; Harding, R.; Black, M.J. Impact of preterm birth on the developing myocardium of the neonate. Pediatr. Res. 2018, 83, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Telles, F.; McNamara, N.; Nanayakkara, S.; Doyle, M.P.; Williams, M.; Yaeger, L.; Marwick, T.H.; Leeson, P.; Levy, P.T.; Lewandowski, A.J. Changes in the Preterm Heart From Birth to Young Adulthood: A Meta-analysis. Pediatrics 2020, 146, e20200146. [Google Scholar] [CrossRef]
- Liggins, G.C.; Howie, R.N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972, 50, 515–525. [Google Scholar]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar] [CrossRef]
- Singh, R.R.; Cuffe, J.S.M.; Moritz, K.M. Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development. Clin. Exp. Pharmacol. Physiol. 2012, 39, 979–989. [Google Scholar] [CrossRef]
- Jobe, A.H.; Soll, R.F. Choice and dose of corticosteroid for antenatal treatments. Am. J. Obstet. Gynecol. 2004, 190, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Soll, R.; Ozek, E. Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2010, CD001079. [Google Scholar] [CrossRef] [PubMed]
- Seger, N.; Soll, R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst. Rev. 2009, CD007836. [Google Scholar] [CrossRef] [PubMed]
- Bolt, R.J.; van Weissenbruch, M.M.; Lafeber, H.N.; Delemarre-van de Waal, H.A. Glucocorticoids and lung development in the fetus and preterm infant. Pediatr. Pulmonol. 2001, 32, 76–91. [Google Scholar] [CrossRef]
- Evans, N. Cardiovascular Effects of Dexamethasone in the Preterm Infant. Arch. Dis. Child. 1994, 70, F25–F30. [Google Scholar] [CrossRef]
- Gill, A.W.; Warner, G.; Bull, L. Iatrogenic neonatal hypertrophic cardiomyopathy. Pediatr. Cardiol. 1996, 17, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.C.; Sicard, R.E.; Hansen, T.W.; Solomon, E.; Cowett, R.M.; Oh, W. Hypertrophic cardiomyopathy associated with dexamethasone therapy for bronchopulmonary dysplasia. J. Pediatr. 1992, 120, 286–291. [Google Scholar] [CrossRef]
- Zecca, E.; Papacci, P.; Maggio, L.; Gallini, F.; Elia, S.; De Rosa, G.; Romagnoli, C. Cardiac adverse effects of early dexamethasone treatment in preterm infants: A randomized clinical trial. J. Clin. Pharmacol. 2001, 41, 1075–1081. [Google Scholar] [CrossRef]
- Oakley, R.H.; Cidlowski, J.A. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J. Steroid Biochem. 2015, 153, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.Q.; Oakley, R.H.; Cruz-Topete, D.; Cidlowski, J.A. Dual Role for Glucocorticoids in Cardiomyocyte Hypertrophy and Apoptosis. Endocrinology 2012, 153, 5346–5360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.; Holmes, M.; Seckl, J. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action. Physiol. Rev. 2013, 93, 1139–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rog-Zielinska, E.A.; Richardson, R.V.; Denvir, M.A.; Chapman, K.E. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J. Mol. Endocrinol. 2014, 52, R125–R135. [Google Scholar] [CrossRef] [Green Version]
- Jonker, S.S.; Louey, S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J. Endocrinol. 2016, 228, R1–R18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathanielsz, P.W.; Berghorn, K.A.; Derks, J.B.; Giussani, D.A.; Docherty, C.; Unno, N.; Davenport, A.; Kutzler, M.; Koenen, S.; Visser, G.H.A.; et al. Life before birth: Effects of cortisol on future cardiovascular and metabolic function. Acta Paediatr. 2003, 92, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Brownfoot, F.C.; Gagliardi, D.I.; Bain, E.; Middleton, P.; Crowther, C.A. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2013, CD006764. [Google Scholar] [CrossRef] [Green Version]
- Gilstrap, L.C.; Christensen, R.; Clewell, W.H.; Dalton, M.E.; Davidson, E.C.; Escobedo, M.B.; Gjerdingen, D.K.; Goddardfinegold, J.; Goldenberg, R.K.; Grimes, D.A.; et al. Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. J. Am. Med. Assoc. 1995, 273, 413–418. [Google Scholar] [CrossRef]
- Ballard, P.L.; Ballard, R.A. Scientific Basis and Therapeutic Regimens for Use of Antenatal Glucocorticoids. Am. J. Obstet. Gynecol. 1995, 173, 254–262. [Google Scholar] [CrossRef]
- Rog-Zielinska, E.A.; Craig, M.A.; Manning, J.R.; Richardson, R.V.; Gowans, G.J.; Dunbar, D.R.; Gharbi, K.; Kenyon, C.J.; Holmes, M.C.; Hardie, D.G.; et al. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: A role for PGC-1 alpha. Cell Death Differ. 2015, 22, 1106–1116. [Google Scholar] [CrossRef] [Green Version]
- Rog-Zielinska, E.A.; Thomson, A.; Kenyon, C.J.; Brownstein, D.G.; Moran, C.M.; Szumska, D.; Michailidou, Z.; Richardson, J.; Owen, E.; Watt, A.; et al. Glucocorticoid receptor is required for foetal heart maturation. Hum. Mol. Genet. 2013, 22, 3269–3282. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Belser, W.W.; Umeda, P.K.; Tucker, D. Indicators of delayed maturation of rat heart treated prenatally with dexamethasone. Pediatr. Res. 1997, 42, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Sloboda, D.M.; Moss, T.J.M.; Nitsos, I.; Polglase, G.R.; Doherty, D.A.; Newnham, J.P.; Challis, J.R.G.; Braun, T. Effects of glucocorticoid treatment given in early or late gestation on growth and development in sheep. J. Dev. Orig. Health Dis. 2013, 4, 146–156. [Google Scholar] [CrossRef]
- Giraud, G.D.; Louey, S.; Jonker, S.; Schultz, J.; Thornburg, K.L. Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology 2006, 147, 3643–3649. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.C.; Gallaher, B.W.; Breier, B.H.; Harding, J.E. The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J. Endocrinol. 2002, 174, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Lumbers, E.R.; Boyce, A.C.; Joulianos, G.; Kumarasamy, V.; Barner, E.; Segar, J.L.; Burrell, J.H. Effects of cortisol on cardiac myocytes and on expression of cardiac genes in fetal sheep. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 288, R567–R574. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.Y.; Eiby, Y.A.; Lumbers, E.R.; Wright, L.L.; Gibson, K.J.; Barnett, A.C.; Lingwood, B.E. Effects of Glucocorticoid Exposure on Growth and Structural Maturation of the Heart of the Preterm Piglet. PLoS ONE 2014, 9, e93407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, A.H.; Li, J.; Li, C.; Huber, H.F.; Schwab, M.; Nathanielsz, P.W.; Clarke, G.D. Prenatal steroid administration leads to adult pericardial and hepatic steatosis in male baboons. Int. J. Obes. 2017, 41, 1299–1302. [Google Scholar] [CrossRef] [Green Version]
- Eiby, Y.A.; Lumbers, E.R.; Headrick, J.P.; Lingwood, B.E. Left ventricular output and aortic blood flow in response to changes in preload and afterload in the preterm piglet heart. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 303, R769–R777. [Google Scholar] [CrossRef] [Green Version]
- Dodic, M.; Samuel, C.; Moritz, K.; Wintour, E.M.; Morgan, J.; Grigg, L.; Wong, J. Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circ. Res. 2001, 89, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reini, S.A.; Dutta, G.; Wood, C.E.; Keller-Wood, M. Cardiac corticosteroid receptors mediate the enlargement of the ovine fetal heart induced by chronic increases in maternal cortisol. J. Endocrinol. 2008, 198, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.D.; Reini, S.A.; Richards, E.; Wood, C.E.; Keller-Wood, M. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: Differential effects of mineralocorticoid and glucocorticoid receptors. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 305, R343–R350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmi, A.I.; Forhead, A.J.; Fowden, A.L.; Vandenberg, J.I. Cortisol influences the ontogeny of both alpha- and beta-subunits of the cardiac sodium channel in fetal sheep. J. Endocrinol. 2004, 180, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Tare, M.; Miller, S.L.; Wallace, E.M.; Sutherland, A.E.; Yawno, T.; Coleman, H.A.; Jenkin, G.; Parkington, H.C. Glucocorticoid treatment does not alter early cardiac adaptations to growth restriction in preterm sheep fetuses. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 906–914. [Google Scholar] [CrossRef]
- Langdown, M.L.; Holness, M.J.; Sugden, M.C. Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. Biochem. J. 2003, 371, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Rosito, G.A.; Massaro, J.M.; Hoffmann, U.; Ruberg, F.L.; Mahabadi, A.A.; Vasan, R.S.; O’Donnell, C.J.; Fox, C.S. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham Heart Study. Circulation 2008, 117, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Hsu, F.C.; Harris, T.B.; Liu, Y.; Kritchevsky, S.B.; Szklo, M.; Ouyang, P.; Espeland, M.A.; Lohman, K.K.; Criqui, M.H.; et al. The association of pericardial fat with incident coronary heart disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2009, 90, 499–504. [Google Scholar] [CrossRef]
- Huber, H.F.; Kuo, A.H.; Li, C.; Jenkins, S.L.; Gerow, K.G.; Clarke, G.D.; Nathanielsz, P.W. Antenatal Synthetic Glucocorticoid Exposure at Human Therapeutic Equivalent Doses Predisposes Middle-Age Male Offspring Baboons to an Obese Phenotype That Emerges With Aging. Reprod. Sci. 2019, 26, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.; Joint European Societies Task, F. Established and emerging cardiovascular risk factors. Am. Heart J. 2001, 141, S49–S57. [Google Scholar] [CrossRef]
- Koenen, S.V.; Mecenas, C.A.; Smith, G.S.; Jenkins, S.; Nathanielsz, P.W. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am. J. Obstet. Gynecol. 2002, 186, 812–817. [Google Scholar] [CrossRef]
- Ervin, M.G.; Seidner, S.R.; Leland, M.M.; Ikegami, M.; Jobe, A.H. Direct fetal glucocorticoid treatment alters postnatal adaptation in premature newborn baboons. Am. J. Physiol. 1998, 274, R1169–R1176. [Google Scholar] [CrossRef]
- De Vries, A.; Holmes, M.C.; Heijnis, A.; Seier, J.V.; Heerden, J.; Louw, J.; Wolfe-Coote, S.; Meaney, M.J.; Levitt, N.S.; Seckl, J.R. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J. Clin. Investig. 2007, 117, 1058–1067. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.M.; Altamirano, A.K.; Ervin, M.G.; Seidner, S.R.; Jobe, A.H. Prenatal glucocorticoid exposure and postnatal adaptation in premature newborn baboons ventilated for six days. Am. J. Obstet. Gynecol. 2004, 191, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.J.; McGarrigle, H.H.; Edwards, C.M.; Fowden, A.L.; Giussani, D.A. Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J. Physiol. 2002, 545, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.B.; Giussani, D.A.; Jenkins, S.L.; Wentworth, R.A.; Visser, G.H.; Padbury, J.F.; Nathanielsz, P.W. A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J. Physiol. 1997, 499, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Karamlou, T.; Giraud, G.D.; McKeogh, D.; Jonker, S.S.; Shen, I.; Ungerleider, R.M.; Thornburg, K.L. Right ventricular remodeling in response to volume overload in fetal sheep. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H985–H991. [Google Scholar] [CrossRef]
- Barbera, A.; Giraud, G.D.; Reller, M.D.; Maylie, J.; Morton, M.J.; Thornburg, K.L. Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 279, R1157–R1164. [Google Scholar] [CrossRef] [PubMed]
- Samson, F.; Bonnet, N.; Heimburger, M.; Rucker-Martin, C.; Levitsky, D.O.; Mazmanian, G.M.; Mercadier, J.J.; Serraf, A. Left ventricular alterations in a model of fetal left ventricular overload. Pediatr. Res. 2000, 48, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Vural, M.; Yilmaz, I.; Oztunc, F.; Ilikkan, B.; Erginoz, E.; Perk, Y. Cardiac effects of a single course of antenatal betamethasone in preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2006, 91, F118–F122. [Google Scholar] [CrossRef] [Green Version]
- Yunis, K.A.; Bitar, F.F.; Hayek, P.; Mroueh, S.M.; Mikati, M. Transient hypertrophic cardiomyopathy in the newborn following multiple doses of antenatal corticosteroids. Am. J. Perinatol. 1999, 16, 17–21. [Google Scholar] [CrossRef]
- Doyle, L.W.; Cheong, J.L.; Ehrenkranz, R.A.; Halliday, H.L. Early (<8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2017, 10, CD001146. [Google Scholar] [CrossRef]
- Doyle, L.W.; Cheong, J.L.; Ehrenkranz, R.A.; Halliday, H.L. Late (>7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2017, 10, CD001145. [Google Scholar] [CrossRef] [PubMed]
- Watterberg, K. Evidence-Based Neonatal Pharmacotherapy: Postnatal Corticosteroids. Clin. Perinatol. 2012, 39, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Davis, P.G.; Morley, C.J.; McPhee, A.; Carlin, J.B.; Investigators, D.S. Outcome at 2 years of age of infants from the DART study: A multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics 2007, 119, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Doyle, L.W.; Davis, P.G.; Morley, C.J.; McPhee, A.; Carlin, J.B.; Investigators, D.S. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: A multicenter, international, randomized, controlled trial. Pediatrics 2006, 117, 75–83. [Google Scholar] [CrossRef]
- Baud, O.; Maury, L.; Lebail, F.; Ramful, D.; El Moussawi, F.; Nicaise, C.; Zupan-Simunek, V.; Coursol, A.; Beuchee, A.; Bolot, P.; et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016, 387, 1827–1836. [Google Scholar] [CrossRef]
- Baud, O.; Trousson, C.; Biran, V.; Leroy, E.; Mohamed, D.; Alberti, C.; Group, P.T. Association Between Early Low-Dose Hydrocortisone Therapy in Extremely Preterm Neonates and Neurodevelopmental Outcomes at 2 Years of Age. JAMA 2017, 317, 1329–1337. [Google Scholar] [CrossRef]
- Bensky, A.S.; Kothadia, J.M.; Covitz, W. Cardiac effects of dexamethasone in very low birth weight infants. Pediatrics 1996, 97, 818–821. [Google Scholar]
- Skelton, R.; Gill, A.B.; Parsons, J.M. Cardiac effects of short course dexamethasone in preterm infants. Arch. Dis. Child. 1998, 78, F133–F137. [Google Scholar] [CrossRef]
- Romagnoli, C.; Zecca, E.; Vento, G.; Maggio, L.; Papacci, P.; Tortorolo, G. Effect on growth of two different dexamethasone courses for preterm infants at risk of chronic lung disease-A randomized trial. Pharmacology 1999, 59, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Brozanski, B.S.; Jones, J.G.; Gilmour, C.H.; Balsan, M.J.; Vazquez, R.L.; Israel, B.A.; Newman, B.; Mimouni, F.B.; Guthrie, R.D. Effect of pulse dexamethasone therapy on the incidence and severity of chronic lung disease in the very low birth weight infant. J. Pediatr. 1995, 126, 769–776. [Google Scholar] [CrossRef]
- Ohning, B.L.; Fyfe, D.A.; Riedel, P.A. Reversible Obstructive Hypertrophic Cardiomyopathy after Dexamethasone Therapy for Bronchopulmonary Dysplasia. Am. Heart J. 1993, 125, 253–256. [Google Scholar] [CrossRef]
- Sicard, R.E.; Werner, J.C. Dexamethasone Induces a Transient Relative Cardiomegaly in Neonatal Rats. Pediatr. Res. 1992, 31, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Havinga, R.; Bloks, V.W.; Baller, J.F.; Van der Leij, F.R.; Reijngoud, D.J.; Sauer, P.J.J.; Kuipers, F. Postnatal treatment with dexamethasone perturbs hepatic and cardiac energy metabolism and is associated with a sustained atherogenic plasma lipid profile in suckling rats. Pediatr. Res. 2007, 61, 165–170. [Google Scholar] [CrossRef] [Green Version]
- LaMear, N.S.; MacGilvray, S.S.; Myers, T.F. Dexamethasone-induced myocardial hypertrophy in neonatal rats. Biol. Neonate 1997, 72, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Muangmingsuk, S.; Ingram, P.; Gupta, M.P.; Arcilla, R.A.; Gupta, M. Dexamethasone induced cardiac hypertrophy in newborn rats is accompanied by changes in myosin heavy chain phenotype and gene transcription. Mol. Cell. Biochem. 2000, 209, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Camm, E.J.; Hansell, J.A.; Richter, H.G.; Giussani, D.A. Investigation of the use of antioxidants to diminish the adverse effects of postnatal glucocorticoid treatment on mortality and cardiac development. Neonatology 2010, 98, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Bal, M.P.; de Vries, W.B.; Steendijk, P.; Homoet-van der Kraak, P.; van der Leij, F.R.; Baan, J.; van Oosterhout, M.F.; van Bel, F. Histopathological changes of the heart after neonatal dexamethasone treatment: Studies in 4-, 8-, and 50-week-old rats. Pediatr. Res. 2009, 66, 74–79. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.B.; Bal, M.P.; Homoet-van der Kraak, P.; Kamphuis, P.J.; van der Leij, F.R.; Baan, J.; Steendijk, P.; de Weger, R.A.; van Bel, F.; van Oosterhout, M.F. Suppression of physiological cardiomyocyte proliferation in the rat pup after neonatal glucocorticosteroid treatment. Basic Res. Cardiol. 2006, 101, 36–42. [Google Scholar] [CrossRef]
- Bal, M.P.; De Vries, W.B.; Van der Leij, F.R.; Van Oosterhout, M.F.M.; Berger, R.M.F.; Baan, J.; Van der Wall, E.E.; Van Bel, F.; Steendjk, P. Neonatal glucocorticosteroid treatment causes systolic dysfunction and compensatory dilatation in early life: Studies in 4-week-old prepubertal rats. Pediatr. Res. 2005, 58, 46–52. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.B.; Van der Leij, F.R.; Bakker, J.M.; Kamphuis, P.J.G.H.; Van Oosterhout, M.F.M.; Schipper, M.E.I.; Smid, D.B.; Bartelds, B.; Van Bel, F. Alterations in adult rat heart after neonatal dexamethasone therapy. Pediatr. Res. 2002, 52, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Gay, M.S.; Li, Y.; Xiong, F.X.; Lin, T.; Zhang, L.B. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications. PLoS ONE 2015, 10, e0125033. [Google Scholar] [CrossRef] [PubMed]
- Bal, M.P.; de Vries, W.B.; van Oosterhout, M.F.M.; Baan, J.; van der Wall, E.E.; van Bel, F.; Steendijk, P. Long-term cardiovascular effects of neonatal dexamethasone treatment: Hemodynamic follow-up by left ventricular pressure-volume loops in rats. J. Appl. Physiol. 2008, 104, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Herrera, E.A.; Evans, R.D.; Giussani, D.A. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy. J. Physiol. 2013, 591, 5083–5093. [Google Scholar] [CrossRef]
- Kamphuis, P.J.G.H.; De Vries, W.B.; Bakker, J.M.; Kavelaars, A.; Van Dijk, J.E.; Schipper, M.E.; Van Oosterhout, M.F.M.; Croiset, G.; Heijnen, C.J.; Van Bel, F.; et al. Reduced life expectancy in rats after neonatal dexamethasone treatment. Pediatr. Res. 2007, 61, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Gay, M.S.; Dasgupta, C.; Li, Y.; Kanna, A.; Zhang, L. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene. J. Pharm. Exp. 2016, 358, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehurst, R.M., Jr.; Zhang, M.; Bhattacharjee, A.; Li, M. Dexamethasone-induced hypertrophy in rat neonatal cardiac myocytes involves an elevated L-type Ca2+ current. J. Mol. Cell. Cardiol. 1999, 31, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Lister, K.; Autelitano, D.J.; Jenkins, A.; Hannan, R.D.; Sheppard, K.E. Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: A possible role for SGK1. Cardiovasc. Res. 2006, 70, 555–565. [Google Scholar] [CrossRef]
Model | GC | Timing of Exposure | Route & Duration of Exposure | Age of Analysis | Cardiac Effects | Cardiomyocyte Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Baboon | BETA | Mid–Late (0.6, 0.64, & 0.68 gestation) | IM; 3 courses of 2 doses | Adult (10 y) | ↑ mid-ventricular pericardial fat thickness; ↔ body weight | N/A | [99] |
Sheep | DEX | Early (27 d GA) | IV; 2 d | Adult (7 y) | ↑ LV wall mass; ↑ LV type I collagen content; ↓ cardiac functional reserve; ↑ blood pressure | N/A | [101] |
Sheep | DEX | Early (40–42 d GA) | IM; 4 doses over 48 h | Fetal (range: 49–142 d GA), Pubescent (7 m) | ↔ heart weight; ↔ heart: body weight ratio | N/A | [94] |
Sheep | BETA | Late (104–118 d GA) | IM; 1 every 7 d (up to 3 doses) | Fetal (range: 109–145 d GA), Pubescent (6 or 12 w) | ↓ heart weight (at 122 & 132 d GA) when exposed to three doses (at 104, 111, & 118 d GA) | N/A | [94] |
Sheep | HC | Late (118–123 d GA) | IV; 10 d | Fetal (129–132 d GA) | ↑ heart weight; ↑ LV & RV wall thickness; ↔ interstitial collagen content; ↔ blood pressure | N/A | [102] |
Sheep | HC | Late (~126–127 d GA) | IV; 2–3 d | Fetal (128–130 d GA) | ↔ heart, LV, RV & IVS weight; ↑ heart: body weight ratio; ↑ LV: body weight ratio; ↑ RV: body weight ratio; ↑ mean arterial pressure; ↑ systolic & diastolic blood pressure | ↔ nuclearity; ↔ number; ↑ LV mononucleated volume; ↓ LV multinucleated volume; ↔ RV volume; | [97] |
Sheep | HC | Late (118–123 d GA) | IV; 10 d | Fetal (129–132 d GA) | N/A | ↑ KI67 positive nuclei; ↑ apoptosis | [103] |
Sheep | HC | Late (~126–128 d GA) | IC; 7 d. IV; 2 d | Fetal (134 d GA) | ↑ heart weight; ↑ heart: body weight ratio | ↑ KI67 positive nuclei; ↔ binucleation; ↔ length; ↔ width | [95] |
Sheep | HC | Late (119 d GA) | IV; 10 d | Fetal (128 d GA) | ↔ heart weight; ↑ heart: body weight ratio; ↑ LV & RV wall thickness; ↑ mean arterial pressure | N/A | [96] |
Sheep | HC | Late (~121–124 d GA) | IV; 5 d | Fetal (125–130 d GA) | ↑ expression of sodium channels & subunits | N/A | [104] |
Sheep | BETA | Late (~115–120 d GA) | IM; 2 doses over 48 h | Fetal (117–123 d GA) | ↑ heart: body weight ratio; ↔ basal contractile LV or RV function; ↑ LV responsiveness to β-adrenoceptor activation | N/A | [105] |
Pig | BETA | Late (91–92 d GA) | IM; 2 doses over 48 h | Fetal (91–92 d GA) | ↔ heart weight; ↔ heart: body weight ratio; ↑ atria weight; ↑ LV free wall weight (females only) | ↓ KI67 positive nuclei; ↑ apoptosis; ↑ LV binucleation; ↔ volume | [98,100] |
Rat | DEX | Late (17 d PC) | SC; 4–5 d | Neonatal (1 d) | ↑ heart: body weight ratio; ↓ myocardial extracellular matrix | ↑ proliferative index | [93] |
Rat | DEX | Late (15–21 d PC) | SC | Fetal (21 d PC) to Adulthood (up to 24 w) | ↓ calreticulin protein expression (fetal); ↑ calsequestrin protein expression (fetal); ↑ calreticulin protein expression (adulthood) | N/A | [106] |
Mice | GR KO | Fetal | N/A | Fetal (E 17.5 d) | ↓ heart size; ↓ ventricular volume; impaired cardiac function; short, disorganized myofibrils; myofibrils fail to align in the myocardium | N/A | [92] |
Neonatal mouse CM | CORT | Treated for 24 h | In vitro | Fetal | N/A | ↑ contractility; ↑ Z-disc assembly; ↑ sarcomere length; ↑ appearance of mature myofibrils; ↑ mitochondrial activity; ↑ contraction & relaxation events | [91] |
Model | GC | Timing of Exposure | Route of Exposure | Age of Analysis | Cardiac Effects | Cardiomyocyte Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Rat | DEX | 1–3 d | IP injection | Neonatal (2, 4, 7 & 21 d) | ↓ heart weight (21 d) | ↓ mitotic index and proliferation (2 & 4 d); ↔ apoptosis (7 d); ↓ number per unit of myocardial area (7 d) | [140] |
Rat | DEX | 1–3 d | IP injection | Neonatal (2, 7 & 14 d) | ↓ heart weight; ↑ heart: weight ratio (7 d), suggestive of transient cardiac hypertrophy | ↑ cell size (7 d); ↑ expression of genes involved in fatty acid utilization (7 d) | [135] |
Rat | DEX | 1–3 d | IP injection | Neonatal (4, 7 & 14 d) | ↑ heart weight (7 & 14 d) | ↓ proliferation (4 & 7 d); ↑ binucleation (4 d); ↓ number (14 d) | [143] |
Rat | DEX | 1–5, or –7d | IP injection | Neonatal (5 & 7 d) | ↑ heart: weight ratio, suggestive of transient cardiac hypertrophy; ↑ protein: DNA ratio | N/A | [136] |
Rat | DEX | 1–3, –5, –7 or –9 d | SC injection | Neonatal (1–9 d) | ↑ heart: weight ratio, suggestive of transient cardiac hypertrophy | ↑ expression of α-MHC; ↓ expression of β-MHC | [137] |
Rat | DEX | 1–5 d | SC injection | Neonatal (7 & 21 d) | ↓ heart weight (7 d); ↑ heart: weight ratio, suggestive of transient cardiac hypertrophy (7 d); ↑ LV free wall-to-chamber ratio (7 d); ↔ heart: weight ratio (21 d) | N/A | [134] |
Rat | DEX | 1–3 d | IP injection | Neonatal (21 & 22 d) | ↓ heart weight; ↓ LV wall volume; ↑ LV lumen | N/A | [138] |
Rat | DEX | 1–3 d | IP injection | Neonatal (7 d), Adolescent (8 w) & Adulthood (45 w) | ↓ heart weight (7 d and 45 w) | ↑ protein: DNA ratio (45 w); ↑ cell volume (45 w) suggestive of cardiomyocyte hypertrophy | [142] |
Rat | DEX | 1–3 d | IP injection | Pre-pubertal (4 w) | ↓ ventricular weight; ↓ ventricular volume; ↓ contractility; ↑ wall stress | N/A | [141] |
Rat | DEX | 1–3 d | IP injection | Pre-pubertal (4 w), Adolescent (8 w) & Adulthood (50 w) | ↓ ventricular weight (4 & 8 w); ↑ myocardial collagen (50 w); ↑ presence of macrophages (50 w) | ↑ cell volume (50 w) | [139] |
Rat | DEX | 1–3 d | IP injection | Adolescent (8 w) & Adulthood (50 & 80 w) | ↓ ventricular weight (8 & 80 w); systolic dysfunction (50 & 80 w) | N/A | [144] |
Rat | DEX | 1–3 d | IP injection | Adulthood (~15 w) | ↓ heart weight; ↑ LV mass; cardiac dysfunction | N/A | [145] |
Rat | DEX | 1–3 d | IP injection | Adulthood (15 m) | Hypertrophic heart; ↑ LV wall thickness; ↑ interstitial fibrosis | ↑ cell length; ↑ cell diameter | [146] |
Rat neonatal CM | DEX | Treated for 48 h | In vitro | Neonatal | N/A | ↓ proliferation; ↑ binucleation | [147] |
Rat neonatal CM | DEX | Treated for 72 h | In vitro | Neonatal | N/A | ↑ cell size; ↑expression of cardiac hypertrophic markers | [83] |
Rat neonatal CM | DEX | Treated for 48 h | In vitro | Neonatal | N/A | ↑ cell size; ↑ L-type Ca++ current density | [148] |
Rat neonatal CM | CORT | Treated for 48 h | In vitro | Neonatal | N/A | ↑ cell size; reorganization of actin filaments into sarcomeric units | [149] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrselja, A.; Pillow, J.J.; Black, M.J. Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J. Clin. Med. 2021, 10, 3896. https://doi.org/10.3390/jcm10173896
Vrselja A, Pillow JJ, Black MJ. Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. Journal of Clinical Medicine. 2021; 10(17):3896. https://doi.org/10.3390/jcm10173896
Chicago/Turabian StyleVrselja, Amanda, J. Jane Pillow, and M. Jane Black. 2021. "Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment" Journal of Clinical Medicine 10, no. 17: 3896. https://doi.org/10.3390/jcm10173896
APA StyleVrselja, A., Pillow, J. J., & Black, M. J. (2021). Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. Journal of Clinical Medicine, 10(17), 3896. https://doi.org/10.3390/jcm10173896