Oil Deposition on Polymer Brush-Coated NF Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PNIPAM Grafting
2.3. Membrane Characterization
2.4. Membrane Performance
2.4.1. Emulsion Preparation
2.4.2. Experimental System
2.4.3. Deposition and Cleaning Experiments
2.4.4. Image Acquisition and Analysis
3. Results and Discussions
3.1. Membrane Characterization
3.2. Oil Deposition Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mondal, S.; Wickramasinghe, S.R. Produced water treatment by nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2008, 322, 162–170. [Google Scholar] [CrossRef]
- Wandera, D.; Wickramasinghe, S.R.; Husson, S.M. Modification and characterization of ultrafiltration membranes for treatment of produced water. J. Membr. Sci. 2011, 373, 178–188. [Google Scholar] [CrossRef]
- van der Bruggen, B.; Geens, J.N. Advanced Membrane Technology; Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A smart membrane wit antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci. 2018, 555, 69–77. [Google Scholar] [CrossRef]
- Sardari, K.; Fyfe, P.; Wickramasinghe, S.R. Integrated electrocoagulation–Forward osmosis–Membr.ane distillation for sustainable water recovery from hydraulic fracturing produced water. J. Membr. Sci. 2019, 574, 325–337. [Google Scholar] [CrossRef]
- Wandera, D.; Wickramasinghe, S.R.; Husson, S.M. Review Stimuli-responsive Membranes. J. Membr. Sci. 2010, 357, 6–35. [Google Scholar] [CrossRef]
- Darvishmanesh, S.; Qian, X.; Wickramasinghe, S.R. Responsive membranes for advanced separations. Curr. Opin. Chem. Eng. 2015, 8, 98–104. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, A.; Zhang, Y.; Li, M.; Wang, J.; Zhao, Y.; Xing, W. Fabrication of temperature-responsive ZrO2 tubular membranes, grafted with poly (N-isopropylacrylamide) brush chains, for protein removal and easy cleaning. J. Membr. Sci. 2014, 450, 351–361. [Google Scholar] [CrossRef]
- Mondal, S.; Wickramasinghe, S.R. Photo-induced graft polymerization of N-isopropyl acrylamide on thin film composite membrane: Produced water treatment and antifouling properties. Sep. Purif. Technol. 2012, 90, 231–238. [Google Scholar] [CrossRef]
- Wandera, D.; Himstedt, H.H.; Marroquin, M.; Wickramasinghe, S.R.; Husson, S.M. Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: The roles of polymer chain density and polymerization time on performance. J. Memb. Sci. 2012, 403–404, 250–260. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Zhang, Q.; Qu, R.; Liu, Y.; Li, X.; Wei, Y.; Feng, L.; Jiang, L. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability. Angew. Chem. Int. Ed. 2018, 57, 5740–5745. [Google Scholar] [CrossRef]
- Wu, J.D.; Zhang, C.; Jiang, F.J.; Zhao, S.F.; Jiang, Y.L.; Cai, G.Q.; Wang, J.P. Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Adv. 2016, 6, 24076–24082. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, C.; Hu, H.; Liu, Y.; Fei, B.; Xin, J.H. Temperature-responsive nanofibers of controllable oil/water separation. RSC Adv. 2015, 5, 51078–51085. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z. Understanding the separation of oil/water mixtures for immiscible to emulsions on super-wettable surfaces. J. Bionic. Eng. 2016, 13, 1–29. [Google Scholar] [CrossRef]
- Loh, S.; Beuscher, U.; Poddar, T.K.; Porter, A.G.; Wingard, J.M.; Husson, S.M.; Wickramasinghe, S.R. Interplay Among Membr.ane Properties, Protein Properties and Operating Conditions on Protein Fouling During Normal Flow Microfiltration. J. Membr. Sci. 2009, 332, 93–103. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Xu, N.; Hou, Y.; Lin, J. Visualization of fouling and diffusion behaviors during hollow fiber microfiltration of oily wastewater by ultrasonic reflectometry and wavelet analysis. J. Membr. Sci. 2009, 341, 195–202. [Google Scholar] [CrossRef]
- Tummons, E.N.; Tarabara, V.V.; Chew, J.W.; Fane, A.G. Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil-water emulsions. J. Membr. Sci. 2016, 500, 21111–21224. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Effect of cross-flow velocity, oil concentration and salinity on the critical flux of an oil-in-water emulsion in microfilaria. J. Membr. Sci. 2017, 530, 11–19. [Google Scholar] [CrossRef]
- Fux, G.; Ramon, G.Z. Microscale dynamics of oil droplets at a membrane surface: Deformation, reversibility, and implications for fouling. Environ. Sci. Technol. 2017, 51, 13842–13849. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Rutledge, G.C. Separation of oil-in-water emulsions stabilized by different types of surfactants using electrospun fiber membranes. J. Membr. Sci. 2018, 563, 247–258. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Chiew, J.W. Assessment of oil fouling by oil-membrane interaction energy analysis. J. Membr. Sci. 2018, 560, 21–29. [Google Scholar] [CrossRef]
- Tanis-Kanbur, M.B.; Velioğlu, S.; Tanudjaja, H.J.; Hu, X.; Chew, J.W. Understanding membrane fouling by oil-in water emulsion via experiments and molecular dynamics simulation. J. Membr. Sci. 2018, 566, 140–150. [Google Scholar] [CrossRef]
- Segev-Mark, N.; Vu, A.; Chen, N.; Qian, X.; Wickramasinghe, S.R.; Ramon, G.Z. Colloidal deposition on polymer brush coated NF membranes. Sep. Purif. Technol. 2019, 219, 208–215. [Google Scholar] [CrossRef]
- Song, G.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Investigation on suppression of fouling by magnetically responsive nanofiltration membranes. Sep. Purif. Technol. 2018, 205, 94–104. [Google Scholar] [CrossRef]
- Himstedt, H.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water. J. Taiwan Inst. Chem. Eng. 2019, 94, 97–108. [Google Scholar] [CrossRef]
- Carter, B.M.; Sengupta, A.; Qian, X.; Ulbricht, M.; Wickramasinghe, S.R. Tuning surface modification of ultrafiltration membranes external versus internal pore surface: A new approach to surface-initiated AGET-ATRP. J. Membr. Sci. 2018, 554, 109–116. [Google Scholar] [CrossRef]
- Song, G.; Wickramasinghe, S.R.; Qian, X. The Effects of Salt Type and Salt Concentration on the Performance of Magnetically Activated Nanofiltration Membranes. Ind. Eng. Chem. Res. 2017, 56, 1848–1859. [Google Scholar] [CrossRef]
- Qian, X.; Yang, Q.; Vu, A.; Wickramasinghe, S.R. Localized Heat Generation from Magnetically Responsive Membrane. Ind. Eng. Chem. Res. 2016, 55, 9015–9027. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, A.; Mark, N.S.; Ramon, G.Z.; Qian, X.; Sengupta, A.; Wickramasinghe, S.R. Oil Deposition on Polymer Brush-Coated NF Membranes. Membranes 2019, 9, 168. https://doi.org/10.3390/membranes9120168
Vu A, Mark NS, Ramon GZ, Qian X, Sengupta A, Wickramasinghe SR. Oil Deposition on Polymer Brush-Coated NF Membranes. Membranes. 2019; 9(12):168. https://doi.org/10.3390/membranes9120168
Chicago/Turabian StyleVu, Anh, Naama Segev Mark, Guy Z. Ramon, Xianghong Qian, Arijit Sengupta, and S. Ranil Wickramasinghe. 2019. "Oil Deposition on Polymer Brush-Coated NF Membranes" Membranes 9, no. 12: 168. https://doi.org/10.3390/membranes9120168
APA StyleVu, A., Mark, N. S., Ramon, G. Z., Qian, X., Sengupta, A., & Wickramasinghe, S. R. (2019). Oil Deposition on Polymer Brush-Coated NF Membranes. Membranes, 9(12), 168. https://doi.org/10.3390/membranes9120168