Past, Present and Future of Surgical Meshes: A Review
Abstract
:1. Introduction
2. History
3. Current Research on Surgical Meshes
3.1. Elasticity and Tensile Strength
3.2. Pore Size
3.3. Weight (Density)
3.4. Constitution
3.5. Material Absorption
3.6. Commercially Available Surgical Meshes
3.6.1. First Generation Meshes
3.6.2. Second Generation Meshes
3.6.3. Third Generation Meshes
3.7. Manufacturing Processes for Surgical Meshes
3.7.1. The Extrusion Process
- Ability to attach to needles by the usual procedure.
- Capability to be sterilized using ethylene oxide or ultraviolet radiation.
- Ability to pass easily through tissue.
- Ability to resist breakdown without developing an infection.
- Possess minimal reaction with tissue.
- Maintain its in vivo tensile strength over extended periods.
3.7.2. The Knitting Process
4. Future Perspectives
4.1. Coatings
4.2. Nanofibers
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, L.S.; Hopper, P.D. Understanding Medical-Surgical Nursing, 5th ed.; F.A. Davis: Philadelphia, PA, USA, 2015; p. 770. [Google Scholar]
- Dabbas, N.; Adams, K.; Pearson, K.; Royle, G.T. Frequency of abdominal wall hernias: Is classical teaching out of date? J. R Soc. Med. Short Rep. 2011, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bendavid, R.; Abrahamson, J.; Arregui, M.E.; Flament, J.B.; Phillips, E.H. Abdominal Wall Hernias: Principles and Management, 1st ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Heniford, B.T. Hernia Handbook, 1st ed.; Carolinas HealthCare System: Charlotte, NC, USA, 2015. [Google Scholar]
- Kingsnorth, A. Treating inguinal hernias: Open mesh Lichtenstein operation is preferred over laparoscopy. BMJ 2004, 328, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kruger, J.A.; Jor, J.W.; Wong, V.; Dietz, H.P.; Nash, M.P.; Nielsen, P.M. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J. Mech. Behav. Biomed. Mater. 2014, 37, 48–55. [Google Scholar] [CrossRef] [PubMed]
- CORDIS: Community Research and Development Information Service. Available online: http://cordis.europa.eu/result/rcn/178015_en.html (accessed on 9 June 2017).
- Bard Davol Inc. Available online: https://www.davol.com/index.cfm/_api/render/file/?method=inline&fileID=90027245-5056-9046-9529B0C67424C711 (accessed on 9 June 2017).
- Pandit, A.S.; Henry, J.A. Design of surgical meshes—An engineering perspective. Technol. Heal. Care 2004, 12, 51–65. [Google Scholar]
- Melero Correas, H. Caracterización Mecánica de Mallas Quirúrgicas Para la Reparación de Hernias Abdominales. Master Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, November 2008. [Google Scholar]
- Zhu, L.-M.; Schuster, P.; Klinge, U. Mesh implants: An overview of crucial mesh parameters. World J. Gastrointest. Surg. 2015, 10, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Billroth, T. The Medical Sciences in the German Universities: A Study in the History of Civilization; Welch, W.H., Ed.; Macmillan: New York, NY, USA, 1924. [Google Scholar]
- Chowbey, P. Endoscopic Repair of Abdominal Wall Hernias, 2nd ed.; Byword Books: Delhi, India, 2012. [Google Scholar]
- Greenberg, J.A.; Clark, R.M. Advances in suture material for obstetric and gynecologic surgery. Rev. Obstet. Gynecol. 2009, 2, 146–158. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, K.A. Laparoscopic Hernia Surgery an Operative Guide, 1st ed.; CRC Press: New Orleans, LA, USA, 2003. [Google Scholar]
- Usher, F.C.; Fries, J.G.; Ochsner, J.L.; Tuttle, L.L. Marlex mesh, a new plastic mesh for replacing tissue defects. II. A new plastic mesh for replacing tissue defects. AMA Arch. Surg. 1959, 78, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Usher, F.C.; Hill, J.R.; Ochsner, J.L. Hernia repair with Marlex mesh. A comparison of techniques. Surgery 1959, 46, 718–728. [Google Scholar] [PubMed]
- Klinge, U.; Klosterhalfen, B.; Birkenhauer, V.; Junge, K.; Conze, J.; Schumpelick, V.J. Impact of polymer pore size on the interface scar formation in a rat model. Surg. Res. 2002, 103, 208–214. [Google Scholar] [CrossRef] [PubMed]
- EU Hernia Trialists Collaboration. Repair of groin hernia with synthetic mesh: Meta-analysis of randomized. Ann. Surg. 2002, 235, 322–332. [Google Scholar] [CrossRef]
- Stowe, J.A. Development and Fabrication of Novel Woven Meshes as Bone Graft Substitutes for Critical Sized Defects. Ph.D. Thesis, Clemson University, Clemson, SC, USA, May 2015. [Google Scholar]
- Hawn, M.T.; Gray, S.H.; Snyder, C.W.; Graham, L.A.; Finan, K.R.; Vick, C.C. Predictors of mesh explantation after incisional hernia repair. Am. J. Surg. 2011, 202, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, M.A.; Martín del Olmo, J.C.; Blanco, J.I.; De la Cuesta, C.; Toledano, M.; Martín, F.; Vaquero, C.; Inglada, L. Laparoscopic treatment vs open surgery in the solution of major incisional and abdominal wall hernias with mesh. Surg. Endosc. 1999, 13, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Schumpelick, V.; Fitzgibbons, R.J. Hernia Repair Sequelae, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bendavid, R. Prostheses and Abdominal Wall Hernias, 1st ed.; R.G. Landes Co.: Austin, TX, USA, 1994. [Google Scholar]
- Zogbi, L. The Use of Biomaterials to Treat Abdominal Hernias. In Biomaterials Applications for Nanomedicine, 1st ed.; Pignatello, R., Ed.; InTech: Rijeka, Croatia, 2008; Volume 18, pp. 359–382. [Google Scholar]
- Anderson, J.M. Biological Response to Materials. Annu. Rev. Mater. Res. 2001, 31, 81–110. [Google Scholar] [CrossRef]
- Batchelor, A.W.; Chandrasekaran, M. Service Characteristics of Biomedical Materials and Implants, 1st ed.; Imperial College Press: London, UK, 2004. [Google Scholar]
- Santambrogio, L. Biomaterials in Regenerative Medicine and the Immune System, 1st ed.; Springer Internatinal Publishing Switzeerland: Cham, Switzerland, 2015. [Google Scholar]
- Acevedo, A. Mallas sintéticas Irreabsorbibles su desarrollo en la cirugía de las hernias abdominals. Revista Chilena Cirugía 2008, 60, 457–464. [Google Scholar] [CrossRef]
- Tang, L.; Ugarova, T.P.; Plow, E.F.; Eaton, J.W. Molecular determinates of acute inflammatory response to biomaterials. J. Clin. Invest. 1996, 97, 1329–13234. [Google Scholar] [CrossRef] [PubMed]
- Busuttil, S.J.; Ploplis, V.A.; Castellino, F.J.; Tang, L.; Eaton, J.W.; Plow, E.F. A central role for plasminogen in the inflammatory response to biomaterials. J. Thromb. Haemost. 2004, 2, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Earle, D.B.; Mark, L.A. Prosthetic Material in Inguinal Hernia Repair: How Do I Choose? Surg. Clin. North Am. 2008, 88, 179–201. [Google Scholar] [CrossRef] [PubMed]
- Schaechter, M. Encyclopedia of Microbiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Jacob, B.P.; Ramshaw, B. The SAGES Manual of Hernia Repair, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ramshaw, B.; Bachman, S. Surgical materials for ventral hernia repair. Gen. Surg. News 2007, 34, 1–15. [Google Scholar]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-C.; von Fraunhofer, J.A.; Greisler, H.P. Wound Closure Biomaterials and Devices, 1st ed.; CRC Press LLC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Brown, C.N.; Finch, J.G. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010, 92, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Klinge, U.; Klosterhalfen, B.; Schumpelick, V. Foreign Body Reaction to Meshes of Used for the Repair of Abdominal Wall Hernias. Eur. J. Surg. 1999, 165, 665–673. [Google Scholar] [PubMed]
- Junge, K.; Klinge, U.; Prescher, A.; Giboni, P.; Niewiera, M.; Schumpelick, V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 2001, 5, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Pourdeyhimi, B.J. Porosity of surgical mesh fabrics: New technology. Biomed. Mater. Res. 1989, 23 (Suppl. A1), 145–152. [Google Scholar] [CrossRef]
- Bilsel, Y.; Abci, I. The search for ideal hernia repair; mesh materials and types. Int. J. Surg. 2012, 10, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Winters, J.C.; Fitzgerald, M.P.; Barber, M.D. The use of systhetic mesh in female pelvic reconstructive surgery. BJU Int. 2006, 98, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Halm, J.A. Experimental and Clinical Approaches to Hernia Treatment and Prevention. Ph.D. Thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands, October 2005. [Google Scholar]
- Cortes, R.A.; Miranda, E.; Lee, H.; Gertner, M.E. Biomaterials and the evolution of hernia repair II: Composite meshes. In Surgery, 2nd ed.; Norton, J., Barie, P.S., Bollinger, R.R., Chang, A.E., Lowry, S., Mulvihill, S.J., Pass, H.I., Thompson, R.W., Eds.; Springer: New York, NY, USA, 2008; Volume 11, pp. 2305–2315. [Google Scholar]
- Tamayol, A.; Akbari, M.; Annabi, N.; Paul, A.; Khademhosseini, A.; Juncker, D. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol. Adv. 2013, 31, 669–687. [Google Scholar] [CrossRef] [PubMed]
- Blair, T. Biomedical Textiles for Orthopaedic and Surgical Applications: Fundamentals, Applications and Tissue Engineering, 1st ed.; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- King, M.W.; Gupta, B.S.; Guidoin, R. Biotextiles as Medical Implants, 1st ed.; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Listner, G. Polypropylene Monofilament Sutures. U.S. Patent 3630205 A, 28 December 1971. [Google Scholar]
- Hutton, J.D.; Dumican, B.L. Braided Polyester Suture and Implantable Medical Device. U.S. Patent 6203564 B1, 20 March 2001. [Google Scholar]
- Gore, R.W. Process for Producing Porous Products. U.S. Patent 3953566 A, 27 April 1976. [Google Scholar]
- Pott, P.P.; Schwarz, M.L.R.; Gundling, R.; Nowak, K.; Hohenberger, P.; Roessner, E.D. Mechanical properties of mesh materials used for hernia repair and soft tissue augmentation. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Lennard, D.J.; Menezes, E.V.; Lilenfeld, R. Pliabilized Polypropylene Surgical Filaments. U.S. Patent 4,911,165 A, 27 March 1990. [Google Scholar]
- Laurencin, C.T.; Nair, L.S.; Bhattacharyya, S.; Allcock, H.R.; Bender, J.D.; Brown, P.W.; Greish, Y.E. Polymeric Nanofibers for Tissue Engineering and Drug Delivery. U.S. Patent 7235295 B2, 26 June 2007. [Google Scholar]
- Zhukovsky, V.; Rovinskaya, L.; Vinokurova, T.; Zhukovskaya, I. The Development and Manufacture of Polymeric Endoprosthetic Meshes for the Surgery of Soft Tissues. Autex Res. J. 2002, 2, 204–209. [Google Scholar]
- Rousseau, R.A.; Dougherty, R. Knitted Surgical Mesh. U.S. Patent 6638284 B1, 28 October 2003. [Google Scholar]
- Schumpelick, V.; Nyhus, L. Meshes: Benefits and Risks, 1st ed.; Springer: Berling/Heidelberg, Germany, 2004. [Google Scholar]
- Cobb, W.S.; Peindl, R.M.; Zerey, M.; Carbonell, A.M.; Heniford, B.T. Mesh terminology 101. Hernia 2009, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Klosterhalfen, B.; Junge, K.; Klinge, U. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices 2005, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, C.; Hu, X.; Sun, H.; You, C.; Gao, C.; Haiyang, Y. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. J. Mech. Behav. Biomed. Mater. 2011, 4, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Camp Tibbals, E., Jr.; Leinsing, K.R.; DeMarco, P.B. Flat-Bed Knitting Machine and Method of Knitting. U.S. Patent 6158250 A, 12 December 2000. [Google Scholar]
- Dougherty, R.; Vishvaroop, A. Surgical Tricot. U.S. Patent DE60020350 T2, 11 May 2006. [Google Scholar]
- Ting, H. A Study of Three Dimensional Warp Knits for Novel Applications as Tissue Engineering Scaffolds. Master Thesis, North Caroline State University, Raleigh, NC, USA, August 2011. [Google Scholar]
- Spencer, D.J. Knitting Technology: A Comprehensive Handbook and Practical Guide to Modern Day Principles and Practices, 2nd ed.; Pergamon Press: Oxford, UK, 1983. [Google Scholar]
- Deichmann, T.; Michaelis, I.; Junge, K.; Tur, M.; Michaeli, W.; Gries, T. Textile Composite Materials for Small Intestine Replacement. Autex Res. J. 2009, 9, 105–108. [Google Scholar]
- Raz, S. Warp Knitting Production, 1st ed.; Melliand Textilberichte: Heidelberg, Germany, 1987. [Google Scholar]
- Emans, P.J.; Schreinemacher, M.H.; Gijbels, M.J.; Beets, G.L.; Greve, J.W.; Koole, L.H.; Bouvy, N.D. Polypropylene Meshes to Prevent Abdominal Herniation: Can Stable Coatings Prevent Adhesions in the Long Term? Ann. Biomed. Eng. 2009, 37, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Van’t Riet, M.; de Vos van Steenwijk, P.J.; Bonthuis, F.; Marquet, R.L.; Steyerberg, E.W.; Jeekel, J.; Bonjer, H.J. Prevention of Adhesion to Prosthetic Mesh: Comparison of Different Barriers Using an Incisional Hernia Model. Ann. Surg. 2003, 237, 123–128. [Google Scholar] [CrossRef]
- Ebersole, G.C.; Buettmann, E.G.; MacEwan, M.R.; Tang, M.E.; Frisella, M.M.; Matthews, B.D.; Deeken, C.R. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg. Endosc. Other Interv. Tech. 2012, 26, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Weng, B.; Gilkerson, R.; Materon, L.A.; Lozano, K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym. 2015, 115, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ciechańska, D.; Kazimierczak, J.; Wietecha, J.; Rom, M. Surface Biomodification of Surgical Meshes Intended for Hernia Repair. Fibres Text. East. Eur. 2012, 96, 107–114. [Google Scholar]
- Karamuk, Z.E. Embroidered Textiles for Medical Applications: New Design Criteria with Respect to Structural Biocompatibility. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2001. [Google Scholar]
- Norton, J.A.; Barie, P.S.; Bollinger, R.R.; Chang, A.E.; Lowry, S.F.; Mulvihill, S.J.; Pass, H.I.; Thompson, R.W. Surgery, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Yelimlieş, B.; Alponat, A.; Cubukçu, A.; Kuru, M.; Oz, S.; Erçin, C.; Gönüllü, N. Carboxymethylcellulose coated on visceral face of polypropylene mesh prevents adhesion without impairing wound healing in incisional hernia model in rats. Hernia 2003, 7, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.E.; Voeller, G.; Matthews, B.D.; Earle, D.B. The Benefits of Omega-3 Fatty Acid-Coated Mesh in Ventral Hernia Repair. Spec. Rep. 2010, 37, 1–8. [Google Scholar]
- Gao, Y.; Liu, L.J.; Blatnik, J.A.; Krpata, D.M.; Anderson, J.M.; Criss, C.N.; Posielski, N.; Novitsky, Y.W. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: A pilot analysis. J. Biomed. Mater. Res. B. Appl. Biomater. 2014, 10, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Kidoaki, S.; Kwon, I.K.; Matsuda, T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 2005, 26, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Lamber, B.; Grossi, J.V.; Manna, B.B.; Montes, J.H.; Bigolin, A.V.; Cavazzola, L.T. May polyester with collagen coating mesh decrease the rate of intraperitoneal adhesions in incisional hernia repair? Arq. Bras. Cir. Dig. 2013, 26, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Van’t Riet, M.; Burger, J.W.; Bonthuis, F.; Jeekel, J.; Bonjer, H.J. Prevention of adhesion formation to polypropylene mesh by collagen coating: A randomized controlled study in a rat model of ventral hernia repair. Surg. Endosc. 2004, 18, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Niekraszewicz, A.; Kucharska, M.; Wawro, D.; Struszczyk, M.H.; Kopias, K.; Rogaczewska, A. Development of a Manufacturing Method for Surgical Meshes Modified by Chitosan. Fibres Text. East. Eur. 2007, 15, 105–109. [Google Scholar]
- Cohen, M.S.; Stern, J.M.; Vanni, A.J.; Kelley, R.S.; Baumgart, E.; Field, D.; Libertino, J.A.; Summerhayes, I.C. In Vitro Analysis of a Nanocrystalline Silver-Coated Surgical Mesh. Surg. Infect. (Larchmt) 2007, 8, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Junge, K.; Rosch, R.; Klinge, U.; Saklak, M.; Klosterhalfen, B.; Peiper, C.; Schumpelick, V. Titanium coating of a polypropylene mesh for hernia repair: Effect on biocompatibility. Hernia 2005, 9, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Scheidbach, H.; Tannapfel, A.; Schmidt, U.; Lippert, H.; Köckerling, F. Influence of Titanium Coating on the Biocompatibility of a Heavyweight Polypropylene Mesh. Eur. Surg. Res. 2004, 36, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Niekraszewicz, A.; Kucharska, M.; Wawro, D.; Struszczyk, M.H.; Rogaczewska, A. Partially Resorbable Hernia Meshes. Prog. Chem. Appl. Chitin Its Deriv. 2007, 12, 109–114. [Google Scholar]
- Niekraszewicz, A.; Kucharska, M.; Struszczyk, M.H.; Rogaczewska, A.; Struszczyk, K. Investigation into Biological, Composite Surgical Meshes. Fibres Text. East. Eur. 2008, 16, 117–121. [Google Scholar]
- Pascual, G.; Sotomayor, S.; Rodríguez, M.; Bayon, Y.; Bellón, J.M. Behaviour of a New Composite Mesh for the Repair of Full-Thickness Abdominal Wall Defects in a Rabbit Model. PLoS ONE 2013, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Plencner, M.; East, B.; Tonar, Z.; Otáhal, M.; Prosecká, E.; Rampichová, M.; Krejčí, T.; Litvinec, A.; Buzgo, M.; Míčková, A.; Nečas, A.; et al. Abdominal closure reinforment by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomedicine 2014, 9, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- Alves da Silva, M.L.; Martins, A.; Costa-Pinto, A.R.; Costa, P.; Faria, S.; Gomes, M.; Reis, R.L.; Neves, N.M. Cartilage Tissue Engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 2010, 11, 3228–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popat, K. Nanotechnology in Tissue Engineering and Regenerative Medicine, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomedicine 2006, 1, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Dorband, G.C.; Liland, A.; Menezes, E.; Steinheuser, P.; Popadiuk, N.M.; Failla, S.J. Surgical Fastening Device and Method for Manufacture. U.S. Patent 4,671,280 A, 9 June 1987. [Google Scholar]
- Brown, P.; Stevens, K. Nanofibers and Nanotechnology in Textiles, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Watanabe, K.; Kim, B.S.; Kim, I.S. Development of Polypropylene Nanofiber Production System. Polym. Rev. 2011, 51, 288–308. [Google Scholar] [CrossRef]
- Watanabe, K.; Nakamura, T.; Kim, B.S.; Kim, I.S. Effect of organic solvent on morphology and mechanical properties of electrospun syndiotactic polypropylene nanofibers. Polym. Bull 2011, 67, 2025–2033. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Padron, S.; Fuentes, A.; Caruntu, D.; Lozano, K. Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Yarlagadda, P.; Chandrasekharan, M.; Shyan, J.Y. Recent Advances and Current Developments in Tissue Scaffolding. Biomed. Mater. 2005, 15, 159–177. [Google Scholar]
- Plencner, M.; Prosecká, E.; Rampichová, M.; East, B.; Buzgo, M.; Vysloužilová, L.; Hoch, J.; Amler, E. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int. J. Nanomedicine 2015, 10, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Chakroff, J.; Kayuha, D.; Henderson, M.; Johnson, J. Development and Characterization of Novel Electrospun Meshes for Hernia Repair. Int. J. Nanomedicine 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Veleirinho, B.; Coelho, D.S.; Dias, P.F.; Maraschin, M.; Pinto, R.; Cargnin-Ferreira, E.; Peixoto, A.; Souza, J.A.; Ribeiro-do-Valle, R.M.; Lopes-da-Silva, J.A. Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ju, Y.M.; Christ, G.; Atala, A.; Yoo, J.J.; Lee, S.J. Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold. Biomaterials 2013, 34, 8235–8240. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Weng, B.; Materon, L.A.; Gilkerson, R.; Lozano, K. Large-scale production of ternary composite nanofiber membrane for wound dressing applications. J. Bioact. Compat. Polym. Biomed. Appl. 2014, 29, 646–660. [Google Scholar] [CrossRef]
- Sanbhal, N.; Miao, L.; Xu, R.; Khatri, A.; Wang, L. Physical structure and mechanical properties of knitted hernia mesh materials: A review. J. Ind. Text. 2017. [Google Scholar] [CrossRef]
- Guillaume, O.; Teuschl, A.H.; Gruber-Blum, S.; Fortelny, R.H.; Redl, H.; Petter-Puchner, A. Emerging trends in abdominal wall reinforcement: Bringing bio-functionality to meshes. Adv. Healthc. Mater. 2015, 4, 1763–1789. [Google Scholar] [CrossRef] [PubMed]
- Todros, S.; Pavan, P.G.; Natali, A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I—Materials and structural conformation. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2017, 105, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Todros, S.; Pavan, P.G.; Pachera, P.; Natali, A.N. Synthetic surgical meshes used in abdominal wall surgery: Part II—Biomechanical aspects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2017, 105, 892–903. [Google Scholar] [CrossRef] [PubMed]
Product (Manufacturer) | Material | Pore Size (mm) | Absorbable | Weight (g/m2) | Filament | Mechanical Properties | Advantages and Disadvantages |
---|---|---|---|---|---|---|---|
Vicryl (Ethicon) | Polyglactin | 0.4 | Yes, fully (60–90 days) | 56 | Multifilament | Tensile strength of 78.2 ± 10.5 N/cm in longitudinal direction and 45.5 ± 13.5 N/cm in transverse direction. | Eliminates the risk of infectious disease transmission. Usually results in hernia recurrence after complete absorption |
Dexon (Syneture) | Polyglycolic acid | 0.75 | Yes, fully (60–90 days) | 56 | Multifilament | N.A. | Adhesions fade as the mesh is absorbed. It is controversial whether the fibrous ingrowth into the prosthesis is sufficient to accomplish a permanent repair. |
Sefil (B-Baun) | Polyglycolic acid | 0.75 | Yes, fully (60–90 days) | 56 | Multifilament | N.A. | High anatomic adaptability and low risk of late secondary infection. Retain 50% of its strength for 20 days. |
Marlex (BARD) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 58.8 N/cm | High tensile strength. Evokes a chronic inflammatory reaction. |
3D Max (BARD) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 124.7 N/cm | Anatomically designed. Reduced patient pain. Adhesions risk. |
Polysoft (BARD) | PP | 0.8 | No | 80–100 | Multifilament | Burst strength of 558 N and a stiffness of 52.9 N/cm | Low infection risk. Not used in extraperitoneal spaces as produce dense adhesions *. |
Prolene (Ethicon) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 156.5 N/cm | Facilitates fibrovascular ingrowth, infection resistance and improve compliance. Adhesions risk. |
Surgipro (Autosuture) | PP | 0.8 | No | 80–100 | Multifilament | Tensile strength of 41.8 N/cm in longitudinal direction and 52.9 N/cm in transverse direction | High tensile strength, ease of handling and position and retains properties in vivo. Difficult complete wound healing caused by mesh structure. |
Prolite (Atrium) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 138 N/cm | Monofilaments aligned in parallel spaced angles to maximizing material flexibility in two dimensions and a smooth and very uniform open architecture. Adhesions risk. |
Trelex (Meadox) | PP | 0.8 | No | 80–100 | Multifilament | N.A. | * |
Atrium (Atrium) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 56.2 N/cm | High tolerance to infection. Adhesions risk. |
Premilene (B-Braun) | PP | 0.8 | No | 80–100 | Monofilament | Tensile strength of 41.4 N/cm in longitudinal direction and 36.5 N/cm in transverse direction | Mesh adaptation to the longitudinal and latitudinal axes of the connective tissue where is used for the reinforcement, rapid healing and tissue penetration. Adhesions risk. |
Serapren (smooth) | PP | 0.8 | No | 80–100 | Multifilament | N.A. | * |
Parietene (Covidien) | PP | 0.8 | No | 80–100 | Multifilament | Tensile strength of 38.9 ± 5.2 N/cm in longitudinal direction and 26.6 ± 4.2 N/cm in transverse direction | * |
Prolene Light (Covidien) | PP | 1.0–3.6 | No | 36–48 | Monofilament | Tensile strength of 20 N/cm | Greater flexibility. Not used in intraperitoneal spaces as produce dense adhesions. |
Optilene (B-Baun) | PP | 1.0–3.6 | No | 36–48 | Monofilament | Tensile strength of 58 N/cm | Soft, thin and pliable. Ideal for inguinal hernia repair to reduce chronic pain. Not used in extraperitoneal spaces as produce dense adhesions. |
Mersilene (Ethicon) | POL | 1.0–2.0 | No | 40 | Multifilament | Tensile strength of 19 N/cm | Low infection risk. Evokes an aggressive macrophage and giant cell rich inflammatory reaction, followed by a dense fibrous ingrowth. |
Goretex (Gore) | e-PTFE | 0.003 | No | Heavyweight | Multifilament | Minimum tensile strength of 16 N/cm | Smooth and strong. Evokes a chronic inflammatory reaction. |
Product (Manufacturer) | Material | Pore Size (mm) | Absorbable | Weight (g/m2) | Filament | Mechanical Properties | Advantages and Disadvantages |
---|---|---|---|---|---|---|---|
Vypro, Vypro II (Ethicon) | PP/polyglactin 910 | >3 | Partially (42 days) | 25 & 30 | Multifilament | Tensile strength of 16 N/cm | Significantly decreased rates of chronic pain. Higher rate of hernia recurrence. |
Gore-Tex Dual Mesh Dual Mesh Plus (Gore) | e-PTFE | 0.003–0.022 | No | Heavyweight | Multifilament | Minimum tensile strength of 16 N/cm (Gore-Tex Dual Mesh) and 157.7 N/cm (Dual Mesh Plus) | Promotes host tissue growth and reduces tissue attachment. Infection risk. |
Parietex (Covidien) | POL/collagen | >3 | Partially (20 days) | 75 | Multifilament | Elasticity of 3.5 at 16 N | Short-term benefit for anti-adhesion property. Greater infection rate (57%). |
Composix EX Dulex (BARD) | PP/e-PTFE | 0.8 | No | Lightweight | Monofilament | N.A. | Minimizes adhesions and provides optimal tissue ingrowth. Infection risk. |
Proceed (Ethicon) | PP/cellulose | Large | Partially (<30 days) | 45 | Monofilament | Tensile strength of 56.6 N/cm | Low rates of hernia recurrence (3.7%). Risk of formation of visceral adhesions. |
DynaMesh IPOM (FEG Textiltechnik) | PP/PVDF | 1–2 | Partially | 60 | Monofilament | Tensile strength of 11.1 ± 6.4 N/cm in longitudinal direction and 46.9 ± 9.7 N/cm in transverse direction | Minimal foreign body reaction. Adhesions risk. |
Sepramesh (Genzyme) | PP/sodium | 1–2 | Partially (<30 days) | 102 | Monofilament | N.A. | Reduces adhesions and the optimal tissue ingrowth is promoted. Sticky consistency difficult the surgeon manipulation. |
Ultrapro (Ethicon) | PP/PGC-25 | >3 | Partially (<140 days) | 28 | Monofilament | Tensile strength of 55 N/cm | Reduced inflammatory response. Adhesions risk. |
Ti-Mesh (GfE) | PP/titanium | >1 | No | 16 & 35 | Monofilament | Tensile strength of 12 N/cm (mesh of 16 g/m2) and 47 N/cm (mesh of 35 g/m2) | Reduced inflammatory response. Low tensile strength. |
C-Qur (Atrium) | PP/omega 3 | >1 | Partially (120 days) | 50 | Monofilament | Ball burst strength of 170 ± 20.1 N | Short-term benefit for anti-adhesion property. No significant difference for adhesion grade or amount relative to other meshes. |
Product (Manufacturer) | Material | Tensile Strength (MPa) | Advantages | Disadvantages |
---|---|---|---|---|
Surgisis (Cook) | Porcine (small intestine submucosa) | 4 | No refrigeration is required. Long history of safety data. | Requires hydration. Susceptible to collagenases. |
FlexHD (J&J) | Human (acellular dermis) | 10 | No refrigeration or rehydration is required. | N.A. |
AlloMax (Davol) | Human (acellular dermis) | 23 | No refrigeration or rehydration is required. Available in large sizes. | Hydration required. |
CollaMend (Davol) | Porcine/Bovine (xenogenic acellular dermis) | 11 | No refrigeration or rehydration is required. Available in large sizes. | N.A. |
Strattice (LifeCell) | Porcine/Bovine (xenogenic acellular dermis) | 18 | Available in large sheets. | Limited long-term follow up. |
Permacol (Covidien) | Porcine/Bovine (xenogenic acellular dermis) | 39 | No refrigeration or rehydration is required. Available in large sizes. | N.A. |
XenMatrix (Davol) | Porcine/Bovine (xenogenic acellular dermis) | 14 | Available in large sheets. | Limited long-term follow up. |
Mesh | Structural Textile Technique | Polymer | Fiber |
---|---|---|---|
Marlex | Woven | PP | Mono |
Prolene® | Warp | PP | Mono |
Atrium® | Warp | PP | Mono |
Vypro® | Warp | PP/PG-910 | Multi |
UltraPro® | Warp | PP/PGC-25 | Mono |
TiMesh® | Warp | PP/Ti | Mono |
DualMesh® | Warp | e-PTFE | Foil * |
Mersilene® | Warp | Polyethylene Terephthalate (PET) | Multi |
Dynamesh® | Warp | PVDF | Mono |
Vycril® | Woven | Resorbable undyed Polyglactin | Multi |
Gore-Tex® | Woven | e-PTFE | Multi |
PLLA/PGA | ORC/SCMC | NVP/BMA | Omega-3 Fatty Acid | RMSC/HDF/RKF | Collagen/Chitosan | NCSP | Titanium |
---|---|---|---|---|---|---|---|
Variable degradation rate | Reduce mesh adhesions | Reduce mesh adhesions | Minimal risk of mesh contraction | Affinity towards fibroblasts | Weak tensile properties | Anti-inflammatory | Provides mechanical integrity |
Hydrophilicity | Absorbable | Hydrophilicity | Absorbable | Favourable cell adhesion | Negligible effect on biomechanical properties | Antimicrobial | Non-absorbable |
Reference | Analyzed Parameter | |
---|---|---|
Material | Surface Density | |
Pascual et al. [86] | Oxidized collagen Chitosan | Oxidized collagen 95%/ Chitosan 5% |
Ciechańska et al. [71] | MBC | 6.7 g/m2 (one side) 5.31 g/m2 (two sides) |
Cohen et al. [81] | NCSP | 310 g/m2 640 g/m2 1130 g/m2 |
Niekraszewics et al. [85] | Chitosan | 20 g/m2 (one side) 20 g/m2 (two sides) |
Nanofiber Material | Manufacturing Process | Diameter (nm) | Tensile Strength (MPa) | Advantages and Disadvantages | Reference |
---|---|---|---|---|---|
Poly-ε-caprolactone (PCL) | Electrospinning | 1280 ± 330 | 3.11 ± 1.09 | Better adhesion, growth, metabolic activity, proliferation and viability of 3T3 Fibroblasts. Lack of in vivo testing. | [87,98] |
Polydioxanone (PDO) | Electrospinning | 860 ± 420 | 3.76 ± 0.49 | Bioresorbable polymer. Reduction of long-term foreign body response (LTFBR). No fulfill the mechanical requirements. | [99] |
Polylactide-Co-Glycolide (PLGA 8218) | Electrospinning | 3280 ± 570 | 6.47 ± 0.41 | Exceed the minimum mechanical requirements for hernia repair applications. Bioresorbable polymer. Reduction of LTFBR. Lack of in vivo testing. | |
PLLA | Electrospinning | 1480 ± 670 | 3.59 ± 0.25 | In vivo advantages. Exceed the minimum mechanical requirements for hernia repair applications. Lack of in vivo testing. | |
Polyurethane (PU) | Electrospinning | 890 ± 330 | 18.9 ± 5.9 | Elastic deformation. | |
PET | Electrospinning | 710 ± 280 | 3.17 ± 0.23 | Adequate mechanical attributes. No evidence of intestinal adhesions. Trigger of a large foreign body reaction. | [100] |
PET/Chitosan | Electrospinning | 3010 ± 720 | 2.89 ± 0.27 | Adequate mechanical attributes. No evidence of intestinal adhesions. Trigger of a large foreign body reaction. | |
PCL/Collagen | Electrospinning | 1000 | 2.13 ± 0.36 | Biological and biomechanical stable, support skeletal muscle cell ingrowth and neo-tissue formation | [101] |
Baylon et al. (This Review) | Brown et al. [38] | Sanbhal et al. [103] | Guillaume et al. [104] | Todros et al. [105] | Todros et al. [106] | |
---|---|---|---|---|---|---|
Introduction | √ | √ | √ | √ | √ | √ |
History | √ | √ | - | - | - | - |
Present Scenario | √ | √ | √ | √ | √ | √ |
Properties Discussed | Elasticity/tensile strength Pore Size Weight (density) Constitution Material absorption | Tensile strength Pore Size Weight Reactivity/Biocompatibility Elasticity Constitution Shrinkage Complications | Weight Pore Shape, size/porosity Mesh elasticity/strength | Properties discussed for particular meshes, varies from the type of mesh being discussed. | Pore size Density thickness | Biomechanical properties Uniaxial tensile testing Biaxial tensile testing Ball burst testing |
Surgical Mesh | √ | √ | √ | √ | √ | √ |
Manufacturing Processes | > 2 processes considered | - | - | - | - | - |
Future Perspectives | 2 perspectives considered | - | √ | √ | - | - |
Comments | Comparison of meshes divided by generations: First generation (18 meshes), second generation, (10 meshes), third generation (7 meshes) | Comparison of meshes divided by constitution, Multi (3 meshes), multifilament and monofilament (13 meshes), and foil (1 mesh). Biomaterial meshes (10 meshes) | Comparison between synthetic meshes (15 meshes) Comparison between composite meshes (12 meshes) | Meshes divided by Biologically Derived Matrices, Biodegradable synthetic structures, Anti-inflammatory mesh, Meshes with enhanced cytocompatibility, Anti-adhesive Mesh, Antibacterial meshes. Review also discusses mesh fixation, self-expanding systems, post-implantation visible mesh, cell coated meshes, and growth factor loaded meshes. | Comparison between synthetic surgical meshes: HWPP (5 meshes), LWPP (6 meshes), PET (1mesh), ePTFE (1 mesh), PVDF (1 mesh) Comparison between Multilayered meshes (10 meshes) | Comparison between synthetic surgical meshes: HWPP (5 meshes), LWPP (3 meshes), PET (1 mesh), ePTFE (1 mesh), PVDF (1 mesh). Comparison between Multilayered Meshes (10 meshes) |
Total meshes compared | 35 | 27 | 27 | - | 24 | 21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baylón, K.; Rodríguez-Camarillo, P.; Elías-Zúñiga, A.; Díaz-Elizondo, J.A.; Gilkerson, R.; Lozano, K. Past, Present and Future of Surgical Meshes: A Review. Membranes 2017, 7, 47. https://doi.org/10.3390/membranes7030047
Baylón K, Rodríguez-Camarillo P, Elías-Zúñiga A, Díaz-Elizondo JA, Gilkerson R, Lozano K. Past, Present and Future of Surgical Meshes: A Review. Membranes. 2017; 7(3):47. https://doi.org/10.3390/membranes7030047
Chicago/Turabian StyleBaylón, Karen, Perla Rodríguez-Camarillo, Alex Elías-Zúñiga, Jose Antonio Díaz-Elizondo, Robert Gilkerson, and Karen Lozano. 2017. "Past, Present and Future of Surgical Meshes: A Review" Membranes 7, no. 3: 47. https://doi.org/10.3390/membranes7030047
APA StyleBaylón, K., Rodríguez-Camarillo, P., Elías-Zúñiga, A., Díaz-Elizondo, J. A., Gilkerson, R., & Lozano, K. (2017). Past, Present and Future of Surgical Meshes: A Review. Membranes, 7(3), 47. https://doi.org/10.3390/membranes7030047