Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes
Abstract
:1. Introduction
2. Theoretical Background
2.1. Solubility
2.2. Diffusivity
2.3. Correlations
3. Results
3.1. CO2, CH4 and N2 Solubility and Permeability
3.2. Solubility and Permeability of Other Gases in PSf
3.3. Solubility and Permeability of Other Gases in PPh
3.4. Solubility and Permeability of Other Gases in 6FDA-6FpDA
3.5. General Correlations
3.6. Model Prediction of Gas Permeability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flaconneche, B.; Klopffer, M.H. Transport properties of gases in polymers: Experimental methods. Oil Gas Sci. Technol. 2001, 56, 245–259. [Google Scholar] [CrossRef]
- Brown, W.R.; Park, G.S. Diffusion of solvents and swellers in polymers. J. Paint Technol. 1970, 42, 16–25. [Google Scholar]
- Lange, J.; Wyser, Y. Recent innovations in barrier technologies for plastic packaging—A review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Bessarabov, D.; Kozak, P. Measurement of gas permeability in SPE membranes for use in fuel cells. Membr. Technol. 2007, 2007, 6–9. [Google Scholar] [CrossRef]
- Grate, J.W.; Abraham, M.H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuators B Chem. 1991, 3, 85–111. [Google Scholar] [CrossRef]
- Baker, R.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Vrentas, J.S.; Vrentas, C.M. Sorption in glassy polymers. Macromolecules 1991, 24, 2404–2412. [Google Scholar] [CrossRef]
- Mi, Y.; Zhou, S.; Stern, S.A. Representation of gas solubility in glassy polymers by a concentration-temperature superposition principle. Macromolecules 1991, 24, 2361–2367. [Google Scholar] [CrossRef]
- Weiss, G.H.; Bendler, J.T.; Shlesinger, M.F. Continuous-site model for Langmuir gas sorption in glassy polymers. Macromolecules 1992, 25, 990–992. [Google Scholar] [CrossRef]
- Kirchheim, R. Sorption and partial molar volume of small molecules in glassy polymers. Macromolecules 1992, 25, 6952–6960. [Google Scholar] [CrossRef]
- Petropoulos, J.H. On the dual mode gas transport model for glassy polymers. J. Polym. Sci. Part B Polym. Phys. 1988, 26, 1009–1020. [Google Scholar] [CrossRef]
- Wang, L.; Corriou, J.P.; Castel, C.; Favre, E. Transport of gases in glassy polymers under transient conditions: Limit-behavior investigations of dual-mode sorption theory. Ind. Eng. Chem. Res. 2013, 52, 1089–1101. [Google Scholar] [CrossRef]
- Islam, M.A.; Buschatz, H. Gas permeation through a glassy polymer membrane: Chemical potential gradient or dual mobility mode? Chem. Eng. Sci. 2002, 57, 2089–2099. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, Y.W.; Lee, K.J.; Min, B.R.; Kim, J.H. Thermodynamic model of gas permeability in polymer membranes. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 661–665. [Google Scholar] [CrossRef]
- Vieth, W.R.; Sladek, K.J. A model for diffusion in a glassy polymer. J. Colloid Sci. 1965, 20, 1014–1033. [Google Scholar] [CrossRef]
- Michaels, A.S.; Vieth, W.R.; Barrie, J.A. Solution of gases in polyethylene terephthalate. J. Appl. Phys. 1963, 34, 1–13. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Permeability and diffusivity of CO2 in glassy polymers with and without plasticization. J. Membr. Sci. 2013, 35, 176–185. [Google Scholar] [CrossRef]
- Doghieri, F.; Sarti, G.C. Nonequilibrium lattice fluids: A predictive model for the solubility in glassy polymers. Macromolecules 1996, 29, 7885–7896. [Google Scholar] [CrossRef]
- De Angelis, M.G.; Sarti, G.C. Solubility of gases and liquids in glassy polymers. Annu. Rev. Chem. Biomol. Eng. 2001, 2, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Minelli, M.; Sarti, G.C. Thermodynamic model for the permeability of light gases in glassy polymers. AIChE J. 2015, 61, 2776–2788. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Gas permeability in glassy polymers: A thermodynamic approach. Fluid Phase Equilib. 2016, 424, 44–51. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Thermodynamic basis for vapor permeability in Ethyl Cellulose. J. Membr. Sci. 2015, 473, 137–145. [Google Scholar] [CrossRef]
- Toni, E.; Minelli, M.; Sarti, G.C. A predictive model for the permeability of gas mixtures in glassy polymers. Fluid Phase Equilib. 2017. submitted. [Google Scholar]
- Minelli, M.; Sarti, G.C. Permeability and solubility of carbon dioxide in different glassy polymer systems with and without plasticization. J. Membr. Sci. 2013, 444, 429–439. [Google Scholar] [CrossRef]
- Minelli, M. Modeling CO2 solubility and transport in poly(ethylene terephthalate) above and below the glass transition. J. Membr. Sci. 2014, 451, 305–311. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Elementary prediction of gas permeability in glassy polymers. J. Membr. Sci. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Lacombe, R.H. An elementary molecular theory of classical fluids. Pure fluids. J. Phys. Chem. 1976, 80, 2352–2362. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Lacombe, R.H. Statistical thermodynamics of polymer solutions. Macromolecules 1978, 11, 1145–1156. [Google Scholar] [CrossRef]
- Doghieri, F.; De Angelis, M.G.; Baschetti, M.G.; Sarti, G.C. Solubility of gases and vapors in glassy polymers modelled through non-equilibrium PHSC theory. Fluid Phase Equilib. 2006, 241, 300–307. [Google Scholar] [CrossRef]
- Minelli, M.; De Angelis, M.G.; Hofmann, D. A novel multiscale method for the prediction of the volumetric and gas solubility behavior of high-Tg polyimides. Fluid Phase Equilib. 2012, 333, 87–96. [Google Scholar] [CrossRef]
- Huang, S.H.; Radosz, M. Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 1990, 29, 2284–2294. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Baschetti, M.G.; Doghieri, F.; Sarti, G.C. Solubility in glassy polymers: Correlations through the nonequilibrium lattice fluid model. Ind. Eng. Chem. Res. 2001, 40, 3027–3037. [Google Scholar] [CrossRef]
- Minelli, M.; Friess, K.; Vopička, O.; De Angelis, M.G. Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilib. 2013, 347, 35–44. [Google Scholar] [CrossRef]
- Sarti, G.C.; De Angelis, M.G. Calculation of the solubility of liquid solutes in glassy polymers. AIChE J. 2012, 58, 292–301. [Google Scholar] [CrossRef]
- Minelli, M.; Campagnoli, S.; De Angelis, M.G.; Doghieri, F.; Sarti, G.C. Predictive model for the solubility of fluid mixtures in glassy polymers. Macromolecules 2011, 44, 4852–4862. [Google Scholar] [CrossRef]
- Ricci, E.; Minelli, M.; De Angelis, M.G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: The case of CO2/CH4 mixture in Matrimid®. J. Membr. Sci. 2017, 539, 88–100. [Google Scholar] [CrossRef]
- Minelli, M.; Cocchi, G.; Ansaloni, L.; Baschetti, M.G.; De Angelis, M.G.; Doghieri, F. Vapor and liquid sorption in matrimid polyimide: Experimental characterization and modeling. Ind. Eng. Chem. Res. 2013, 52, 8936–8945. [Google Scholar] [CrossRef]
- Davis, E.M.; Minelli, M.; Baschetti, M.G.; Sarti, G.C.; Elabd, Y.A. Nonequilibrium sorption of water in polylactide. Macromolecules 2012, 45, 7486–7494. [Google Scholar] [CrossRef]
- Ferrari, M.C.; Galizia, M.; De Angelis, M.G.; Sarti, G.C. Gas and vapor transport in mixed matrix membranes based on amorphous Teflon AF1600 and AF2400 and fumed silica. Ind. Eng. Chem. Res. 2010, 49, 11920–11935. [Google Scholar] [CrossRef]
- Doghieri, F.; Biavati, D.; Sarti, G.C. Solubility and diffusivity of ethanol in PTMSP: Effects of activity and of polymer ageing. Ind. Eng. Chem. Res. 1996, 35, 2420–2430. [Google Scholar] [CrossRef]
- Galizia, M.; De Angelis, M.G.; Finkelshtein, E.; Yampolskii, Y.P.; Sarti, G.C. Sorption and transport of hydrocarbons and alcohols in addition-type poly(trimethyl silyl norbornene). I: Experimental data. J. Membr. Sci. 2011, 385, 141–153. [Google Scholar] [CrossRef]
- Minelli, M.; Paul, D.R.; Sarti, G.C. On the interpretation of cryogenic sorption isotherms in glassy polymers. J. Membr. Sci. 2017, 540, 229–242. [Google Scholar] [CrossRef]
- Wissinger, G.; Paulaitis, M.E. Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 2497–2510. [Google Scholar] [CrossRef]
- Jordan, S.; Koros, W.J. Free volume distribution model of gas sorption and dilation in glassy polymers. Macromolecules 1995, 28, 2228–2235. [Google Scholar] [CrossRef]
- Minelli, M.; Doghieri, F. A Predictive model for vapor solubility and volume dilation in glassy polymers. Ind. Eng. Chem. Res. 2012, 51, 16505–16516. [Google Scholar] [CrossRef]
- Doghieri, F.; Sarti, G.C. Predicting the low pressure solubility of gases and vapors in glassy polymers by the NELF model. J. Membr. Sci. 1998, 147, 73–86. [Google Scholar] [CrossRef]
- Sarti, G.C.; Doghieri, F. Predictions of the solubility of gases in glassy polymers based on the NELF model. Chem. Eng. Sci. 1998, 53, 3435–3447. [Google Scholar] [CrossRef]
- De Angelis, M.G.; Sarti, G.C.; Doghieri, F. NELF model prediction of the infinite dilution gas solubility in glassy polymers. J. Membr. Sci. 2007, 289, 106–122. [Google Scholar] [CrossRef]
- De Angelis, M.G.; Merkel, T.C.; Bondar, V.I.; Freeman, B.D.; Doghieri, F.; Sarti, G.C. Hydrocarbon and fluorocarbon solubility and dilation in poly(dimethylsiloxane): Comparison of experimental data with predictions of the Sanchez-Lacombe equation of state. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 3011–3026. [Google Scholar] [CrossRef]
- Bondi, A. Physical Properties of Molecular Crystals, Liquids and Glasses; Wiley: New York, NY, USA, 1968. [Google Scholar]
- Matteucci, S.; Yampolskii, Y.; Freeman, B.D.; Pinnau, I. Chapter 1. Transport of gases and vapors in glassy and rubbery polymers. In Materials Science of Membranes for Gas and Vapor Separation; Yampolskii, Y.P., Pinnau, I., Freeman, B.D., Eds.; John Wiley & Sons: New York, NY, USA, 2006; pp. 1–47. [Google Scholar]
- Erb, A.J.; Paul, D.R. Gas sorption and transport in polysulfone. J. Membr. Sci. 1981, 8, 11–22. [Google Scholar] [CrossRef]
- McHattie, J.S.; Koros, W.J.; Paul, D.R. Gas transport properties of polysulphones: 3. Comparison of tetramethyl-substituted bisphenols. Polymer 1992, 33, 1701–1711. [Google Scholar] [CrossRef]
- Ghosal, K.; Chern, R.T.; Freeman, B.D.; Savariar, R. The effect of aryl nitration on gas sorption and permeation in polysulfone. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 657–666. [Google Scholar] [CrossRef]
- Chern, R.T.; Provan, C.N. The effects of aryl-halogenation on the gas permeabilities of poly (phenolphthalein terephthalate) and poly (bisphenol A phthalate). J. Membr. Sci. 1991, 59, 293–304. [Google Scholar] [CrossRef]
- Wang, R.; Cao, C.; Chung, T.S. A critical review on diffusivity and the characterization of diffusivity of 6FDA–6FpDA polyimide membranes for gas separation. J. Membr. Sci. 2002, 198, 259–271. [Google Scholar] [CrossRef]
- Staudt-Bickel, C.; Koros, W.J. Olefin/paraffin gas separations with 6FDA-based polyimide membranes. J. Membr. Sci. 2000, 170, 205–214. [Google Scholar] [CrossRef]
- Smith, Z.P.; Tiwari, R.R.; Dose, M.E.; Gleason, K.L.; Murphy, T.M.; Sanders, D.F.; Gunawan, G.; Robeson, L.M.; Paul, D.R.; Freeman, B.D. Influence of diffusivity and sorption on helium and hydrogen separations in hydrocarbon, silicon, and fluorocarbon-based polymers. Macromolecules 2014, 47, 3170–3184. [Google Scholar] [CrossRef]
Type of Phase | Symbol | Name | Definition/Property |
---|---|---|---|
Pure component i | ρi*, pi*, Ti* | characteristic density, pressure and temperature of pure component i | — |
ri0 | number of lattice sites occupied by a mole of pure component i | ||
vi* | volume occupied by a mole of lattice sites of pure substance | ||
ωi | mass fraction of i | — | |
φi | volume fraction of i | ||
Multicomponent mixtures | ρ* | characteristic density of the mixture | |
p* | characteristic pressure of the mixture | ||
binary parameter | |||
r | molar average number of lattice sites occupied by a molecule in the mixture | ||
T* | characteristic temperature of the mixture | ||
v* | average close-packed mer molar volume in the mixture | ||
total Equation elmholtz free energy | |||
chemical potential of penetrant 1 in the non Equation glass 2 |
Penetrant/Polymer | T* (K) | p* (MPa) | ρ* (g/cm3) | Ref. |
---|---|---|---|---|
PSf | 820 | 560 | 1.318 | [18] |
PPh | 650 | 550 | 1.470 | [26] |
6FDA-6FpDA | 785 | 720 | 1.683 | [21] |
CO2 | 300 | 630 | 1.515 | [18] |
CH4 | 215 | 250 | 0.500 | [48] |
N2 | 145 | 160 | 0.943 | [49] |
He | 9.3 | 4.0 | 0.148 | [50] |
H2 | 4.6 | 37 | 0.078 | [48] |
O2 | 170 | 280 | 1.290 | [51] |
Ar | 190 | 180 | 1.400 | [50] |
C2H4 | 295 | 345 | 0.68 | [49] |
C2H6 | 320 | 330 | 0.640 | [51] |
C3H6 | 345 | 379 | 0.755 | [28] |
C3H8 | 375 | 320 | 0.690 | [51] |
Polymer | Tg (K) | FFV | ρ2 (g/cm3) | Penetrant | Tc (K) | Vc (cm3/mol) |
---|---|---|---|---|---|---|
PSf | 185 | 0.147 | 1.235 | CO2 | 304.2 | 91.9 |
PPh | 299 | 0.162 | 1.291 | CH4 | 190.6 | 98.6 |
6FDA-6FpDA | 287 | 0.175 | 1.485 | N2 | 126.2 | 89.4 |
– | – | – | – | He | 5.19 | 57.5 |
– | – | – | – | H2 | 33.18 | 64.9 |
– | – | – | – | O2 | 154.6 | 73.5 |
– | – | – | – | Ar | 150.8 | 74.6 |
– | – | – | – | C2H4 | 282.5 | 131.0 |
– | – | – | – | C2H6 | 305.3 | 147.0 |
– | – | – | – | C3H6 | 365.2 | 185.9 |
– | – | – | – | C3H8 | 369.9 | 200.0 |
Polymer | Penetrant | k12 | ksw,12 × 104 (atm−1) | Ref. Exp. |
---|---|---|---|---|
PSf | CO2 | 0.013 | 9.5 | [54] |
CH4 | 0.015 | 1.1 | ||
N2 | −0.020 | 0.27 | ||
Ar | 0.045 | 0.53 | ||
He | −0.900 | 0.0 | [60] | |
H2 | −0.400 | 0.0 | ||
O2 | 0.025 | 0.35 | [56] | |
PPh | CO2 | −0.020 | 19 | [57] |
CH4 | −0.005 | 2.3 | ||
N2 | 0.012 | 1.1 | ||
Ar | 0.065 | 1.9 | ||
O2 | 0.050 | 2.4 | ||
C2H6 | 0.010 | 20 | ||
6FDA-6FpDA | CO2 | 0.045 | 20 | [58] |
CH4 | 0.030 | 4.2 | ||
N2 | −0.060 | 0.0 | ||
O2 | 0.015 | 0.0 | ||
C2H4 | 0.030 | 91 | [59] | |
C2H6 | 0.060 | 50 | ||
C3H6 | 0.070 | 66 | ||
C3H8 | 0.100 | 81 |
Polymer | Penetrant | (cm2/s) | β12 | Ref. Exp. |
---|---|---|---|---|
PSf | CO2 | 9.0 × 10−9 | 17.5 | [54] |
CH4 | 2.1 × 10−9 | 0.0 | ||
N2 | 6.4 × 10−9 | 0.0 | ||
Ar | 1.1 × 10−8 | 0.0 | ||
He | 3.4 × 10−6 | 0.0 | ||
H2 | 1.2 × 10−6 | 0.0 | [55] | |
O2 | 3.0 × 10−8 | 0.0 | [56] | |
PPh | CO2 | 1.6 × 10−8 | 17.2 | [57] |
CH4 | 4.7 × 10−9 | 5.0 | ||
N2 | 1.7 × 10−8 | 0.0 | ||
Ar | 2.1 × 10−8 | 0.0 | ||
O2 | 4.9 × 10−8 | 0.0 | ||
C2H6 | 2.0 × 10−10 | 53.5 | ||
6FDA-6FpDA | CO2 | 2.6 × 10−8 | 21.5 | [58] |
CH4 | 5.5 × 10−9 | 6.0 | ||
N2 | 3.1 × 10−8 | 0.0 | ||
O2 | 8.3 × 10−8 | 3.0 | ||
C2H4 | 8.6 × 10−10 | 6.0 | [59] | |
C2H6 | 1.8 × 10−10 | 20.0 | ||
C3H6 | 4.8 × 10−12 | 137 | ||
C3H8 | 1.1 × 10−12 | 110 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minelli, M.; Sarti, G.C. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes. Membranes 2017, 7, 46. https://doi.org/10.3390/membranes7030046
Minelli M, Sarti GC. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes. Membranes. 2017; 7(3):46. https://doi.org/10.3390/membranes7030046
Chicago/Turabian StyleMinelli, Matteo, and Giulio Cesare Sarti. 2017. "Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes" Membranes 7, no. 3: 46. https://doi.org/10.3390/membranes7030046
APA StyleMinelli, M., & Sarti, G. C. (2017). Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes. Membranes, 7(3), 46. https://doi.org/10.3390/membranes7030046