A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Membrane Materials and Surface Modification
Membrane Type | Membrane material | Metal dopant | Pore size (μm) | Inner/outer diameter (mm) | Contact angle (°) | Surface area of tested module (m2) |
---|---|---|---|---|---|---|
CoSi | Silica-based Ceramic | Cobalt | He/N2 gas separation factor 3.0 | 8/10 | – | 0.00740 |
FeSi | Silica-based Ceramic | Iron | He/N2 gas separation factor 5.0 | 8/10 | – | 0.00175 |
PP | Polypropylene | – | 0.2 | 0.25/0.5 | 118° ± 6° | 0.00377 |
2.2. Experimental Setup
3. Theory
3.1. Ammonia/Ammonium Dissociation Reaction
3.2. Transport Mechanism through Molecular Sieve Silica Membrane in Desalination
4. Results and Discussion
4.1. Membrane Characterization
4.2. Performance of Original Silica-based Membranes (with Synthetic Solution)
4.2.1. Permeation Flux versus Feed Temperature
4.2.2. Water/Ammonia Selectivity of Various Membranes
4.3. Performance of the Hydrothermally Treated Silica Membrane
4.3.1. Pure Water Flux
4.3.2. Concentration Factor versus Feed Temperature and Operation Time
5. Conclusions
Nomenclature
A | Membrane permeability constant |
B | Membrane permeability constant |
CoSi | Cobalt coated silica membrane |
FeSi | Iron coated silica membrane |
MW | Molecular weight (g/mol) |
N | Permeation Flux (mol/m2·s) |
Pavg | Average pressure in membrane pore (Pa) |
Psat | Saturation pressure (Pa) |
PP | Polymer membrane |
Pp | Pressure in permeate stream (Pa) |
R | Universal gas constant (m3·Pa/Kmol) |
T | Temperature (K) |
μ | Viscosity (Pa·s) |
Acknowledgments
Conflicts of Interest
References
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; The MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Henze, M. Wastewater Treatment: Biological and Chemical Processes; Springer: Berlin, Germany, 2002. [Google Scholar]
- Paerl, H.W. Cultural eutrophication of shallow coastal waters: Coupling changing anthropogenic nutrient inputs to regional management approaches. Limnol. Ecol. Manag. Inland Waters 1999, 29, 249–254. [Google Scholar] [CrossRef]
- Foss, A.; Imsland, A.K.; Roth, B.; Schram, E.; Stefansson, S.O. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus). Aquaculture 2009, 296, 45–50. [Google Scholar] [CrossRef]
- Owen, W.F. Energy in Wastewater Treatment; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Dinges, R. Natural Systems for Water Pollution Control; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Eckenfelder, W.W. Industrial Water Pollution Control; McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Hermann, H.H.; Rudolf, K. Chemical water and wastewater treatment. In Proceedings of the 4th Gothenburg Symposium 1990, Madrid, Spain, 1–3 October 1990.
- Liao, P.H.; Chen, A.; Lo, K.V. Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol. 1995, 54, 17–20. [Google Scholar] [CrossRef]
- Charcosset, C. A review of membrane processes and renewable energies for desalination. Desalination 2009, 245, 214–231. [Google Scholar] [CrossRef]
- Liu, L.; Li, L.; Ding, Z.; Ma, R.; Yang, Z. Mass transfer enhancement in coiled hollow fiber membrane modules. J. Membr. Sci. 2005, 264, 113–121. [Google Scholar] [CrossRef]
- Hogan, P.A.; Sudjito; Fane, A.G.; Morrison, G.L. Desalination by solar heated membrane distillation. Desalination 1991, 81, 81–90. [Google Scholar] [CrossRef]
- Koschikowski, J.; Wieghaus, M.; Rommel, M. Solar thermal-driven desalination plants based on membrane distillation. Desalination 2003, 156, 295–304. [Google Scholar] [CrossRef]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Criscuoli, A.; Carnevale, M.C.; Drioli, E. Evaluation of energy requirements in membrane distillation. Chem. Eng. Process. Process Intensif. 2008, 47, 1098–1105. [Google Scholar] [CrossRef]
- Mericq, J.P.; Laborie, S.; Cabassud, C. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chem. Eng. J. 2011, 166, 596–606. [Google Scholar] [CrossRef]
- Guan, G.; Wang, R.; Wicaksana, F.; Yang, X.; Fane, A.G. Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation. Ind. Chem. Eng. Res. 2012, 51, 13405–13413. [Google Scholar] [CrossRef]
- Chiam, C.-K.; Sarbatly, R. Vacuum membrane distillation processes for aqueous solution treatment—A review. Chem. Eng. Process. 2013, 74, 27–54. [Google Scholar] [CrossRef]
- EL-Bourawi, M.S.; Khayet, M.; Ma, R.; Ding, Z.; Li, Z.; Zhang, X. Application of vacuum membrane distillation for ammonia removal. J. Membr. Sci. 2007, 301, 200–209. [Google Scholar] [CrossRef]
- Qu, D.; Sun, D.; Wang, H.; Yun, Y. Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination 2013, 326, 135–140. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.-D.; Duke, M.; Xie, Z.; Gray, S. Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement. J. Membr. Sci. 2010, 362, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Kanezashi, M.; Yamamoto, A.; Yoshioka, T.; Tsuru, T. Characteristics of ammonia permeation through porous silica membranes. AIChE J. 2010, 56, 1204–1212. [Google Scholar]
- Hirabayashi, Y. Pervaporation membrane system for the removal of ammonia from water. Mater. Trans. 2002, 43, 1074–1077. [Google Scholar] [CrossRef]
- Duke, M.C.; Mee, S.; Diniz da Costa, J.C. Performance of porous inorganic membranes in non-osmotic desalination. Water Res. 2007, 41, 3998–4004. [Google Scholar] [CrossRef]
- Elma, M.; Yacou, C.; Wang, D.K.; Smart, S.; Diniz da Costa, J.C. Microporous silica based membranes for desalination. Water 2012, 4, 629–649. [Google Scholar] [CrossRef]
- Lin, C.X.C.; Ding, L.P.; Smart, S.; Diniz da Costa, J.C. Cobalt oxide silica membranes for desalination. J. Colloid Interface Sci. 2012, 368, 70–76. [Google Scholar] [CrossRef]
- Yacou, C.; Smart, S.; Diniz da Costa, J.C. Long term performance cobalt oxide silica membrane module for high temperature H2 separation. Energy Environ. Sci. 2012, 5, 5820–5832. [Google Scholar] [CrossRef]
- Bates, R.G.; Pinching, G.D. Acidic dissociation constant of ammonium ion at 0° to 500 °C, and the base strength of ammonia. J. Res. Natl. Bur. Stand. 1949, 42, 419–430. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach; Mcgraw-Hill College: New York, NY, USA, 2011. [Google Scholar]
- Lewis, G.N.; Randall, M. Thermodynamics and the Free Energy of Chemical Substances; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1923. [Google Scholar]
- Sander, R. Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3). Available online: http://www.ceset.unicamp.br/~mariaacm/ST405/Lei%20de%20Henry.pdf (accessed on 11 February 2014).
- Duke, M.C. Scale up and Hydrothermal Stability of Molecular Sieve Silica Membranes. Ph.D. Thesis, University of Queensland, Brisbane, Australia, August 2007. [Google Scholar]
- Zhang, J.; Li, J.-D.; Duke, M.; Hoang, M.; Xie, Z.; Groth, A.; Tun, C.; Gray, S. Influence of module design and membrane compressibility on VMD performance. J. Membr. Sci. 2013, 442, 31–38. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Fane, A.G. Novel designs for improving the performance of hollow fiber membrane distillation modules. J. Membr. Sci. 2011, 384, 52–62. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, X.; Fraser, T.; Myat, D.; Smart, S.; Zhang, J.; Diniz da Costa, J.C.; Liubinas, A.; Duke, M. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes. Membranes 2014, 4, 40-54. https://doi.org/10.3390/membranes4010040
Yang X, Fraser T, Myat D, Smart S, Zhang J, Diniz da Costa JC, Liubinas A, Duke M. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes. Membranes. 2014; 4(1):40-54. https://doi.org/10.3390/membranes4010040
Chicago/Turabian StyleYang, Xing, Thomas Fraser, Darli Myat, Simon Smart, Jianhua Zhang, João C. Diniz da Costa, Audra Liubinas, and Mikel Duke. 2014. "A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes" Membranes 4, no. 1: 40-54. https://doi.org/10.3390/membranes4010040
APA StyleYang, X., Fraser, T., Myat, D., Smart, S., Zhang, J., Diniz da Costa, J. C., Liubinas, A., & Duke, M. (2014). A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes. Membranes, 4(1), 40-54. https://doi.org/10.3390/membranes4010040