Second-Generation Magnesium Phosphates as Water Extractant Agents in Forward Osmosis and Subsequent Use in Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Magnesium Phosphates Used as Draw Solution in Forward Osmosis
2.2. Magnesium Phosphates Dissolution Tests
2.3. Forward Osmosis Dilution Tests
2.4. Hydroponic System
2.4.1. Experimental Setup and Procedure
2.4.2. Nutrient Solutions for Hydroponics
- Experimental cycle no. 1. (1) Commercial fertilizing solution (control) made up of NH4H2PO4 + KNO3 + Ca(NO3)2 + MgSO4; (2) hazenite dissolved with citric acid (HC); (3) hazenite dissolved with nitric acid (HN); and (4) hazenite dissolved with nitric acid and supplemented with KNO3 (1M) to reach NPK levels similar to those of the fertilizing solution (HN+).
- Experimental cycle no. 2. (1) Control; (2) struvite dissolved with nitric acid and supplemented with KNO3 (SN+); (3) HN+; (4) cattiite dissolved with nitric acid and supplemented with KNO3 (CN+).
2.5. Analytical Methods
2.6. Calculations
3. Results and Discussion
3.1. Acid Dissolution of the Magnesium Phosphates
3.2. Water Extraction and Nutrients Dilution with Forward Osmosis
3.2.1. Forward Osmosis Dilution Potential
3.2.2. Total Ion Migration through the Forward Osmosis Membrane
3.2.3. Composition of the Diluted Draw Solution for Its Application in Hydroponics
3.3. Hydroponic System
3.3.1. Experimental Conditions
3.3.2. Plant Growth Analysis
4. Conclusions
- Wastewater-precipitated MgP salts, such as struvite, hazenite and cattiite were almost completely dissolved in water (at dissolution ratios from 28 to 112 g mineral per liter of water) using citric and nitric acids when final pH was set to 3.0.
- FO allowed reaching a dilution level of the DS close to that required for hydroponics and no further dilution was needed. Ion migration across the membrane (from DS to FS) was not limiting since the desired dilution was achieved. Ion migration tended to compensate the charges, involving preferential pairs such as K+-Cl−-Na+, K+-NO3−, and NH4+-NO3−. Even if reverse fluxes were low, ion migration (which is translated in nutrient losses) was medium to high, especially for monovalent ions, which decreases the economic efficiency and feasibility of the FO technology. In this sense, more selective membranes or different DS are required to reduce these fluxes. Considering the target of FO, it could be interesting to dissolve the MgP salts with sulfuric acid, since it is a divalent ion, which will decrease the migration of other ions through the membrane compared with nitric acid, and at the same time the sulphate can be used by plants, since it is a mesonutrient.
- Functional growth of lettuces in a hydroponic system was achieved with the water recovered using FO. The tested conditions with MgP salts supplemented with KNO3 produced plants of comparable weight and leaf area as the control condition, with HN+ being the most stable and having the biggest plants, even when compared to the respective control condition. The Na content in hazenite was shown not to be a problem for plant development. The tested MgP salts were proved as an accurate nutrient supply for plant growth, making these by-products valuable fertilizers.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Communication from The Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of the Regions, Brussels (Belgium). 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:98:FIN (accessed on 10 February 2023).
- van der Kooij, S.; van Vliet, B.J.M.; Stomph, T.J.; Sutton, N.B.; Anten, N.P.R.; Hoffland, E. Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resour. Conserv. Recycl. 2020, 157, 104744. [Google Scholar] [CrossRef]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Manag. 2016, 49, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Rittmann, B.E.; Mayer, B.; Westerhoff, P.; Edwards, M. Capturing the lost phosphorus. Chemosphere 2011, 84, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Sci. Total Environ. 2021, 756, 143726. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Li, J.; Zheng, M.; Zhang, C.; Xie, T.; Wang, C. The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine. Water Res. 2015, 80, 71–79. [Google Scholar] [CrossRef]
- Company, E.; Farrés, M.; Colprim, J.; Magrí, A. Exploring the recovery of potassium-rich struvite after a nitrification-denitrification process in pig slurry treatment. Sci. Total Environ. 2022, 847, 157574. [Google Scholar] [CrossRef] [PubMed]
- Magrí, A.; Carreras-Sempere, M.; Biel, C.; Colprim, J. Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy 2020, 10, 1039. [Google Scholar] [CrossRef]
- World Meteorological Organization. 2021 State of Climate Services (WMO-No. 1278). 2021. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21963#.Y4dQ_PeZOUk (accessed on 10 February 2023).
- Mendoza, E.; Buttiglieri, G.; Blandin, G.; Comas, J. Exploring the limitations of forward osmosis for direct hydroponic fertigation: Impact of ion transfer and fertilizer composition on effective dilution. J. Environ. Manag. 2022, 305, 114339. [Google Scholar] [CrossRef] [PubMed]
- Nematzadeh, M.; Samimi, A.; Mohebbi-Kalhori, D.; Shokrollahzadeh, S.; Bide, Y. Forward osmosis dewatering of seawater and pesticide contaminated effluents using the commercial fertilizers and zinc-nitrate blend draw solutions. Sci. Total Environ. 2022, 820, 153376. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Price, W.E.; McDonald, J.; Khan, S.J.; Fujioka, T.; Nghiem, L.D. New insights into the relationship between draw solution chemistry and trace organic rejection by forward osmosis. J. Membr. Sci. 2019, 587, 117184. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, Y. Treatment of greywater by forward osmosis technology: Role of the operating temperature. Environ. Technol. 2019, 40, 3434–3443. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Luis, P. Forward osmosis: Understanding the hype. Rev. Chem. Eng. 2015, 31, 1–12. [Google Scholar] [CrossRef]
- Kim, Y.; Li, S.; Chekli, L.; Woo, Y.C.; Wei, C.-H.; Phuntsho, S.; Ghaffour, N.; Leiknes, T.O.; Shon, H.K. Assessing the removal of organic micro-pollutants from anaerobic membrane bioreactor effluent by fertilizer-drawn forward osmosis. J. Membr. Sci. 2017, 533, 84–95. [Google Scholar] [CrossRef]
- Sahebi, S.; Sheikhi, M.; Ramavandi, B.; Ahmadi, M.; Zhao, S.; Adeleye, A.S.; Shabani, Z.; Mohammadi, T. Sustainable management of saline oily wastewater via forward osmosis using aquaporin membrane. Process Saf. Environ. Prot. 2020, 138, 199–207. [Google Scholar] [CrossRef]
- Xie, M.; Zheng, M.; Cooper, P.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications. J. Membr. Sci. 2015, 494, 32–38. [Google Scholar] [CrossRef]
- Ismail, A.F.; Padaki, M.; Hilal, N.; Matsuura, T.; Lau, W.J. Thin film composite membrane—Recent development and future potential. Desalination 2015, 356, 140–148. [Google Scholar] [CrossRef]
- Zeng, W.; Yu, M.; Lin, J.; Huang, L.; Li, J.; Lin, S.; Chen, L. Electrospun chitosan nanofiber constructing super-high-water-flux forward osmosis membrane. Int. J. Biol. Macromol. 2023, 226, 833–839. [Google Scholar] [CrossRef]
- Yuan, H.; Hao, R.; Sun, H.; Zeng, W.; Lin, J.; Lu, S.; Yu, M.; Lin, S.; Li, J.; Chen, L. Engineered Janus cellulose membrane with the asymmetric-pore structure for the superhigh-water flux desalination. Carbohydr. Polym. 2022, 291, 119601. [Google Scholar] [CrossRef] [PubMed]
- Kochanov, R.Z.; Sairam, M.; Livingston, A.G. Cellulose acetate forward osmosis membranes—Effect of membrane chemistry on FO performance. Proc. Eng. 2012, 44, 258–260. [Google Scholar] [CrossRef]
- Carreras-Sempere, M.; Caceres, R.; Viñas, M.; Biel, C. Use of recovered struvite and ammonium nitrate in fertigation in tomato (Lycopersicum esculentum) production for boosting circular and sustainable horticulture. Agriculture 2021, 11, 1063. [Google Scholar] [CrossRef]
- Aquaporin Inside® HFFO.6 Module. Datasheet. Available online: https://aquaporin.com/wp-content/uploads/2020/05/Aquaporin-HFFO.6-Datasheet_May-2020.pdf (accessed on 10 February 2023).
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 8th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Fischer, S.; Wilckens, R.; Vidal, I.; Astete, P.; Maier, J. Respuesta de la achicoria (Cichorium intybus L.) a la aplicación de magnesio. Chil. J. Agric. Anim. Sci. 2016, 32, 3–11. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless culture of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Noumedem, J.; Djeussi, D.; Hritcu, L.; Mihasan, M.; Kuete, V. Lactuca sativa. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: London, UK, 2017. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Growing Plants without Soil by the Water-Culture Method. Circ. Calif. Agric. Exp. Stn. 1938, 347. [Google Scholar]
- Hewitt, E.J. Sand and Water Culture Methods Used in the Study of Plant Nutrition. J. Assoc. Off. Anal. Chem. 1952, 49, 888–889. [Google Scholar]
- Cooper, A. The ABC of NFT: Nutrient Film Technique; Grower Books: Hillcrest, Australia, 1979. [Google Scholar]
- Steiner, A.A. The Universal Nutrient Solution. In Proceedings of the 6th International Congress on Soilless Culture, Wageningen, The Netherlands, 29 April–5 May 1984; pp. 633–650. [Google Scholar]
- Blandin, G.; Rosselló, B.; Monsalvo, V.M.; Batlle-Vilanova, P.; Viñas, J.M.; Rogalla, F.; Comas, J. Volatile fatty acids concentration in real wastewater by forward osmosis. J. Membr. Sci. 2019, 575, 60–70. [Google Scholar] [CrossRef]
- Blandin, G.; Galizia, A.; Monclús, H.; Lesage, G.; Héran, M.; Martinez-Lladó, X. Submerged osmotic processes: Design and operation of hollow fiber forward osmosis modules. Desalination 2021, 518, 115281. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Eregno, F.E.; Moges, M.E.; Heistad, A. Treated greywater reuse for hydroponic lettuce production in a green wall system: Quantitative health risk assessment. Water 2017, 9, 454. [Google Scholar] [CrossRef]
- Gent, M.P.N. Effect of temperature on composition of hydroponic lettuce. Acta Hortic. 2016, 1123, 95–100. [Google Scholar] [CrossRef]
- Mirshekar, L.; Kamarehie, B.; Jafari, A.; Ghaderpoori, M.; Karami, M.A.; Sahebi, S. Performance evaluation of aquaporin forward osmosis membrane using chemical fertilizers as a draw solution. Environ. Prog. Sustain. Energy 2021, 40, e13536. [Google Scholar] [CrossRef]
- Qiu, G.; Wong, G.K.W.; Ting, Y.-P. Electrostatic interaction governed solute transport in forward osmosis. Water Res. 2020, 173, 115590. [Google Scholar] [CrossRef]
- Lotfi, F.; Phuntsho, S.; Majeed, T.; Kim, K.; Han, D.S.; Abdel-Wahab, A.; Shon, H.K. Thin film composite hollow fibre forward osmosis membrane module for the desalination of brackish groundwater for fertigation. Desalination 2015, 364, 108–118. [Google Scholar] [CrossRef]
- Minier-Matar, J.; Santos, A.; Hussain, A.; Janson, A.; Wang, R.; Fane, A.G.; Adham, S. Application of hollow fiber forward osmosis membranes for produced and process water volume reduction: An osmotic concentration process. Environ. Sci. Technol. 2016, 50, 6044–6052. [Google Scholar] [CrossRef]
- Roy, D.; Rahni, M.; Pierre, P.; Yargeau, V. Forward osmosis for the concentration and reuse of process saline wastewater. Chem. Eng. J. 2016, 287, 277–284. [Google Scholar] [CrossRef]
- Gulied, M.; Al Momani, F.; Khraisheh, M.; Bhosale, R.; AlNouss, A. Influence of draw solution type and properties on the performance of forward osmosis process: Energy consumption and sustainable water reuse. Chemosphere 2019, 233, 234–244. [Google Scholar] [CrossRef]
- Hancock, N.T.; Cath, T.Y. Solute coupled diffusion in osmotically driven membrane processes. Environ. Sci. Technol. 2009, 43, 6769–6775. [Google Scholar] [CrossRef]
- Sbardella, L.; Blandin, G.; Fàbregas, A.; Real Real, J.C.; Serra Clusellas, A.; Ferrari, F.; Bosch, C.; Martinez-Lladó, X. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate. Chem. Eng. J. 2022, 434, 134448. [Google Scholar] [CrossRef]
- Zou, S.; He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 2016, 99, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Chekli, L.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.O.; Shon, H.K. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. J. Environ. Manag. 2017, 187, 137–145. [Google Scholar] [CrossRef]
- Phuntsho, S.; Shon, H.K.; Majeed, T.; El Saliby, I.; Vigneswaran, S.; Kandasamy, J.; Hong, S.; Lee, S. Blended fertilizers as draw solutions for the fertilizer-drawn forward osmosis desalination. Environ. Sci. Technol. 2012, 46, 4567–4575. [Google Scholar] [CrossRef] [PubMed]
- Chekli, L.; Kim, J.E.; El Saliby, I.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.O.; Shon, H.K. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution. Sep. Purif. Technol. 2017, 181, 18–28. [Google Scholar] [CrossRef]
- Sahebi, S.; Phuntsho, S.; Kim, J.E.; Hong, S.; Shon, H.K. Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium. J. Membr. Sci. 2015, 481, 63–72. [Google Scholar] [CrossRef]
- da Silva Cuba Carvalho, R.; Bastos, R.G.; Souza, C.F. Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agric. Water Manag. 2018, 203, 311–321. [Google Scholar] [CrossRef]
- Gent, M.P.N. Factors affecting relative growth rate of lettuce and spinach in hydroponics in a greenhouse. HortScience 2017, 52, 1742–1747. [Google Scholar] [CrossRef]
- Saure, M.C. Causes of the tipburn disorder in leaves of vegetables. Sci. Hortic. 1998, 76, 131–147. [Google Scholar] [CrossRef]
- Misaghi, I.J.; Grogan, R.G. Physiological basis for tipburn development in head lettuce. Phytopathology 1978, 68, 1744–1753. [Google Scholar] [CrossRef]
Name | Empirical Formula | Molecular Weight (g/mol) | P Content (wt%) | Mg/P Molar Ratio |
---|---|---|---|---|
Struvite (magnesium ammonium phosphate, MAP) | MgNH4PO4·6H2O | 245 | 12.6 | 1.00 |
K-struvite (magnesium potassium phosphate, MPP) | MgKPO4·6H2O | 266 | 11.6 | 1.00 |
Na-struvite (magnesium sodium phosphate, MSP) | MgNaPO4·7H2O | 268 | 11.5 | 1.00 |
K,Na-struvite (hazenite) | Mg2KNa(PO4)2·14H2O | 553 | 11.2 | 1.00 |
Newberyite (magnesium hydrogen phosphate trihydrate) | MgHPO4·3H2O | 174 | 17.8 | 1.00 |
Bobierrite (trimagnesium phosphate octahydrate) | Mg3(PO4)2·8H2O | 407 | 15.2 | 1.50 |
Cattiite (trimagnesium phosphate twenty-two hydrate) | Mg3(PO4)2·22H2O | 659 | 9.4 | 1.50 |
Macronutrients | Mesonutrients | |||||
---|---|---|---|---|---|---|
N | P | K | Mg | Ca | S | Reference |
210 | 31 | 234 | 34 | 160 | 64 | [31] |
168 | 41 | 156 | 36 | 160 | 48 | [32] |
200–236 | 60 | 300 | 50 | 170–185 | 68 | [33] |
168 | 31 | 273 | 48 | 180 | 336 | [34] |
Ref. | XRD—Dominant Mineral Phase | EA & ICP—Composition (wt%) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | ||
S (MgP1) | Struvite | 5.3 | 11.5 | 0.0 | 0.9 | 9.4 | 0.2 |
H (MgP2) | Hazenite (w/Newberyite) | 0.7 | 17.1 | 8.0 | 0.4 | 11.7 | 6.0 |
C (MgP3) | Cattiite | 0.0 | 10.9 | 0.1 | 1.1 | 10.0 | 0.1 |
Experimental Cycle No. 1 | Experimental Cycle No. 2 | |||||||
---|---|---|---|---|---|---|---|---|
Control | HC | HN | HN+ | Control | SN+ | HN+ | CN+ | |
NH4+-N | 23 | 0 | 0 | 0 | 25 | 43 | 0 | 0 |
NO3−-N | 168 | 0 | 33 | 105 | 156 | 145 | 124 | 153 |
PO43−-P | 36 | 83 | 76 | 67 | 37 | 118 | 66 | 89 |
K+ | 187 | 41 | 20 | 153 | 189 | 182 | 250 | 202 |
Mg2+ | 38 | 81 | 68 | 57 | 38 | 85 | 56 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, E.; Magrí, A.; Blandin, G.; Bayo, À.; Vosse, J.; Buttiglieri, G.; Colprim, J.; Comas, J. Second-Generation Magnesium Phosphates as Water Extractant Agents in Forward Osmosis and Subsequent Use in Hydroponics. Membranes 2023, 13, 226. https://doi.org/10.3390/membranes13020226
Mendoza E, Magrí A, Blandin G, Bayo À, Vosse J, Buttiglieri G, Colprim J, Comas J. Second-Generation Magnesium Phosphates as Water Extractant Agents in Forward Osmosis and Subsequent Use in Hydroponics. Membranes. 2023; 13(2):226. https://doi.org/10.3390/membranes13020226
Chicago/Turabian StyleMendoza, Esther, Albert Magrí, Gaëtan Blandin, Àlex Bayo, Josephine Vosse, Gianluigi Buttiglieri, Jesús Colprim, and Joaquim Comas. 2023. "Second-Generation Magnesium Phosphates as Water Extractant Agents in Forward Osmosis and Subsequent Use in Hydroponics" Membranes 13, no. 2: 226. https://doi.org/10.3390/membranes13020226
APA StyleMendoza, E., Magrí, A., Blandin, G., Bayo, À., Vosse, J., Buttiglieri, G., Colprim, J., & Comas, J. (2023). Second-Generation Magnesium Phosphates as Water Extractant Agents in Forward Osmosis and Subsequent Use in Hydroponics. Membranes, 13(2), 226. https://doi.org/10.3390/membranes13020226