Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equations
2.2. Experimental Setup
2.3. Economic Analysis
3. Results
3.1. Experimental Results
3.2. Results of Economic Analysis
3.3. Full-Scale Plant Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malikh, A.; Qureshi, S.R.; Abbas, N.; Zaidi, A.A. Energy and exergy analyses of a solar desalination plant for Karachi Pakistan. Sustain. Energy Technol. Assess. 2020, 37, 100596. [Google Scholar] [CrossRef]
- Shoukat, G.; Idrees, H.; Sajid, M.; Ali, S.; Ayaz, Y.; Nawaz, R.; Ansari, A.R. Numerical analysis of permeate flux in reverse osmosis by varying strand geometry. Sci. Rep. 2022, 12, 16636. [Google Scholar] [CrossRef] [PubMed]
- Al-Shammiri, M.; Safar, M. Multi-effect distillation plants: State of the art. Desalination 1999, 126, 45–59. [Google Scholar] [CrossRef]
- Toth, A.J. Modelling and optimisation of multi-stage flash distillation and reverse osmosis for desalination of saline process wastewater sources. Membranes 2020, 10, 265. [Google Scholar] [CrossRef]
- Bin, L.; Ling, C.; Tianyin, L.; Sajid, M. Distilled Water Production by Vacuum Heat Pump. Desalination Water Treat. 2018, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [Google Scholar] [CrossRef]
- Curcio, E.; Drioli, E. Membrane distillation and related operations—A review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- Ji, Z.; Zhao, Y.; Zhang, M.; Li, X.; Li, H. Surface Modification of ETFE Membrane and PTFE Membrane by Atmospheric DBD Plasma. Membranes 2022, 12, 510. [Google Scholar] [CrossRef]
- Piao, J.; Li, K.; Zhang, Y.; Zhang, L. Design of Laser Photothermal Conversion Membranes Based on Fluorinated Graphene. Membranes 2022, 12, 135. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mahariq, I.; Murshid, N.; Wongwises, S.; Mahian, O.; Alhuyi Nazari, M. Applying wind energy as a clean source for reverse osmosis desalination: A comprehensive review. Alex. Eng. J. 2022, 61, 12977–12989. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Shi, L.; Fane, A.G.; Debowski, M. Performance improvement of PVDF hollow fiber-based membrane distillation process. J. Memb. Sci. 2011, 369, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Memb. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Yadav, A.; Patel, R.V.; Singh, C.P.; Labhasetwar, P.K.; Shahi, V.K. Experimental study and numerical optimization for removal of methyl orange using polytetrafluoroethylene membranes in vacuum membrane distillation process. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128070. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Memb. Sci. 2003, 212, 177–193. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, Z.; Wang, R.; Poredoš, P. Distributed vacuum membrane distillation driven by direct-solar heating at ultra-low temperature. Energy 2022, 239, 121891. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.L.; Hou, L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015, 356, 1–14. [Google Scholar] [CrossRef]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. J. Memb. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N. Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 2008, 220, 566–573. [Google Scholar] [CrossRef]
- Ali, M.I.; Summers, E.K.; Arafat, H.A.; Lienhard, V.J.H. Effects of membrane properties on water production cost in small scale membrane distillation systems. Desalination 2012, 306, 60–71. [Google Scholar] [CrossRef]
- Kullab, A.; Martin, A. Membrane distillation and applications for water purification in thermal cogeneration plants. Sep. Purif. Technol. 2011, 76, 231–237. [Google Scholar] [CrossRef]
- Meindersma, G.W.; Guijt, C.M.; de Haan, A.B. Desalination and water recycling by air gap membrane distillation. Desalination 2006, 187, 291–301. [Google Scholar] [CrossRef]
- Sarbatly, R.; Chiam, C.K. Evaluation of geothermal energy in desalination by vacuum membrane distillation. Appl. Energy 2013, 112, 737–746. [Google Scholar] [CrossRef]
- Naidu, G.; Choi, Y.; Jeong, S.; Hwang, T.M.; Vigneswaran, S. Experiments and modeling of a vacuum membrane distillation for high saline water. J. Ind. Eng. Chem. 2014, 20, 2174–2183. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Cheng, L.H.; Xu, X.; Chen, H. Concentration of lignocellulosic hydrolyzates by solar membrane distillation. Bioresour. Technol. 2012, 123, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Cha-Umpong, W.; Hou, J.; Ji, C.; Chen, V. Open-source industrial-scale module simulation: Paving the way towards the right configuration choice for membrane distillation. Desalination 2019, 464, 48–62. [Google Scholar] [CrossRef]
- HongJin, J.; HeeYoul, K. Experimental study on the thermal performance characteristics of hollow-fiber vacuum membrane distillation module. Desalination Water Treat. 2017, 90, 1–6. [Google Scholar]
- Zhao, K.; Heinzl, W.; Wenzel, M.; Büttner, S.; Bollen, F.; Lange, G.; Heinzl, S.; Sarda, N. Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module. Desalination 2013, 323, 150–160. [Google Scholar] [CrossRef]
- Minier-Matar, J.; Hussain, A.; Janson, A.; Benyahia, F.; Adham, S. Field evaluation of membrane distillation technologies for desalination of highly saline brines. Desalination 2014, 351, 101–108. [Google Scholar] [CrossRef]
- Loganathan, P.; Naidu, G.; Vigneswaran, S. Mining valuable minerals from seawater: A critical review. Environ. Sci. 2017, 3, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Bardi, U. Extracting Minerals from Seawater: An Energy Analysis. Environ. Sci. 2010, 2, 980–992. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Liu, L.; El-Bourawi, M.S.; Ma, R. Analysis of a solar-powered membrane distillation system. Desalination 2005, 172, 27–40. [Google Scholar] [CrossRef]
- Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.-C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Memb. Sci. 2011, 379, 386–396. [Google Scholar] [CrossRef]
- Rotunno, P.; Lanzini, A. Leone, Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renew. Energy 2017, 102, 417–432. [Google Scholar] [CrossRef]
- White, R.; Navarro-Pineda, F.S.; Cockerill, T.; Dupont, V.; Rivero, J.C.S. Techno-Economic and Life Cycle Impacts Analysis of Direct Methanation of Glycerol to Bio-Synthetic Natural Gas at a Biodiesel Refinery. Energies 2019, 12, 678. [Google Scholar] [CrossRef] [Green Version]
- Biniaz, P.; Ardekani, N.T.; Makarem, M.A.; Rahimpour, M.R. Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). ChemEngineering 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Peters Max, S.; Klaus, D.T. Plant Design and Economics for Chemical Engineers; McGraw-Hill International: Columbus, OH, USA, 2018. [Google Scholar]
- Tariff Guide. Available online: https://iesco.com.pk/index.php/customer-services/tariff-guide (accessed on 8 February 2023).
Property | Specification |
---|---|
Material | PTFE |
Dimensions (Length × Width) | 250 mm × 200 mm |
Thickness | 165 µm |
Effective Area | 0.0336 m2 |
Porosity | 70–75% |
Pore size | 0.2 µm |
Parameters | Variation | Value |
---|---|---|
Concentration, M | C1 | 0.25 |
C2 | 0.5 | |
C3 | 0.75 | |
Pressure, kPa | P1 | 30 |
P2 | 20 | |
Velocity, m/s | V1 | 3.48 |
V2 | 5.22 | |
Temperature, K | T1 | 333 |
T2 | 343 | |
T3 | 353 |
Component | Cost ($) | |
---|---|---|
Capital Cost | Membrane | $36/m2 |
Feedwater Pump | 25 $ | |
Vacuum Pump | 26 $ | |
Installation cost of VMD | Installation Cost | 25% of Total Equipment Cost |
Instrumentation and Control Cost | 25% of Total Equipment Cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrees, H.; Ali, S.; Sajid, M.; Rashid, M.; Khawaja, F.I.; Ali, Z.; Anwar, M.N. Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination. Membranes 2023, 13, 339. https://doi.org/10.3390/membranes13030339
Idrees H, Ali S, Sajid M, Rashid M, Khawaja FI, Ali Z, Anwar MN. Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination. Membranes. 2023; 13(3):339. https://doi.org/10.3390/membranes13030339
Chicago/Turabian StyleIdrees, Hassaan, Sara Ali, Muhammad Sajid, Muhammad Rashid, Fahad Iqbal Khawaja, Zaib Ali, and Muhammad Nabeel Anwar. 2023. "Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination" Membranes 13, no. 3: 339. https://doi.org/10.3390/membranes13030339
APA StyleIdrees, H., Ali, S., Sajid, M., Rashid, M., Khawaja, F. I., Ali, Z., & Anwar, M. N. (2023). Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination. Membranes, 13(3), 339. https://doi.org/10.3390/membranes13030339