Simultaneous Carbamazepine and Phosphate Removal from a Moving-Bed Membrane Bioreactor Effluent by the Electrochemical Process: Treatment Optimization by Factorial Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.1.1. Moving Bed Membrane Bioreactor System
2.1.2. Electrochemical System
2.2. Chemicals and Synthetic Wastewater
2.3. Analytical Methods
2.4. Design of Experiments and Optimization
3. Results and Discussion
3.1. Carbamazepine Removal in MBMBR
3.2. Biological Removal Efficiencies in MBMBR
3.3. Optimization of the EC Process
3.3.1. Preliminary Investigations
3.3.2. Design of Experiments by Factorial Design (FD)
3.3.3. Analysis of Variance (ANOVA)
3.3.4. Main and Interaction Effects
3.3.5. Normal Probability Plot of Residuals
3.3.6. Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A. Occurrence of Drugs in German Sewage Treatment Plants and Rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, E.; Perrodin, Y.; Keck, G.; Blanchard, J.-M.; Vermande, P. Ecotoxicological Risk Assessment of Hospital Wastewater: A Proposed Framework for Raw Effluents Discharging into Urban Sewer Network. J. Hazard. Mater. 2005, 117, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Erlandsson, B.; Mattsson, S. Medically Used Radionuclides in Sewage Sludge. Water Air Soil Pollut. 1978, 9, 199–206. [Google Scholar] [CrossRef]
- Halling-Sørensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Lützhøft, H.H.; Jørgensen, S.E. Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. Chemosphere 1998, 36, 357–393. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Kim, Y.; Park, J.; Park, C.K.; Kim, M.; Kim, H.S.; Kim, P. Seasonal Variations of Several Pharmaceutical Residues in Surface Water and Sewage Treatment Plants of Han River, Korea. Sci. Total Environ. 2008, 405, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Miao, X.-S.; Metcalfe, C.D. Determination of Carbamazepine and Its Metabolites in Aqueous Samples Using Liquid Chromatography− Electrospray Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 3731–3738. [Google Scholar] [CrossRef]
- Molinari, R.; Pirillo, F.; Loddo, V.; Palmisano, L. Heterogeneous Photocatalytic Degradation of Pharmaceuticals in Water by Using Polycrystalline TiO2 and a Nanofiltration Membrane Reactor. Catal. Today 2006, 118, 205–213. [Google Scholar] [CrossRef]
- Melin, T.; Jefferson, B.; Bixio, D.; Thoeye, C.; De Wilde, W.; De Koning, J.; Van der Graaf, J.; Wintgens, T. Membrane Bioreactor Technology for Wastewater Treatment and Reuse. Desalination 2006, 187, 271–282. [Google Scholar] [CrossRef]
- Ahmed, F.N.; Lan, C.Q. Treatment of Landfill Leachate Using Membrane Bioreactors: A Review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Boonnorat, J.; Chiemchaisri, C.; Chiemchaisri, W.; Yamamoto, K. Microbial Adaptation to Biodegrade Toxic Organic Micro-Pollutants in Membrane Bioreactor Using Different Sludge Sources. Bioresour. Technol. 2014, 165, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the Technological Approaches for Grey Water Treatment and Reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Ødegaard, H. Innovations in Wastewater Treatment:–The Moving Bed Biofilm Process. Water Sci. Technol. 2006, 53, 17–33. [Google Scholar] [CrossRef]
- Mannina, G.; Di Trapani, D.; Viviani, G.; Ødegaard, H. Modelling and Dynamic Simulation of Hybrid Moving Bed Biofilm Reactors: Model Concepts and Application to a Pilot Plant. Biochem. Eng. J. 2011, 56, 23–36. [Google Scholar] [CrossRef]
- Hou, H.; Mengting, Z.; Duan, L.; Zhao, Y.; Zhang, Z.; Yao, M.; Zhou, B.; Zhang, H.; Hermanowicz, S.W. Removal Performance and Biodegradation Mechanism of Sulfonamides Antibiotic Contained Wastewater by IFAS-MBR Bioreactor. J. Mol. Liq. 2022, 367, 120572. [Google Scholar] [CrossRef]
- Hou, H.; Duan, L.; Zhou, B.; Tian, Y.; Wei, J.; Qian, F. The Performance and Degradation Mechanism of Sulfamethazine from Wastewater Using IFAS-MBR. Chin. Chem. Lett. 2020, 31, 543–546. [Google Scholar] [CrossRef]
- Leiknes, T.; Ødegaard, H. The Development of a Biofilm Membrane Bioreactor. Desalination 2007, 202, 135–143. [Google Scholar] [CrossRef]
- Watanabe, Y.; Masuda, S.; Ishiguro, M. Simultaneous Nitrification and Denitrification in Micro-Aerobic Biofilms. Water Sci. Technol. 1992, 26, 511–522. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Huitle, C.A.; Ferro, S. Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes. Chem. Soc. Rev. 2006, 35, 1324–1340. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, E.B.; Garcia-Segura, S.; Centellas, F.; Brillas, E. Electrochemical Incineration of Omeprazole in Neutral Aqueous Medium Using a Platinum or Boron-Doped Diamond Anode: Degradation Kinetics and Oxidation Products. Water Res. 2013, 47, 1803–1815. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; Palo, P.; Sánchez-Martín, J.; Rodrigo, M.A.; Sáez, C. Electrochemical Degradation of a Real Pharmaceutical Effluent. Water Air Soil Pollut. 2012, 223, 2685–2694. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Oturan, N.; Brillas, E.; Buisson, D.; Esposito, G.; Oturan, M.A. Electrochemical Advanced Oxidation for Cold Incineration of the Pharmaceutical Ranitidine: Mineralization Pathway and Toxicity Evolution. Chemosphere 2014, 117, 644–651. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sedlak, D.L. Technology Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef]
- García-Gómez, C.; Drogui, P.; Zaviska, F.; Seyhi, B.; Gortáres-Moroyoqui, P.; Buelna, G.; Neira-Sáenz, C.; Estrada-Alvarado, M.; Ulloa-Mercado, R.G. Experimental Design Methodology Applied to Electrochemical Oxidation of Carbamazepine Using Ti/PbO2 and Ti/BDD Electrodes. J. Electroanal. Chem. 2014, 732, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Mijaylova-Nacheva, P.; Avilés-Flores, M. Electrochemical Carbamazepine Degradation: Effect of the Generated Active Chlorine, Transformation Pathways and Toxicity. Chemosphere 2018, 192, 142–151. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical Technologies in Wastewater Treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Wang, Y.; Kuntke, P.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J.; Lei, Y. Electrochemically Mediated Precipitation of Phosphate Minerals for Phosphorus Removal and Recovery: Progress and Perspective. Water Res. 2022, 209, 117891. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Song, B.; van der Weijden, R.D.; Saakes, M.; Buisman, C.J. Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local PH. Environ. Sci. Technol. 2017, 51, 11156–11164. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Song, B.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J. Interaction of Calcium, Phosphorus and Natural Organic Matter in Electrochemical Recovery of Phosphate. Water Res. 2018, 142, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gorni-Pinkesfeld, O.; Shemer, H.; Hasson, D.; Semiat, R. Electrochemical Removal of Phosphate Ions from Treated Wastewater. Ind. Eng. Chem. Res. 2013, 52, 13795–13800. [Google Scholar] [CrossRef]
- American Public Health Association APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Weatherburn, M.W. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Yang, S.; Yang, F.; Fu, Z.; Lei, R. Comparison between a Moving Bed Membrane Bioreactor and a Conventional Membrane Bioreactor on Organic Carbon and Nitrogen Removal. Bioresour. Technol. 2009, 100, 2369–2374. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 1-119-11347-4. [Google Scholar]
- Brasil, J.L.; Martins, L.C.; Ev, R.R.; Dupont, J.; Dias, S.L.; Sales, J.A.; Airoldi, C.; Lima, É.C. Factorial Design for Optimization of Flow-Injection Preconcentration Procedure for Copper (II) Determination in Natural Waters, Using 2-Aminomethylpyridine Grafted Silica Gel as Adsorbent and Spectrophotometric Detection. Int. J. Environ. Anal. Chem. 2005, 85, 475–491. [Google Scholar] [CrossRef]
- Arenas, L.T.; Lima, E.C.; dos Santos Jr, A.A.; Vaghetti, J.C.; Costa, T.M.; Benvenutti, E.V. Use of Statistical Design of Experiments to Evaluate the Sorption Capacity of 1, 4-Diazoniabicycle [2.2. 2] Octane/Silica Chloride for Cr (VI) Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 240–248. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Piché-Choquette, S.; Drogui, P.; Tyagi, R.D.; Vaudreuil, M.A.; Sauvé, S.; Buelna, G.; Dubé, R. Dynamics of Bacterial Community at Varying Sludge Retention Time within Membrane Bioreactor Treating Synthetic Hospital Wastewater. Syst. Microbiol. Biomanuf. 2021, 1, 471–482. [Google Scholar] [CrossRef]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of Pharmaceuticals in Sewage Treatment Plants in Finland. Water Res. 2007, 41, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Hai, F.I.; Zhang, R.; Kang, J.; Price, W.E.; Nghiem, L.D. Bacterial Community Dynamics in an Anoxic-Aerobic Membrane Bioreactor–Impact on Nutrient and Trace Organic Contaminant Removal. Int. Biodeterior. Biodegrad. 2016, 109, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hai, F.I.; Tadkaew, N.; Gilbertson, S.; Nghiem, L.D. Strategies to Enhance the Removal of the Persistent Pharmaceutically Active Compound Carbamazepine by Membrane Bioreactors. Desalin. Water Treat. 2011, 34, 402–407. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Jiang, Q.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Price, W.E.; Wang, J.; Guo, W. Evaluation of Micropollutant Removal and Fouling Reduction in a Hybrid Moving Bed Biofilm Reactor–Membrane Bioreactor System. Bioresour. Technol. 2015, 191, 355–359. [Google Scholar] [CrossRef]
- Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Walha, K.; Salvadó, V.; Monclús, H. Triclosan, Carbamazepine and Caffeine Removal by Activated Sludge System Focusing on Membrane Bioreactor. Process Saf. Environ. Prot. 2018, 118, 1–9. [Google Scholar] [CrossRef]
- Fernandez-Fontaina, E.; Pinho, I.; Carballa, M.; Omil, F.; Lema, J.M. Biodegradation Kinetic Constants and Sorption Coefficients of Micropollutants in Membrane Bioreactors. Biodegradation 2013, 24, 165–177. [Google Scholar] [CrossRef]
- De la Torre, T.; Alonso, E.; Santos, J.L.; Rodríguez, C.; Gómez, M.A.; Malfeito, J.J. Trace Organics Removal Using Three Membrane Bioreactor Configurations: MBR, IFAS-MBR and MBMBR. Water Sci. Technol. 2015, 71, 761–768. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. The Fate of Pharmaceuticals, Steroid Hormones, Phytoestrogens, UV-Filters and Pesticides during MBR Treatment. Bioresour. Technol. 2013, 144, 247–254. [Google Scholar] [CrossRef]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of Trace Organics by MBR Treatment: The Role of Molecular Properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Díaz, J.C.; Calderón, K.; Rodríguez, F.A.; González-López, J.; Hontoria, E.; Poyatos, J.M. Comparative Kinetic Study between Moving Bed Biofilm Reactor-Membrane Bioreactor and Membrane Bioreactor Systems and Their Influence on Organic Matter and Nutrients Removal. Biochem. Eng. J. 2013, 77, 28–40. [Google Scholar] [CrossRef]
- Marrot, B.; Barrios-Martinez, A.; Moulin, P.; Roche, N. Biodegradation of High Phenol Concentration by Activated Sludge in an Immersed Membrane Bioreactor. Biochem. Eng. J. 2006, 30, 174–183. [Google Scholar] [CrossRef]
- Battistoni, P.; Fatone, F.; Bolzonella, D.; Pavan, P. Full Scale Application of the Coupled Alternate Cycles-Membrane Bioreactor (AC-MBR) Process for Wastewater Reclamation and Reuse. Water Pract. Technol. 2006, 1, wpt2006077. [Google Scholar] [CrossRef]
- Vera, L.; Villarroel-Lopez, R.; Delgado, S.; Elmaleh, S. Cross-Flow Microfiltration of Biologically Treated Wastewater. Desalination 1997, 114, 65–75. [Google Scholar] [CrossRef]
- Yi, X.S.; Shi, W.X.; Yu, S.L.; Li, X.H.; Sun, N.; He, C. Factorial Design Applied to Flux Decline of Anionic Polyacrylamide Removal from Water by Modified Polyvinylidene Fluoride Ultrafiltration Membranes. Desalination 2011, 274, 7–12. [Google Scholar] [CrossRef]
- Seyed Shahabadi, S.M.; Reyhani, A. Optimization of Operating Conditions in Ultrafiltration Process for Produced Water Treatment via the Full Factorial Design Methodology. Sep. Purif. Technol. 2014, 132, 50–61. [Google Scholar] [CrossRef]
- Lei, Y.; Geraets, E.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J. Electrochemical Removal of Phosphate in the Presence of Calcium at Low Current Density: Precipitation or Adsorption? Water Res. 2020, 169, 115207. [Google Scholar] [CrossRef]
- Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0-08-099419-9. [Google Scholar]
- Gottipati, R.; Mishra, S. Process Optimization of Adsorption of Cr(VI) on Activated Carbons Prepared from Plant Precursors by a Two-Level Full Factorial Design. Chem. Eng. J. 2010, 160, 99–107. [Google Scholar] [CrossRef]
Component | Concentration |
---|---|
Meat extract | 82.5 |
Peptone | 120 |
NH4Cl | 143.2 |
NaCl | 5.25 |
CaCl2·2H2O | 3 |
MgSO4·7H2O | 1.5 |
CuCl2·2H2O | 0.03 |
K2HPO4·3H2O | 84 |
C6H12O6 | 187.5 |
NaHCO3 | 825 |
Factor | Name | Units | Range and Level | |
---|---|---|---|---|
−1 | +1 | |||
A | Reaction time | Mins | 30 | 150 |
B | Bias potential | V | 1 | 3 |
C | Electrode distance | cm | 1 | 3 |
Factor | Factor 2 | Factor 3 | CBZ Removal | Phosphate Removal | |||||
---|---|---|---|---|---|---|---|---|---|
Run | A | B | C | Actual | Predicted | Residual | Actual | Predicted | Residual |
1 | 30 | 1 | 1 | 5.62 | 6.20 | −0.58 | 15.71 | 15.29 | 0.42 |
2 | 150 | 1 | 1 | 7.59 | 8.88 | −1.29 | 55.88 | 58.30 | −2.42 |
3 | 150 | 3 | 1 | 75.57 | 77.60 | −2.03 | 100 | 100 | 0 |
4 | 30 | 3 | 3 | 25.18 | 30.26 | −5.08 | 72.86 | 77.01 | −4.15 |
5 | 30 | 3 | 3 | 30.51 | 30.26 | 0.25 | 81.68 | 77.01 | 4.67 |
6 | 150 | 1 | 3 | 2.32 | 4.69 | −2.37 | 32.31 | 30.51 | 1.80 |
7 | 30 | 1 | 3 | 2.22 | 1.63 | 0.59 | 10.17 | 9.09 | 1.08 |
8 | 30 | 1 | 1 | 4.61 | 6.20 | −1.59 | 17.93 | 15.29 | 2.64 |
9 | 150 | 3 | 1 | 77.08 | 77.60 | −0.52 | 100 | 100 | 0 |
10 | 150 | 1 | 1 | 10.35 | 8.88 | 1.47 | 57.66 | 58.30 | −0.64 |
11 | 150 | 3 | 3 | 56.71 | 56.33 | 0.38 | 100 | 100 | 0 |
12 | 150 | 3 | 3 | 57.65 | 56.33 | 1.32 | 100 | 100 | 0 |
13 | 30 | 3 | 1 | 40.54 | 40.51 | 0.03 | 92.71 | 93.06 | −0.35 |
14 | 150 | 3 | 3 | 54.62 | 56.33 | −1.71 | 100 | 100 | 0 |
15 | 30 | 1 | 3 | 2.15 | 1.63 | 0.52 | 9.42 | 9.09 | 0.33 |
16 | 30 | 1 | 1 | 8.38 | 6.20 | 2.18 | 12.22 | 15.29 | −3.07 |
17 | 150 | 1 | 3 | 8.22 | 4.69 | 3.53 | 28.81 | 30.51 | −1.70 |
18 | 150 | 3 | 1 | 80.15 | 77.60 | 2.55 | 100 | 100 | 0 |
19 | 150 | 1 | 3 | 3.53 | 4.69 | −1.16 | 30.41 | 30.51 | −0.10 |
20 | 30 | 3 | 3 | 35.09 | 30.26 | 4.83 | 76.50 | 77.01 | −0.51 |
21 | 150 | 1 | 1 | 8.71 | 8.88 | −0.17 | 61.35 | 58.30 | 3.05 |
22 | 30 | 3 | 1 | 38.48 | 40.51 | −2.03 | 93.23 | 93.06 | 0.17 |
23 | 30 | 3 | 1 | 42.52 | 40.51 | 2.01 | 93.24 | 93.06 | 0.18 |
24 | 30 | 1 | 3 | 0.52 | 1.63 | −1.11 | 7.68 | 9.09 | −1.41 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|
Model | 16,508.91 | 7 | 2358.42 | 356.63 | <0.0001 | significant | |
A-Reaction time | 1779.86 | 1 | 1779.86 | 269.14 | <0.0001 | ||
B-Bias | 12,598.67 | 1 | 12598.67 | 1905.12 | <0.0001 | ||
CBZ removal | C-Electrode distance | 608.83 | 1 | 608.83 | 92.07 | <0.0001 | |
AB | 1236.11 | 1 | 1236.11 | 186.92 | <0.0001 | ||
AC | 42.45 | 1 | 42.45 | 6.42 | 0.0221 | ||
BC | 194.26 | 1 | 194.26 | 29.37 | <0.0001 | ||
ABC | 48.73 | 1 | 48.73 | 7.37 | 0.0153 | ||
Pure Error | 105.81 | 16 | 6.61 | ||||
Cor Total | 16,614.72 | 23 | |||||
Std. dev. | 2.57 | R2 | 0.9936 | ||||
Mean | 28.26 | Adjusted R2 | 0.9908 | ||||
Model | 30,134.29 | 7 | 4304.90 | 850.16 | <0.0001 | significant | |
A-Reaction time | 3338.69 | 1 | 3338.69 | 659.35 | <0.0001 | ||
Phosphate removal | B-Bias | 24,747.18 | 1 | 24,747.18 | 4887.25 | <0.0001 | |
C-Electrode distance | 938.63 | 1 | 938.63 | 185.37 | <0.0001 | ||
AB | 446.43 | 1 | 446.43 | 88.16 | <0.0001 | ||
AC | 11.52 | 1 | 11.52 | 2.28 | 0.1509 | ||
BC | 120.65 | 1 | 120.65 | 23.83 | 0.0002 | ||
ABC | 531.19 | 1 | 531.19 | 104.90 | <0.0001 | ||
Pure Error | 81.02 | 16 | 5.06 | ||||
Cor Total | 30,215.31 | 23 | |||||
Std. dev. | 2.25 | R2 | 0.9973 | ||||
Mean | 60.41 | Adjusted R2 | 0.9961 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, K.-C.; Tsai, Y.-P.; Yang, C.-C.; Chen, K.-F. Simultaneous Carbamazepine and Phosphate Removal from a Moving-Bed Membrane Bioreactor Effluent by the Electrochemical Process: Treatment Optimization by Factorial Design. Membranes 2022, 12, 1256. https://doi.org/10.3390/membranes12121256
Dao K-C, Tsai Y-P, Yang C-C, Chen K-F. Simultaneous Carbamazepine and Phosphate Removal from a Moving-Bed Membrane Bioreactor Effluent by the Electrochemical Process: Treatment Optimization by Factorial Design. Membranes. 2022; 12(12):1256. https://doi.org/10.3390/membranes12121256
Chicago/Turabian StyleDao, Khanh-Chau, Yung-Pin Tsai, Chih-Chi Yang, and Ku-Fan Chen. 2022. "Simultaneous Carbamazepine and Phosphate Removal from a Moving-Bed Membrane Bioreactor Effluent by the Electrochemical Process: Treatment Optimization by Factorial Design" Membranes 12, no. 12: 1256. https://doi.org/10.3390/membranes12121256
APA StyleDao, K.-C., Tsai, Y.-P., Yang, C.-C., & Chen, K.-F. (2022). Simultaneous Carbamazepine and Phosphate Removal from a Moving-Bed Membrane Bioreactor Effluent by the Electrochemical Process: Treatment Optimization by Factorial Design. Membranes, 12(12), 1256. https://doi.org/10.3390/membranes12121256