Chitosan Membranes for Direct Methanol Fuel Cell Applications
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesises of SiO2 Nanoparticles
- (i)
- Sol-gel Process
- (ii)
- Stober Process
2.3. Sulfonation Process
2.4. Fabrication of Composite Membranes (Casting Method)
3. Characterization Techniques
3.1. Water Uptake
3.2. Ion Exchange Capacity (IEC)
3.3. Methanol Permeability
3.4. Brunauer-Emmett-Teller (BET) Measurements
3.5. X-ray Powder Diffraction Analysis (XRD)
4. Results and Discussion
4.1. Fourier Transform Infrared for Chitosan Membranes
4.2. X-ray Diffraction of Chitosan Membranes
4.3. SEM of Chitosan Membranes
4.4. Water Uptake of Chitosan Membranes
- (i)
- Effect of Silica Content on Water Uptake
- (ii)
- Effect of Temperature on Water Uptake
4.5. Ion Exchange Capacity of Chitosan Membranes
4.6. Proton Conductivity of Chitosan Membranes
4.7. Methanol Permeability of Chitosan Membranes
4.8. Tensile Strength of Chitosan Membranes
4.9. Oxidation Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bayrak, Z.U.; Gencoglu, M.T. Application areas of fuel cells. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013; IEEE Computer Society: Washington, DC, USA, 2013; pp. 452–457. [Google Scholar] [CrossRef]
- Kasyanova, A.V.; Zvonareva, I.A.; Tarasova, N.A.; Bi, L.; Medvedev, D.A.; Shao, Z. Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions. Mater. Rep. Energy 2022, 2, 100158. [Google Scholar] [CrossRef]
- Halim, F.; Hasran, U.; Masdar, M.; Kamarudin, S.; Daud, W. Overview on Vapor Feed Direct Methanol Fuel Cell. APCBEE Procedia 2012, 3, 40–45. [Google Scholar] [CrossRef]
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process. 2013, 1, 16. [Google Scholar] [CrossRef]
- Kadirkhan, F.; Goh, P.S.; Ismail, A.F.; Wan Mustapa, W.N.F.; Halim, M.H.M.; Soh, W.K.; Yeo, S.Y. Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes 2022, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Kujawski, W.; Fatyeyeva, K.; Kujawa, J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). Int. J. Mol. Sci. 2021, 22, 5430. [Google Scholar] [CrossRef] [PubMed]
- Qussay, R.; Mahmood, M.; Al-Zaidi, M.K.; Al-Khafaji, R.Q.; Al-Zubaidy, D.K.; Salman, M.M. A Review: Fuel Cells Types and their Applications. Int. J. Sci. Eng. Appl. Sci. 2021, 7, 2395–3470. Available online: https://www.ijseas.com (accessed on 27 May 2023).
- Ramadhani, F.; Hussain, M.A.; Mokhlis, H. A comprehensive review and technical guideline for optimal design and opera-tions of fuel cell-based cogeneration systems. Processes 2019, 7, 950. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Alanazi, A.; Vichare, P.; Sayed, E.T.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Novel Trends in Proton Exchange Membrane Fuel Cells. Energies 2022, 15, 4949. [Google Scholar] [CrossRef]
- Ohashi, M. Direct Methanol Fuel Cell as the Next Generation Power Source. Available online: https://www.fujikura.co.jp/eng/rd/gihou/backnumber/pages/__icsFiles/afieldfile/2013/05/23/42e_29.pdf (accessed on 27 May 2023).
- Baruah, B.; Deb, P. Performance and application of carbon-based electrocatalysts in direct methanol fuel cell. Mater. Adv. 2021, 2, 5344–5364. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Al Labadidi, M.; Hamada, A.T.; Orhan, M.F. Design and Utilization of a Direct Methanol Fuel Cell. Membranes 2022, 12, 1266. [Google Scholar] [CrossRef] [PubMed]
- Baquero, L.; Moiz, M.; Labib, M. Off-Grid Photovoltaic System with Battery Storage and Direct Methanol Fuel Cell as a Back-Up; University of Oldenburg: Oldenburg, Germany, 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Chou, C.-J.; Jiang, S.-B.; Yeh, T.-L.; Tsai, L.-D.; Kang, K.-Y.; Liu, C.-J. A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications. Energies 2020, 13, 3547. [Google Scholar] [CrossRef]
- Goor, M.; Menkin, S.; Peled, E. High power direct methanol fuel cell for mobility and portable applications. Int. J. Hydrogen Energy 2019, 44, 3138–3143. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Achmad, F.; Daud, W.R.W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 2009, 34, 6902–6916. [Google Scholar] [CrossRef]
- Ghouse, M. Fuel Cells and Their Applications; Energy Research Institute King Abdulaziz City for Science and Technology (KACST): Riyadh, Saudi Arabia, 2012. [Google Scholar] [CrossRef]
- Sari, A.K.; Yunus, R.M.; Majlan, E.H.; Loh, K.S.; Wong, W.Y.; Saidin, N.U.; Alva, S.; Khaerudini, D.S. Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane. Membranes 2023, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Szijjártó, G.P.; Tompos, A. Insights into the Influence of Different Pre-Treatments on Physicochemical Properties of Nafion XL Membrane and Fuel Cell Performance. Polymers 2022, 14, 3385. [Google Scholar] [CrossRef]
- Sherazi, T.A.; Guiver, M.D.; Kingston, D.; Ahmad, S.; Kashmiri, M.A.; Xue, X. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells. J. Power Sources 2010, 195, 21–29. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, H.; Jeong, Y.-G.; Choi, C.; Hwang, I.; Song, S.; Nam, S.Y.; Lee, J.H.; Kim, K. Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Int. J. Mol. Sci. 2022, 23, 14252. [Google Scholar] [CrossRef]
- Chowdury, S.K.; Cho, Y.J.; Park, S.B.; Park, Y.-I. Review—Functionalized Graphene Oxide Membranes as Electrolytes. J. Electrochem. Soc. 2023, 170, 033503. [Google Scholar] [CrossRef]
- Adiyar, S.R.; Satriyatama, A.; Azjuba, A.N.; Sari, N.K.A.K. An overview of synthetic polymer-based membrane modified with chitosan for direct methanol fuel cell application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1143, 012002. [Google Scholar] [CrossRef]
- Fatullayeva, S.; Tagiyev, D.; Zeynalov, N.; Mammadova, S.; Aliyeva, E. Recent advances of chitosan-based polymers in bio-medical applications and environmental protection. J. Polym. Res. 2022, 29, 259. [Google Scholar] [CrossRef]
- Junoh, H.; Jaafar, J.; Nordin, N.A.H.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yusof, N. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. Membranes 2020, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Sigwadi, R.A.; Mokrain, T.; Msomi, P.; Nemavhola, F. The effect of sulfated zirconia and zirconium phosphate nanocomposite membranes on fuel cell efficiency. Polymers 2022, 14, 263. [Google Scholar] [CrossRef]
- Peyrovi, M.H.; Parizi, M.A. The Modification of the BET Surface Area by Considering the Excluded Area of Adsorbed Molecules. Phys. Chem. Res. 2022, 10, 173–177. [Google Scholar]
- Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2018, 2. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2014, 45, 289–299. [Google Scholar] [CrossRef]
- Lee, E.-J.; Shin, D.-S.; Kim, H.-E.; Kim, H.-W.; Koh, Y.-H.; Jang, J.-H. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 2009, 30, 743–750. [Google Scholar] [CrossRef]
- Nur, Y.; Rohaeti, E.; Darusman, L.K. Optical sensor for the determination of Pb2+ based on immobilization of dithizone onto Chitosan-Silica membrane. Indones. J. Chem. 2017, 17, 7–14. [Google Scholar] [CrossRef]
- Diaconu, M. Structural characterization of chitosan coated silicon nanoparticles -A FT-IR approach. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2010, 72, 115–122. [Google Scholar]
- Purwanto, M.; Widiastuti, N.; Saga, B.H.; Gusmawan, H. Synthesis of Composite Membrane Based Biopolymer Chitosan with Silica from Rice Husk Ash for Direct Methanol Fuel Cell Application. IOP Conf. Ser. Earth Environ. Sci. 2021, 830, 012021. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q. Preparation and Properties of Hydrophobically Modified Nano-SiO2with Hexadecyltrimethoxysilane. ACS Omega 2021, 6, 9764–9770. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Fu, Y.; Manthiram, A. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells. Polymers 2012, 4, 1627–1644. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, H.; He, Y.; Liu, J.; Zhang, B.; Wang, J. Enhanced proton conduction of chitosan membrane enabled by hal-loysite nanotubes bearing sulfonate polyelectrolyte brushes. J. Memb. Sci. 2014, 454, 220–232. [Google Scholar] [CrossRef]
- Kusumastuti Widasari, T.S.; Widhi Mahatmati, F. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes. AIP Conf. Proc. 2016, 1725, 020037. [Google Scholar]
- Lue, S.J.; Pai, Y.-L.; Shih, C.-M.; Wu, M.-C.; Lai, S.-M. Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells. J. Membr. Sci. 2015, 493, 212–223. [Google Scholar] [CrossRef]
- Mahatmanti, F.W.; Nuryono, N.; Narsito, N. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol. Indones. J. Chem. 2014, 14, 131–137. [Google Scholar] [CrossRef]
- Lim, C.; Hwang, D.S.; Lee, D.W. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydr. Polym. 2021, 259, 117782. [Google Scholar] [CrossRef]
- Sami, R.; Soltane, S.; Helal, M. Microscopic Image Segmentation and Morphological Characterization of Novel Chitosan/Silica Nanoparticle/Nisin Films Using Antimicrobial Technique for Blueberry Preservation. Membranes 2021, 11, 303. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Li, B.; Elango, J.; Wu, W. Recent advancement of molecular structure and biomaterial function of chitosan from marine or-ganisms for pharmaceutical and nutraceutical application. Appl. Sci. 2020, 10, 30–50. [Google Scholar]
- Khamaruddin, P.F.; Bustam, M.A.; Omar, A.A. Using Fenton’s Reagents for the Degradation of Diisopropanolamine: Effect of Temperature and pH. In Proceedings of the 2011 International Conference on Environment and Industrial Innovation IPCBEE, Kuala Lumpur, Malaysia, 4–5 June 2011; IACSIT Press: Singapore, 2011. [Google Scholar]
- He, B.; Xu, G.; Zhou, M.; Yuan, Q. Effect of Oxidation Temperature on the Oxidation Process of Silicon-Containing Steel. Metals 2016, 6, 137. [Google Scholar] [CrossRef]
- Pellis, A.; Guebitz, G.M.; Nyanhongo, G.S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modau, L.; Sigwadi, R.; Mokrani, T.; Nemavhola, F. Chitosan Membranes for Direct Methanol Fuel Cell Applications. Membranes 2023, 13, 838. https://doi.org/10.3390/membranes13100838
Modau L, Sigwadi R, Mokrani T, Nemavhola F. Chitosan Membranes for Direct Methanol Fuel Cell Applications. Membranes. 2023; 13(10):838. https://doi.org/10.3390/membranes13100838
Chicago/Turabian StyleModau, Livhuwani, Rudzani Sigwadi, Touhami Mokrani, and Fulufhelo Nemavhola. 2023. "Chitosan Membranes for Direct Methanol Fuel Cell Applications" Membranes 13, no. 10: 838. https://doi.org/10.3390/membranes13100838
APA StyleModau, L., Sigwadi, R., Mokrani, T., & Nemavhola, F. (2023). Chitosan Membranes for Direct Methanol Fuel Cell Applications. Membranes, 13(10), 838. https://doi.org/10.3390/membranes13100838