Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Phosphorylated Nata de Cassava Membrane (NdC)
2.3. Morphology Characterization
2.4. XRD Analysis
2.5. Proton Conductivity
- = proton conductivity
- t = membrane length
- A = membrane surface area
- R = ionic resistance
2.6. Ion Exchange Capacity (IEC)
2.7. Contact Angle and Water Uptake
2.8. Dynamic Mechanical Analysis (DMA)
2.9. Single-Cell Performance
3. Results
3.1. Morphology Characterization
3.2. XRD Analysis
3.3. Ion Exchange Capacity, Proton Conductivity, and Contact Angle of Phosphorylated NdC
3.4. DMA of Phosphorylated NdC
3.5. MEA and Single Cell Performance of Phosphorylated NdC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.J.; Kaplan, D.L. Biopolymer Nanofibrils: Structure, Modeling, Preparation, and Applications. Prog. Polym. Sci. 2018, 85, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.; Huang, F.; Jiang, M.; Wei, W.; Zhou, Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy Built Environ. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Lupescu, I.; Frone, A.N.; Chiulan, I.; Nicolae, C.A.; Tofan, V.; Stefaniu, A.; Somoghi, R.; Trusca, R. Medium Chain-Length Polyhydroxyalkanoate Copolymer Modified by Bacterial Cellulose for Medical Devices. Biomacromolecules 2017, 18, 3222–3232. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem.-Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Mohite, B.V.; Patil, S.V. A Novel Biomaterial: Bacterial Cellulose & Its New Era Applications. Biotechnol. Appl. Biochem 2014, 61, 101–110. [Google Scholar]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Khalid, M.; Wan Daud, W.R.; Lim, K.L.; Walvekar, R. Influences of Crosslinked Carboxylic Acid Monomers on the Proton Conduction Characteristics of Chitosan/SPVA Composite Membranes. Polymer (Guildf.) 2020, 203, 122782. [Google Scholar] [CrossRef]
- Brown, J.J. XLIII.—On an acetic ferment which forms cellulose. J. Chem. Soc. Trans. 1886, 49, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Mohite, B.V.; Patil, S.V. Physical, Structural, Mechanical and Thermal Characterization of Bacterial Cellulose by G. Hansenii NCIM 2529. Carbohydr. Polym. 2014, 106, 132–141. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, E.; Yang, J.; Zhou, P.; Sun, D.; Tang, W. Bacterial Cellulose Nano Fiber-Supported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes. J. Phys. Chem. C 2012, 116, 13013–13019. [Google Scholar] [CrossRef]
- Shao, W.; Wu, J.; Liu, H.; Ye, S.; Jiang, L.; Liu, X. Novel Bioactive Surface Functionalization of Bacterial Cellulose Membrane. Carbohydr. Polym. 2017, 178, 270–276. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.; Bao, Z.; Hu, M.; Nian, R.; Feng, D.; An, D.; Li, X.; Xian, M.; Zhang, H. A Natural in Situ Fabrication Method of Functional Bacterial Cellulose Using a Microorganism. Nat. Commun. 2019, 10, 437. [Google Scholar] [CrossRef] [PubMed]
- Clasen, C.; Sultanova, B.; Wilhelms, T.; Heisig, P.; Kulicke, W.M. Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromol. Symp. 2006, 244, 48–58. [Google Scholar] [CrossRef]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of Bacterial Cellulose Composites: A Multipurpose Advanced Material. Carbohydr. Polym. 2013, 98, 1585–1598. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Guo, L.; Zheng, S.; Feng, Y.; Zhang, T.; Yang, Z.; Yuan, Q.; Shen, G.; Zhang, Z. Synthesis of Bacterial Cellulose Based SnO2-Pyy Nanocomposites as Potential Flexible, Highly Conductive Material. Mater. Lett. 2019, 253, 372–376. [Google Scholar] [CrossRef]
- Luo, H.; Xie, J.; Xiong, L.; Zhu, Y.; Yang, Z.; Wan, Y. Fabrication of Flexible, Ultra-Strong, and Highly Conductive Bacterial Cellulose-Based Paper by Engineering Dispersion of Graphene Nanosheets. Compos. Part B Eng. 2019, 162, 484–490. [Google Scholar] [CrossRef]
- Hosseini, H.; Teymouri, M.; Saboor, S.; Khalili, A.; Goodarzi, V.; Poudineh Hajipoor, F.; Khonakdar, H.A.; Shojaei, S.; Asefnejad, A.; Bagheri, H. Challenge between Sequence Presences of Conductive Additives on Flexibility, Dielectric and Supercapacitance Behaviors of Nanofibrillated Template of Bacterial Cellulose Aerogels. Eur. Polym. J. 2019, 115, 335–345. [Google Scholar] [CrossRef]
- Sheng, N.; Chen, S.; Yao, J.; Guan, F.; Zhang, M.; Wang, B.; Wu, Z.; Ji, P.; Wang, H. Polypyrrole@TEMPO-Oxidized Bacterial Cellulose/Reduced Graphene Oxide Macrofibers for Flexible All-Solid-State Supercapacitors. Chem. Eng. J. 2019, 368, 1022–1032. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, S.W. Modification and Characterization of Bacterial Cellulose Biopolymer as Proton Conducting Membrane. Proc. World Acad. Sci. Eng. Technol. (No. 65) 2012, 6, 424–428. [Google Scholar]
- Vilela, C.; Silva, A.C.Q.; Domingues, E.M.; Gonçalves, G.; Martins, M.A.; Figueiredo, F.M.L.; Santos, S.A.O.; Freire, C.S.R. Conductive Polysaccharides-Based Proton-Exchange Membranes for Fuel Cell Applications: The Case of Bacterial Cellulose and Fucoidan. Carbohydr. Polym. 2020, 230, 115604. [Google Scholar] [CrossRef]
- Gadim, T.D.O.; Loureiro, F.J.A.; Vilela, C.; Rosero-Navarro, N.; Silvestre, A.J.D.; Freire, C.S.R.; Figueiredo, F.M.L. Protonic Conductivity and Fuel Cell Tests of Nanocomposite Membranes Based on Bacterial Cellulose. Electrochim. Acta 2017, 233, 52–61. [Google Scholar] [CrossRef]
- Naumi, F.; Hendrana, S.; Fadlinatin, N.; Natanael, C.L.; Iman, R.; Lucia, I.; Sunit, H. Polymer Electrolyte Membrane Fuel Cell Based on Sulfonated Polystyrene and Phosphoric Acid with Biocellulose as a Matrix Riset Unggulan LIPI View Project Development Membrane for Fuelcell View Project Polymer Electrolyte Membrane Fuel Cell Based on Sulfonated Polystyrene and Phosphoric Acid with Biocellulose as a Matrix. Res. J. Chem. Environ. 2018, 22, 289–293. [Google Scholar]
- Sari, A.K.; Majlan, E.H.; Loh, K.S.; Wong, W.Y.; Alva, S.; Khaerudini, D.S.; Yunus, R.M. Effect of Acid Treatments on Thermal Properties of Bacterial Cellulose Produced from Cassava Liquid Waste. Mater. Today Proc. 2022, 57, 1174–1178. [Google Scholar] [CrossRef]
- Menéndez, J.C. Microwave Assisted Organic Synthesis. Synthesis (Stuttg.) 2006, 2006, 186. [Google Scholar] [CrossRef]
- Zeng, M.; Laromaine, A.; Roig, A. Bacterial Cellulose Films: Influence of Bacterial Strain and Drying Route on Film Properties. Cellulose 2014, 21, 4455–4469. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.P.; Zhang, J.; Qiao, J.L.; Jiang, Y.M.; Zarrin, H.; Chen, Z.; Hong, F. Bacterial Nanocellulose/Nafion Composite Membranes for Low Temperature Polymer Electrolyte Fuel Cells. J. Power Sources 2015, 273, 697–706. [Google Scholar] [CrossRef]
- Yue, L.; Xie, Y.; Zheng, Y.; He, W.; Guo, S.; Sun, Y.; Zhang, T.; Liu, S. Sulfonated Bacterial Cellulose/Polyaniline Composite Membrane for use as Gel Polymer Electrolyte. Compos. Sci. Technol. 2017, 145, 122–131. [Google Scholar] [CrossRef]
- Hadid, M.; Noukrati, H.; Ben youcef, H.; Barroug, A.; Sehaqui, H. Phosphorylated Cellulose for Water Purification: A Promising Material with Outstanding Adsorption Capacity towards Methylene Blue. Cellulose 2021, 28, 7893–7908. [Google Scholar] [CrossRef]
- Barud, H.S.; Ribeiro, C.A.; Crespi, M.S.; Martines, M.A.U.; Dexpert-Ghys, J.; Marques, R.F.C.; Messaddeq, Y.; Ribeiro, S.J.L. Thermal Characterization of Bacterial Cellulose-Phosphate Composite Membranes. J. Therm. Anal. Calorim. 2007, 87, 815–818. [Google Scholar] [CrossRef]
- Wu, H.; Hou, W.; Wang, J.; Xiao, L.; Jiang, Z. Preparation and Properties of Hybrid Direct Methanol Fuel Cell Membranes by Embedding Organophosphorylated Titania Submicrospheres into a Chitosan Polymer Matrix. J. Power Sources 2010, 195, 4104–4113. [Google Scholar] [CrossRef]
- Rosli, N.A.H.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Ahmad, A. Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane. Membranes 2021, 11, 675. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Ramya, K.; Khalid, M.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Walvekar, R.; Kadhum, A.A.H. Additives in Proton Exchange Membranes for Low- and High-Temperature Fuel Cell Applications: A Review. Int. J. Hydrogen Energy 2019, 44, 6116–6135. [Google Scholar] [CrossRef]
- Branco, C.M.; El-kharouf, A.; Du, S. Materials for Polymer Electrolyte Membrane Fuel Cells (PEMFCs): Electrolyte Membrane, Gas Diffusion Layers, and Bipolar Plates; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780128035818. [Google Scholar]
- Rosli, N.A.H.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Ahmad, A. Phosphorylated Chitosan/Poly(Vinyl Alcohol) Based Proton Exchange Membranes Modified with Propylammonium Nitrate Ionic Liquid and Silica Filler for Fuel Cell Applications. Int. J. Hydrogen Energy 2022, 47, 19217–19236. [Google Scholar] [CrossRef]
- Menard, K.P. Dynamic Mechanical Analysis. Encycl. Polym. Sci. Technol. 2004, 9, 563. [Google Scholar] [CrossRef]
- Menard, K.P.; Bilyeu, B.W. Dynamic Mechanical Analysis of Polymers and Rubbers. Encycl. Anal. Chem. 2008, 1–25. [Google Scholar] [CrossRef]
- Sukyai, P.; Sriroth, K.; Lee, B.H.; Kim, H.J. The Effect of Bacterial Cellulose on the Mechanical and Thermal Expansion Properties of Kenaf/Polylactic Acid Composites. Appl. Mech. Mater. 2012, 117–119, 1343–1351. [Google Scholar] [CrossRef]
- Antolini, E. Formation, Microstructural Characteristics and Stability of Carbon Supported Platinum Catalysts for Low Temperature Fuel Cells. J. Mater. Sci. 2003, 38, 2995–3005. [Google Scholar] [CrossRef]
- Radiman, C.L.; Rifathin, A. Preparation of Phosphorylated Nata-de-Coco for Polymer Electrolyte Membrane Applications. J. Appl. Polym. Sci. 2013, 130, 399–405. [Google Scholar] [CrossRef]
- Selyanchyn, O.; Selyanchyn, R.; Lyth, S.M. A Review of Proton Conductivity in Cellulosic Materials. Front. Energy Res. 2020, 8, 596164. [Google Scholar] [CrossRef]
- Vijayalekshmi, V.; Khastgir, D. Eco-Friendly Methanesulfonic Acid and Sodium Salt of Dodecylbenzene Sulfonic Acid Doped Cross-Linked Chitosan Based Green Polymer Electrolyte Membranes for Fuel Cell Applications. J. Memb. Sci. 2017, 523, 45–59. [Google Scholar] [CrossRef]
NdC Membranes | Fiber Size (nm) |
---|---|
Pure NdC | 67.5 |
10 mmol H3PO4 | 69.1 |
20 mmol H3PO4 | 93.0 |
30 mmol H3PO4 | 106.5 |
40 mmol H3PO4 | 117.2 |
50 mmol H3PO4 | 120.5 |
60 mmol H3PO4 | 415.4 |
Temperature (°C) | Conductivity (S cm−1) |
---|---|
25 | 7.1 × 10−2 |
40 | 7.3 × 10−2 |
80 | 7.9 × 10−2 |
120 | 6.4 × 10−4 |
200 | 8.4 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartika Sari, A.; Mohamad Yunus, R.; Majlan, E.H.; Loh, K.S.; Wong, W.Y.; Saidin, N.U.; Alva, S.; Khaerudini, D.S. Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane. Membranes 2023, 13, 43. https://doi.org/10.3390/membranes13010043
Kartika Sari A, Mohamad Yunus R, Majlan EH, Loh KS, Wong WY, Saidin NU, Alva S, Khaerudini DS. Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane. Membranes. 2023; 13(1):43. https://doi.org/10.3390/membranes13010043
Chicago/Turabian StyleKartika Sari, Andarany, Rozan Mohamad Yunus, Edy Herianto Majlan, Kee Shyuan Loh, Wai Yin Wong, Nur Ubaidah Saidin, Sagir Alva, and Deni Shidqi Khaerudini. 2023. "Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane" Membranes 13, no. 1: 43. https://doi.org/10.3390/membranes13010043
APA StyleKartika Sari, A., Mohamad Yunus, R., Majlan, E. H., Loh, K. S., Wong, W. Y., Saidin, N. U., Alva, S., & Khaerudini, D. S. (2023). Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane. Membranes, 13(1), 43. https://doi.org/10.3390/membranes13010043