Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles
Abstract
:1. Introduction
- alkaline carriers—organic compounds whose nature corresponds to Lewis bases; they form ionic pairs with metal ions. This group includes quaternary ammonium [42,43,44] and phosphonium salts [33,43], tertiary amines [44,45], pyridine and pyridine derivatives [6,46,47], and alkyl imidazole derivatives [8,27,48];
- inert carriers—capable of forming an inert complex with metal ions in the organic phase by replacing the water molecules in the metal aqua complex with their own molecules, which are more lyophilic. The group of these transporters includes such compounds as phosphoric acid esters [49,50] and phosphinic acid esters [51].
2. Materials and Methods
2.1. Materials
2.2. Procedure
3. Results and Discussion
3.1. Membrane Characterization
3.2. Membrane Transport
3.3. Complexation Mechanism
3.4. Diffusion of Metal Ions across PIMs
3.5. Transport Recovery
3.6. Comparison of the Results with Previously Tested Alkyl Imidazole Derivatives
4. Conclusions
- An increase in the initial fluxes of Cu(II) ions and a decrease in the initial fluxes of Zn(II), Co(II), and Ni(II) ions, up to a complete disappearance of the flux of Ni(II) ions when using 2-butylimidazole,
- An increase in the separation coefficients of Cu(II) ions relative to those of other metals. The highest separation coefficient values for Cu(II)/Zn(II) and Cu(II)/Co(II) are 2.6, 6.9 (membrane 4), and in the case of Cu(II)/Ni(II), 182 (membrane 3), respectively.
- A decrease in the recovery efficiency of each metal. Cu(II), Zn(II), Co(II), and Ni(II) recovery is the highest for the membrane with carrier 1 (2-methylimidazole) and amounts to 95.5%, 88.8%, 66.7%, and 14.1%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, M.I.; Cattrall, R.W.; Kolev, S.D. Polymer Inclusion Membranes: Concept and Applications. Procedia Eng. 2012, 44, 681–682. [Google Scholar] [CrossRef] [Green Version]
- Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R. Applicability of Membrane Technologies for the Removal of Heavy Metals. Desalination 2006, 200, 272–273. [Google Scholar] [CrossRef]
- Keskin, B.; Zeytuncu-Gökoğlu, B.; Koyuncu, I. Polymer Inclusion Membrane Applications for Transport of Metal Ions: A Critical Review. Chemosphere 2021, 279, 130604. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Lee, S.M.; Wang, R.; Lee, J. Emerging Materials to Prepare Mixed Matrix Membranes for Pollutant Removal in Water. Membranes 2021, 11, 508. [Google Scholar] [CrossRef]
- Kislik, V.S. Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-444-53218-3. [Google Scholar]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent Trends in Extraction and Transport of Metal Ions Using Polymer Inclusion Membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nitti, F.; Almeida, M.I.G.S.; Kolev, S.D. Water Monitoring Using Polymer Inclusion Membranes: A Review. Environ. Chem. Lett. 2020, 18, 129–150. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Selective Transport of Cu(II) across a Polymer Inclusion Membrane with 1-Alkylimidazole from Nitrate Solutions. Sep. Sci. Technol. 2012, 47, 1113–1118. [Google Scholar] [CrossRef]
- Palanivelu, K.; Kavitha, N. Recovery of Copper(II) through Polymer Inclusion Membrane with Di (2-Ethylhexyl) Phosphoric Acid as Carrier from e-Waste. J. Membr. Sci. 2012, 415–416, 663–669. [Google Scholar] [CrossRef]
- Pyszka, I.; Radzyminska-Lenarcik, E. New Polymer Inclusion Membrane in the Separation of Nonferrous Metal Ion from Aqueous Solutions. Membranes 2020, 10, 385. [Google Scholar] [CrossRef]
- Yıldız, Y.; Manzak, A.; Tutkun, O. Selective Extraction of Cobalt Ions through Polymer Inclusion Membrane Containing Aliquat 336 as a Carrier. Desalination Water Treat. 2016, 57, 4616–4623. [Google Scholar] [CrossRef]
- Zulkefeli, N.S.W.; Weng, S.K.; Abdul Halim, N.S. Removal of Heavy Metals by Polymer Inclusion Membranes. Curr. Pollut. Rep. 2018, 4, 84–92. [Google Scholar] [CrossRef]
- Macías, M.; Miguel, E. Optimization of Ni(II) Facilitated Transport from Aqueous Solutions Using a Polymer Inclusion Membrane. Water. Air. Soil Pollut. 2021, 232, 62. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Chen, J.; Liu, Q.; Zeng, H. New Insights into the Interfacial Behavior and Swelling of Polymer Inclusion Membrane (PIM) during Zn(II) Extraction Process. Chem. Eng. Sci. 2020, 220, 115620. [Google Scholar] [CrossRef]
- Baczyńska, M.; Waszak, M.; Nowicki, M.; Prządka, D.; Borysiak, S.; Regel-Rosocka, M. Characterization of Polymer Inclusion Membranes (PIMs) Containing Phosphonium Ionic Liquids as Zn (II) Carriers. Ind. Eng. Chem. Res. 2018, 57, 5070–5082. [Google Scholar] [CrossRef]
- Witt, K.; Radzyminska-Lenarcik, E.; Kosciuszko, A.; Gierszewska, M.; Ziuziakowski, K. The Influence of the Morphology and Mechanical Properties of Polymer Inclusion Membranes (PIMs) on Zinc Ion Separation from Aqueous Solutions. Polymers 2018, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konczyk, J.; Ciesielski, W. Calixresorcin (4) Arene-Mediated Transport of Pb (II) Ions through Polymer Inclusion Membrane. Membranes 2021, 11, 285. [Google Scholar] [CrossRef]
- Sgarlata, C.; Arena, G.; Longo, E.; Zhang, D.; Yang, Y.; Bartsch, R. Heavy Metal Separation with Polymer Inclusion Membranes. J. Membr. Sci. 2008, 323, 444–451. [Google Scholar] [CrossRef]
- Kebiche-Senhadji, O.; Mansouri, L.; Tingry, S.; Seta, P.; Benamor, M. Facilitated Cd (II) Transport across CTA Polymer Inclusion Membrane Using Anion (Aliquat 336) and Cation (D2EHPA) Metal Carriers. J. Membr. Sci. 2008, 310, 438–445. [Google Scholar] [CrossRef]
- Elias, G.; Marguí, E.; Díez, S.; Fontàs, C. Polymer Inclusion Membrane as an Effective Sorbent to Facilitate Mercury Storage and Detection by X-Ray Fluorescence in Natural Waters. Anal. Chem. 2018, 90, 4756–4763. [Google Scholar] [CrossRef]
- Mercader-Trejo, F.E.; Rodríguez de San Miguel, E.; de Gyves, J. Mercury (II) Removal Using Polymer Inclusion Membranes Containing Cyanex 471X. J. Chem. Technol. Biotechnol. 2009, 84, 1323–1330. [Google Scholar] [CrossRef]
- Tor, A.; Arslan, G.; Muslu, H.; Celiktas, A.; Cengeloglu, Y.; Ersoz, M. Facilitated Transport of Cr (III) through Polymer Inclusion Membrane with Di(2-Ethylhexyl)Phosphoric Acid (DEHPA). J. Membr. Sci. 2009, 1–2, 169–174. [Google Scholar] [CrossRef]
- Gherasim, C.-V.; Bourceanu, G.; Olariu, R.-I.; Arsene, C. A Novel Polymer Inclusion Membrane Applied in Chromium (VI) Separation from Aqueous Solutions. J. Hazard. Mater. 2011, 197, 244–253. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zajac, A.; Malina, G. Selective Removal of As(V) Ions from Acid Mine Drainage Using Polymer Inclusion Membranes. Minerals 2020, 10, 909. [Google Scholar] [CrossRef]
- St John, A.M.; Cattrall, R.W.; Kolev, S.D. Transport and Separation of Uranium(VI) by a Polymer Inclusion Membrane Based on Di-(2-Ethylhexyl) Phosphoric Acid. J. Membr. Sci. 2012, 409–410, 242–250. [Google Scholar] [CrossRef]
- Nowik-Zając, A.; Zawierucha, I.; Kozłowski, C. Selective Removal of Silver(I) Using Polymer Inclusion Membranes Containing Calixpyrroles. RSC Adv. 2019, 9, 31122–31132. [Google Scholar] [CrossRef] [Green Version]
- Radzyminska-Lenarcik, E.; Ulewicz, M.; Pyszka, I. Application of Polymer Inclusion Membranes Doped with Alkylimidazole to Separation of Silver and Zinc Ions from Model Solutions and after Battery Leaching. Materials 2020, 13, 3103. [Google Scholar] [CrossRef]
- Kubota, F.; Kono, R.; Yoshida, W.; Sharaf, M.; Kolev, S.D.; Goto, M. Recovery of Gold Ions from Discarded Mobile Phone Leachate by Solvent Extraction and Polymer Inclusion Membrane (PIM) Based Separation Using an Amic Acid Extractant. Sep. Purif. Technol. 2019, 214, 156–161. [Google Scholar] [CrossRef]
- Fajar, A.T.N.; Hanada, T.; Firmansyah, M.L.; Kubota, F.; Goto, M. Selective Separation of Platinum Group Metals via Sequential Transport through Polymer Inclusion Membranes Containing an Ionic Liquid Carrier. ACS Sustain. Chem. Eng. 2020, 8, 11283–11291. [Google Scholar] [CrossRef]
- Fajar, A.T.N.; Hanada, T.; Goto, M. Recovery of Platinum Group Metals from a Spent Automotive Catalyst Using Polymer Inclusion Membranes Containing an Ionic Liquid Carrier. J. Membr. Sci. 2021, 629, 119296. [Google Scholar] [CrossRef]
- Croft, C.F.; Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Separation of Lanthanum(III), Gadolinium(III) and Ytterbium(III) from Sulfuric Acid Solutions by Using a Polymer Inclusion Membrane. J. Membr. Sci. 2018, 545, 259–265. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Yan, Y.; Chen, J.; Dai, J.; Dai, X. Separation of Adjacent Heavy Rare Earth Lutetium(III) and Ytterbium(III) by Task-Specific Ionic Liquid Cyphos IL 104 Embedded Polymer Inclusion Membrane. J. Membr. Sci. 2020, 610, 118263. [Google Scholar] [CrossRef]
- Baczyńska, M.; Regel-Rosocka, M.; Nowicki, M.; Wiśniewski, M. Effect of the Structure of Polymer Inclusion Membranes on Zn(II) Transport from Chloride Aqueous Solutions. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Nghiem, L.; Mornane, P.; Potter, I.; Perera, J.; Cattrall, R.; Kolev, S. Extraction and Transport of Metal Ions and Small Organic Compounds Using Polymer Inclusion Membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Supported Ionic Liquid and Polymer Inclusion Membranes for Metal Separation. Sep. Purif. Rev. 2021, 232, 1–17. [Google Scholar] [CrossRef]
- Kolev, S.D.; Baba, Y.; Cattrall, R.W.; Tasaki, T.; Pereira, N.; Perera, J.M.; Stevens, G.W. Solid Phase Extraction of Zinc(II) Using a PVC-Based Polymer Inclusion Membrane with Di(2-Ethylhexyl)Phosphoric Acid (D2EHPA) as the Carrier. Talanta 2009, 78, 795–799. [Google Scholar] [CrossRef]
- Gega, J.; Otrembska, P. Separation of Ni(II) and Cd(II) Ions with Supported Liquid Membranes (SLM) Using D2EHPA as a Carrier. Sep. Sci. Technol. 2014, 49, 1756–1760. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Mohapatra, P.K.; Hassan, P.A.; Manchanda, V.K. Studies on the Selective Am3+ Transport, Irradiation Stability and Surface Morphology of Polymer Inclusion Membranes Containing Cyanex-301 as Carrier Extractant. J. Hazard. Mater. 2011, 192, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Gyves, J.; Hernández-Andaluz, A.; Rodríguez de San Miguel, E. LIX®-Loaded Polymer Inclusion Membrane for Copper(II) Transport: 2. Optimization of the Efficiency Factors (Permeability, Selectivity, and Stability) for LIX® 84-I. J. Membr. Sci. 2006, 268, 142–149. [Google Scholar] [CrossRef]
- Kagaya, S.; Cattrall, R.W.; Kolev, S.D. Solid-Phase Extraction of Cobalt(II) from Lithium Chloride Solutions Using a Poly(Vinyl Chloride)-Based Polymer Inclusion Membrane with Aliquat 336 as the Carrier. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2011, 27, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Halim, N.-S.; Whitten, P.; Nghiem, L. Characterising Poly (Vinyl Chloride)/Aliquat 336 Polymer Inclusion Membranes: Evidence of Phase Separation and Its Role in Metal Extraction. Fac. Eng. Inf. Sci. Pap. Part A 2013, 119, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Annane, K.; Sahmoune, A.; Montels, P.; Tingry, S. Polymer Inclusion Membrane Extraction of Cadmium(II) with Aliquat 336 in Micro-Channel Cell. Chem. Eng. Res. Des. 2015, 94, 605–610. [Google Scholar] [CrossRef]
- Kogelnig, D.; Regelsberger, A.; Stojanovic, A.; Jirsa, F.; Krachler, R.; Keppler, B. A Polymer Inclusion Membrane Based on the Ionic Liquid Trihexyl(Tetradecyl)Phosphonium Chloride and PVC for Solid–Liquid Extraction of Zn(II) from Hydrochloric Acid Solution. Monatshefte Chem. 2011, 142, 769–772. [Google Scholar] [CrossRef]
- Kozlowski, C.A. Kinetics of Chromium(VI) Transport from Mineral Acids across Cellulose Triacetate (CTA) Plasticized Membranes Immobilized by Tri-n-Octylamine. Ind. Eng. Chem. Res. 2007, 46, 5420–5428. [Google Scholar] [CrossRef]
- Pospiech, B. Selective Recovery of Cobalt(II) towards Lithium(I) from Chloride Media by Transport across Polymer Inclusion Membrane with Triisooctylamine. Pol. J. Chem. Technol. 2014, 16, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Djunaidi, M.; Cahyono, H.; Ismiyarto, I.; Siswanta, D.; Jumina, J. Synthesis of Poly Pyridine-2-Ylmethyl 2-(Eugenoxy) Acetate (PMEOA) as a Metal Mixture Carrier. IOP Conf. Ser. Mater. Sci. Eng. 2020, 959, 012033. [Google Scholar] [CrossRef]
- Tasaki, T.; Oshima, T.; Baba, Y. Selective Extraction and Transport of Copper(II) with New Alkylated Pyridinecarboxylic Acid Derivatives. Talanta 2007, 73, 387–393. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Application of Hydrophobic Alkylimidazoles in the Separation of Non-Ferrous Metal Ions across Plasticised Membranes—A Review. Membranes 2020, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, B.; Walkowiak, W.; Woźniak, M.J. Application of TBP in Selective Removal of Iron(III) in Solvent Extraction and Transport through Polymer Inclusion Membranes Processes. Physicochem. Probl. Miner. Process. 2005, 39, 89–98. [Google Scholar]
- Arous, O.; Amara, M.; Trari, M.; Bouguelia, A.; Kerdjoudj, H. Cadmium(II) and Lead(II) Transport in a Polymer Inclusion Membrane Using Tributyl Phosphate as Mobile Carrier and CuFeO(2) as a Polarized Photo Electrode. J. Hazard. Mater. 2010, 180, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Kusumocahyo, S.P.; Kanamori, T.; Sumaru, K.; Aomatsu, S.; Matsuyama, H.; Teramoto, M.; Shinbo, T. Development of Polymer Inclusion Membranes Based on Cellulose Triacetate: Carrier-Mediated Transport of Cerium(III). J. Membr. Sci. 2004, 244, 251–257. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, M. The Application of Polymer Inclusion Membranes Based on CTA with 1-Alkylimidazole for the Separation of Zinc(II) and Manganese(II) Ions from Aqueous Solutions. Polymers 2019, 11, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Polymer Inclusion Membranes (PIMs) Doped with Alkylimidazole and Their Application in the Separation of Non-Ferrous Metal Ions. Polymers 2019, 11, 1780. [Google Scholar] [CrossRef] [Green Version]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Application of Polymer Inclusion and Membranes Supported with 1-Alkyl-2-Methylimidazoles for Separation of Selected Transition Metal Ions. Desalination Water Treat. 2017, 64, 425–431. [Google Scholar] [CrossRef]
- Pernak, J.; Krysinski, J.; Skrzypczak, A. Bakterizide Wirkung von Iminiumverbindungen. Tenside Surfactants Deterg. 1987, 24, 276–279. [Google Scholar] [CrossRef]
- Lenarcik, B.; Ojczenasz, P. The Influence of the Size and Position of the Alkyl Groups in Alkylimidazole Molecules on Their Acid—Base Properties. J. Heterocycl. Chem. 2002, 39, 287–290. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzymińska-Lenarcik, E. Transport of Metal Ions across Polymer Inclusion Membrane with 1-Alkylimidazole. Physicochem. Probl. Miner. Process. 2011, 46, 119–130. [Google Scholar]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Supported Liquid (SLM) and Polymer Inclusion (PIM) Membranes Pertraction of Copper(II) from Aqueous Nitrate Solutions by 1-Hexyl-2-Methylimidazole. Sep. Sci. Technol. 2012, 47, 1383–1389. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Application of Polymer and Supported Membranes with 1-Decyl-4-Methylimidazole for Pertraction of Transition Metal Ions. Sep. Sci. Technol. 2014, 49, 1713–1721. [Google Scholar] [CrossRef]
- Ulewicz, M.; Szczygelska-Tao, J.; Biernat, J.F. Selectivity of Pb(II) Transport across Polymer Inclusion Membranes Doped with Imidazole Azothiacrown Ethers. J. Membr. Sci. 2009, 344, 32–38. [Google Scholar] [CrossRef]
- Salazar-Alvarez, G.; Bautista-Flores, A.N.; Miguel, E.R. Transport Characterisation of a PIM System Used for the Extraction of Pb(II) Using D2ehpa as Carrier. J. Membr. Sci. 2005, 250, 247–257. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E. The Influence of the Alkyl Chain Length on Extraction Equilibrium of Cu(II) Complexes with 1-Alkylimidazoles in Aqueous Solution/Organic Solvent Systems. Solvent Extr. Ion Exch. 2007, 25, 53–64. [Google Scholar] [CrossRef]
- Lenarcik, B.; Kierzkowska, A. The Influence of Alkyl Chain Length on Stability Constants of Zn(II) Complexes with 1-Alkylimidazoles in Aqueous Solutions and Their Partition Between Aqueous Phase and Organic Solvent. Solvent Extr. Ion Exch. 2004, 22, 449–471. [Google Scholar] [CrossRef]
- Lenarcik, B.; Ojczenasz, P. Investigation of the Stability of Co(II) Complexes with a Homologous Series of 1-Alkylimidazoles in Aqueous Solution by Using a Partition Method with Several Solvents. Sep. Sci. Technol. 2005, 39, 199–226. [Google Scholar] [CrossRef]
- Lenarcik, B.; Rauckyte, T. The Influence of Alkyl Chain Length on Extraction Equilibria of Ni(II) Complexes with 1-Alkylimidazoles in Aqueous Solution/Organic Solvent Systems. Sep. Sci. Technol. 2004, 39, 3353–3372. [Google Scholar] [CrossRef]
- Lenarcik, B.; Kulig, J.; Laider, P. Stability and Structure of Transition Metal Complexes with Azoles in Aqueous Solutions. Part II. 2-Methylimidazole Complexes of Co(II), Cu(II) and Zn(II). Rocz. Chem. 1974, 48, 1151–1158. [Google Scholar] [CrossRef]
- Lenarcik, B.; Kurdziel, K. Stability and Structure of Transition Metal Complexes with Azoles in Aqueous Solutions Part 25 The Effect of the Size and Position of an Alkyl Substituent on the Stability and Structure of Alkilimidazole Complexes. Pol. J. Chem. 1982, 56, 3–14. [Google Scholar]
- Lenarcik, B.; Kurdziel, K.; Czopek, R. Stability and Structure of Transition Metal Complexes with Azoles in Aqueous Solutions. Part XXVIII. The Steric Effect in the Complex Formation of 2-n-Propylimidazole and 2-Isopropylimidazole. Pol. J. Chem. 1991, 65, 815–820. [Google Scholar]
- Lenarcik, B.; Kurdziel, K.; Czopek, R. Stability and Structure of Transition Metal Complexes with Azoles in Aqueous Solutions. Part XXIX. The Influence of the Size and Structure of the Alkyl Group on the Formation of 2-Alkylimidazole Complexes. Pol. J. Chem. 1991, 65, 1235–1241. [Google Scholar]
- Gaǎzo, J.; Bersuker, I.B.; Garaj, J.; Kabešová, M.; Kohout, J.; Langfelderová, H.; Melník, M.; Serator, M.; Valach, F. Plasticity of the Coordination Sphere of Copper(II) Complexes, Its Manifestation and Causes. Coord. Chem. Rev. 1976, 19, 253–297. [Google Scholar] [CrossRef]
R = alkyl | No | Dissociation Constants, pKa [56] | Melting Point, °C | Boiling Point, °C | |
---|---|---|---|---|---|
methyl CH3 | 1 | 8.05 | 46.0 | 281 | |
ethyl C2H5 | 2 | 8.00 | 48.0 | 285 | |
propyl C3H7 | 3 | 8.02 | 49.5 | 289 | |
butyl C4H9 | 4 | 8.00 | 52.0 | 292 |
Membrane, no | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Roughness, nm | 3.55 ± 0.05 | 3.86 ± 0.05 | 4.12 ± 0.05 | 4.47 ± 0.05 |
Thickness, µm | 26 | 28 | 27 | 30 |
2-Alkylimidazole | Metal Ion | J0, μmol/m2⋅s | SCu(II)/M(II) = J0(Cu)/J0(M) |
---|---|---|---|
1 | Cu(II) | 6.28 ± 0.01 | Cu(II) > Zn(II) > Co(II) > Ni(II) 1.5 2.8 52.3 |
Zn(II) | 4.31 ± 0.01 | ||
Co(II) | 2.26 ± 0.01 | ||
Ni(II) | 0.12 ± 0.01 | ||
2 | Cu(II) | 5.75 ± 0.01 | Cu(II) > Zn(II) > Co(II) > Ni(II) 1.7 4.3 71.9 |
Zn(II) | 3.35 ± 0.01 | ||
Co(II) | 1.33 ± 0.01 | ||
Ni(II) | 0.08 ± 0.01 | ||
3 | Cu(II) | 3.64 ± 0.01 | Cu(II) > Zn(II) > Co(II) > Ni(II) 2.1 4.6 182 |
Zn(II) | 1.75 ± 0.01 | ||
Co(II) | 0.79 ± 0.01 | ||
Ni(II) | 0.02 ± 0.01 | ||
4 | Cu(II) | 3.19 ± 0.01 | Cu(II) > Zn(II) > Co(II) 2.6 6.9 |
Zn(II) | 1.22 ± 0.01 | ||
Co(II) | 0.46 ± 0.01 | ||
Ni(II) | 0.00 ± 0.01 |
Alkyl= | Cu(II) [62] | Zn(II) [63] | Co(II) [64] | Ni(II) [65] | |
---|---|---|---|---|---|
1-Alkylimidazole | methyl | 4.30 | 2.70 | 2.40 | 3.05 |
ethyl | 4.40 | 2.50 | 2.40 | 3.04 | |
propyl | 4.25 | 2.62 | 2.38 | 3.06 | |
butyl | 4.40 | 2.57 | 2.75 | 3.30 | |
2-Alkylimidazole | methyl [66] | 3.60 | 2.38 | 1.73 | 1.05 |
ethyl [67] | 3.35 | 1.80 | 1.49 | 0.65 | |
propyl [68] | 3.11 | 1.12 | 0.57 | 0.24 | |
butyl [69] | 2.86 | 0.74 | 0.23 | - |
Carrier | Metal Ion | Δo, s/m | Do, cm2/s |
---|---|---|---|
1 | Cu(II) | 114.1 | 2.38 × 10−8 |
Zn(II) | 153.8 | 4.21 × 10−8 | |
Co(II) | 245.2 | 7.63 × 10−8 | |
Ni(II) | 616.3 | 1.42 × 10−10 | |
2 | Cu(II) | 136.5 | 1.17 × 10−8 |
Zn(II) | 187.2 | 3.96 × 10−8 | |
Co(II) | 361.8 | 5.15 × 10−8 | |
Ni(II) | 983.2 | 2.02 × 10−11 | |
3 | Cu(II) | 206.4 | 3.13 × 10−8 |
Zn(II) | 415.6 | 4.68 × 10−8 | |
Co(II) | 712.1 | 3.25 × 10−9 | |
Ni(II) | 1083.7 | 4.13 × 10−13 | |
4 | Cu(II) | 312.1 | 4.05 × 10−9 |
Zn(II) | 625.3 | 6.27 × 10−9 | |
Co(II) | 947.5 | 2.01 × 10−10 |
Separation Coefficients Cu(II)/M(II) | ||||
---|---|---|---|---|
Carrier | Zn | Co | Ni | Ref. |
1-hexylimidazole | 4.3 | 39.7 | 46.9 | [48] |
1-hexyl-2-methylimidazole | 3.9 | 24.8 | 59.1 | [48] |
1-decyl-4-methylimidazole | 2.8 | 11.6 | 32.8 | [48] |
2-methylimidazole | 1.5 | 2.8 | 52.3 | this work |
2-ethylimidazole | 1.7 | 4.3 | 71.9 | this work |
2-propylimidazole | 2.1 | 4.6 | 182 | this work |
2-butylimidazole | 2.6 | 6.9 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzyminska-Lenarcik, E.; Maslowska, K.; Urbaniak, W. Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles. Membranes 2022, 12, 16. https://doi.org/10.3390/membranes12010016
Radzyminska-Lenarcik E, Maslowska K, Urbaniak W. Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles. Membranes. 2022; 12(1):16. https://doi.org/10.3390/membranes12010016
Chicago/Turabian StyleRadzyminska-Lenarcik, Elzbieta, Kamila Maslowska, and Wlodzimierz Urbaniak. 2022. "Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles" Membranes 12, no. 1: 16. https://doi.org/10.3390/membranes12010016
APA StyleRadzyminska-Lenarcik, E., Maslowska, K., & Urbaniak, W. (2022). Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles. Membranes, 12(1), 16. https://doi.org/10.3390/membranes12010016