Laboratory Scale Evaluation of Fertiliser Factory Wastewater Treatment through Membrane Distillation and Reverse Osmosis
Abstract
:1. Introduction
- -
- vacuum membrane distillation (VMD), where the volatile components are removed from one of the membrane surfaces by vacuum;
- -
- sweep gas membrane distillation (SGMD), where the volatile components are removed by flowing a sweep gas on one of the membrane surfaces;
- -
- air-gap membrane distillation (AGMD), where on the vapour side of the membrane a cold surface recovers the condensate;
- -
- direct contact membrane distillation (DCMD), where a colder liquid is fed to the membrane side where the vapor and volatile component are transferred.
2. Materials and Methods
2.1. Membranes
2.2. Laboratory-Scale MD and RO Tests and Plants
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Veldkamp, T.I.E.; Wada, Y.; Moel, H.; Kummu, M.; Eisnerd, S.; Aerts, J.C.J.H.; Ward, P.J. Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Glob. Environ. Chang. 2015, 32, 18–29. [Google Scholar] [CrossRef]
- ENI Rewind Brochure 2019 San Donato Milanese, Italy. Available online: https://www.eni.com/syndial-assets/documents/1_chi-siamo/1.2_mission/EniREWIND.pdf (accessed on 1 June 2021).
- Uba, B.N.; Ekundayo, J.A. Nutrient status of wastewater in a fertilizer-factory-waste discharge equalization basin. Bioresour. Technol. 1995, 51, 135–142. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; El-Kamah, E.M.; Aly, H.I.; Abou-Taleb, E. Management of wastewater from the fertilizer industry. Water Sci. Technol. 1995, 32, 45–54. [Google Scholar] [CrossRef]
- Zueva, S.B.; Ferella, F.; Taglieri, G.; De Michelis, I.; Pugacheva, I.; Vegliò, F. Zero-Liquid Discharge Treatment of Wastewater from a Fertilizer Factory. Sustainability 2020, 12, 397. [Google Scholar] [CrossRef] [Green Version]
- Gouider, M.; Feki, M.; Sayadi, S. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. J. Hazard. Mater. 2009, 170, 962–968. [Google Scholar] [CrossRef]
- Leaković, S.; Mijatović, I.; Cerjan-Stefanović, Š.; Hodžić, E. Nitrogen removal from fertilizer wastewater by ion exchange. Water Res. 2000, 34, 185–190. [Google Scholar] [CrossRef]
- Beler-Baykal, B.; Allar, A.D. Upgrading fertilizer production wastewater effluent quality for ammonium discharges through ion exchange with clinoptilolite. Environ. Technol. 2008, 29, 665–672. [Google Scholar] [CrossRef]
- Bhandari, V.M.; Sorokhaibam, L.G.; Ranade, V.V. Industrial wastewater treatment for fertilizer industry—A case study. Desalination Water Treat. 2016, 57, 27934–27944. [Google Scholar] [CrossRef] [Green Version]
- Wiesmann, U.; Choi, I.S.; Dombrowski, E.-M. Fundamentals of Biological Wastewater Treatment; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2006. [Google Scholar]
- Gouider, M.; Feki, M.; Sayadi, S. Treatment of wastewaters from phosphate fertilizer industry. Environ. Prog. Sustain. Energy 2014, 33, 463–471. [Google Scholar] [CrossRef]
- Ucisik, A.S.; Henze, M. Biological denitrification of fertiliser wastewater at higher chloride concentration. Water SA 2004, 30, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Pham, Z.-L.; Ha Bui, M. Removal of nutrients from fertilizer plant wastewater using scenedesmus sp.: Formation of bioflocculation and enhancement of removal efficiency. J. Chem. 2020, 2020, 8094272. [Google Scholar] [CrossRef] [Green Version]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Phytoremediation of urea fertilizer factory wastewater by teak (Tectona grandis). Environ. Prot. Eng. 2017, 43, 5–15. [Google Scholar] [CrossRef]
- Jorquera, O.; Kalid, R.; Kiperstok, A.; Braga, E.; Sales, E.A. Effluent stream treatment in a nitrogenous fertilizer factory: An exergy analysis for process integration. Process Saf. Environ. Prot. 2014, 92, 862–868. [Google Scholar] [CrossRef]
- Singh, S.; Srivastava, V.C.; Mandal, T.K. Treatment of fertilizer industry wastewater by catalytic peroxidation process using copper-loaded SBA-15. J. Environ. Sci. Health A 2015, 50, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.F.; Matsuura, T. Energy and Environment. In Membrane Technology for Water and Wastewater Treatment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Figoli, A.; Criscuoli, A. Sustainable Membrane Technology for Water and Wastewater Treatment; Green Chemistry and Sustainable Technology Series; Springer Nature: Singapore, 2017. [Google Scholar]
- Basile, A.; Comite, A. Membrane Technology for Water and Wastewater Treatment—Advances and Emerging Processes, 1st ed.; Current Trends and Future Developments on (Bio-) Membranes Series; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Karabelas, A.J.; Yiantsios, S.G.; Metaxiotou, Z.; Andritsos, N.; Akiskalos, A.; Vlachopoulos, G.; Stavroulias, S. Water and materials recovery from fertilizer industry acidic effluents by membrane process. Desalination 2001, 138, 93–102. [Google Scholar] [CrossRef]
- Dolar, D.; Košutić, K.; Vučić, B. RO/NF treatment of wastewater from fertilizer factory—Removal of fluoride and phosphate. Desalination 2011, 265, 237–241. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Camaco, L.M.; Dumée, L.; Zhang, J.; Li, J.D.; Duke, M.; Gomez, J.; Gray, S. Advances in membrane distillation for water desalination and purification applications. Water 2013, 5, 94–196. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus:limits, opportunities, and challenges. Energy Environ Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Biniaz, P.; Torabi Ardekani, N.; Makarem, M.A.; Rahimpour, M.R. Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). ChemEngineering 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Khayet, M.; Matssura, T. Membrane Distillation. Principles and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Johnson, R.A.; Nguyen, M.H. Understanding Membrane Distillation and Osmotic Distillation, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Lee, Y.M.; Drioli, E. Membrane Distillation: Materials and Processes, 1st ed.; Nova Science Publishers: Hauppauge, NY, USA, 2020. [Google Scholar]
- Benyahia, F. Membrane-Distillation in Desalination, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Comite, A.; Pagliero, M.; Costa, C. Chapter 1—Wastewater treatment by membrane distillation. In Membrane Technology for Water and Wastewater Treatment—Advances and Emerging Processes, Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Comite, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–34. [Google Scholar]
- Tow, W.; Warsinger, D.M.; Trueworthy, A.M.; Swaminathan, J.; Thiel, G.P.; Zubair, S.M.; Myerson, A.S.; Lienhard, J.H. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Membr. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, M.R.; Anwar, N.; Jassby, D.; Rahaman, M.S. Fouling and wetting in the membrane distillation driven wastewaterreclamation process–A review. Adv. Colloid Interface Sci. 2019, 269, 370–399. [Google Scholar] [CrossRef]
- Cabassud, C.; Wirth, D. Membrane distillation for water desalination: How to chose an appropriate membrane? Desalination 2003, 157, 307–314. [Google Scholar] [CrossRef]
- Mericq, J.P.; Laborie, S.; Cabassud, V. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 2010, 44, 5260–5273. [Google Scholar] [CrossRef]
- EL-Bourawi, M.S.; Khayet, M.; Ma, R.; Ding, Z.; Li, Z.; Zhang, X. Application of vacuum membrane distillation for ammonia removal. J. Membr. Sci. 2007, 301, 200–209. [Google Scholar] [CrossRef]
- Xie, Z.; Duong, T.; Hoang, M.; Nguyen, C.; Bolto, B. Ammonia removal by sweep gas membrane distillation. Water Res. 2009, 43, 1693–1699. [Google Scholar] [CrossRef]
- Duong, T.; Xie, Z.; Ng, D.; Hoang, M. Ammonia removal by membrane distillation. Water Environ. J. 2013, 27, 425–434. [Google Scholar]
- Ding, Z.; Liu, L.; Li, Z.; Ma, R.; Yang, Z. Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations. J. Membr. Sci. 2006, 286, 93–103. [Google Scholar] [CrossRef]
- Tibi, F.; Guo, J.; Ahmad, R.; Lim, M.; Kim, M.; Kim, J. Membrane distillation as post-treatment for anaerobic fluidized bed membrane biore-actor for organic and nitrogen removal. Chemosphere 2019, 234, 756–762. [Google Scholar] [CrossRef]
- Zarebska, A.; Amor, A.C.; Ciurkot, K.; Karring, H.; Thygesen, O.; Andersen, T.P.; Hägg, m.-B.; Christensen, K.V.; Norddahl, B. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure. J. Membr. Sci. 2015, 484, 119–132. [Google Scholar] [CrossRef]
- Tun, L.L.; Jeong, D.; Jeong, S.; Cho, K.; Lee, S.; Bae, H. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation. J. Membr. Sci. 2016, 512, 13–20. [Google Scholar] [CrossRef]
- Tun, L.L.; Jeong, D.; Bae, H. The effect of acidification on membrane distillation process for strong nitrogenous wastewater. J. Korean Soc. Water Environ. 2020, 36, 137–147. [Google Scholar]
- MS Hydrophobic PTFE Membrane. Available online: https://www.membrane-solutions.com/ptfe_hydrophobic.htm (accessed on 1 June 2021).
- ACCUREL-Model PP-Flat Sheet Membrane-Brochure. Available online: https://www.environmental-expert.com/downloads/accurel-model-pp-flat-sheet-membrane-brochure-662396 (accessed on 1 June 2021).
- ACCUREL-Model PP-Capillary Membrane-Brochure. Available online: https://www.environmental-expert.com/downloads/accurel-model-pp-capillary-membrane-brochure-662397 (accessed on 1 June 2021).
- Environmental Legislation, Legislative Decree 152/06, Official Journal of the Italian Republic, 14 April 2006, n.88, Rome, Italy. Available online: https://www.ecolex.org/details/legislation/legislative-decree-no-152-approving-the-code-on-the-environment-lex-faoc064213/ (accessed on 1 June 2021).
Manufacturer/Supplier | Membrane Solutions (Ms), LLC | Membrana GmbH | |||
---|---|---|---|---|---|
Membrane type | MS045BX | MS100BX | MS300BX | PP1E | PP2EHF |
Membrane material | PTFE | PTFE | PTFE | PP | PP |
Support material | PP | PP | PP | (a) | (a) |
Overall thickness [µm] | 170 ± 20 | 170 ± 20 | 170 ± 20 | 100 ± 15 | 170 ± 15 |
Pore size [µm] | 0.45 | 1 | 3 | - | - |
Alcohol bubble point [bar] | 0.7–1.0 (b) | 0.4–0.5 (b) | 0.3–0.4 (b) | (c) | (c) |
Isopropylalcohol bubble point, T = 23 °C [bar] | - | - | - | 2.1 ± 0.4 | >0.76 |
Alcohol flux, T = 25 °C, P = 0.69 bar [mL min−1 cm−2] | 35–50 (c) | 60–80 (c) | 180–250 (c) | - | - |
Isopropylalcohol permeability, T = 23 °C [mL min−1 cm−2 bar−1] | - | - | - | >2.5 | >8.5 |
References | [44] | [45] | [46] |
Average Permeate Flux [LMH] | Average NaCl Retention [%] | Minimum NaCl Retention [%] |
---|---|---|
27.5 | 99.75 | 99.3 |
Feature | Unit | Level | ISDL |
---|---|---|---|
Electrical conductivity | µS cm−1 | 11,960 | - |
pH | - | 3.0 | 5.5–9.5 |
Cl− | mg L−1 | 1986 | 1200 |
F− | mg L−1 | 161 | 6 |
PO43− | mg L−1 | 3121 | 31 |
SO42− | mg L−1 | 2290 | 1000 |
NH4+ | mg L−1 | 296 | 15 |
Chemical oxygen demand | mg L−1 | 119 | 160 |
Feature | Unit | Membrane | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PP1E | PP2EHF | MS045BX | MS100BX | MS300BX | GE ADHR | GE ADHR | GE ADHR | |||
Test | VMD | VMD | VMD | VMD | VMD | RO (20 bar) | RO (30 bar) | RO (40 bar) | ||
pH | Value | 3.7 * | 3.7 * | 3.6 * | 3.7 * | 3.8 * | 3.1 * | 3.2 * | 3.2 * | |
Electrical conductivity | µS cm−1 | Value | 56.5 | 55.3 | 63.1 | 66.4 | 64.8 | 1758.0 | 1370.0 | 1050.0 |
% | Retention | 99.5 | 99.5 | 99.5 | 99.4 | 99.5 | 85.3 | 88.5 | 91.2 | |
Cl− | mg L−1 | Value | 1.0 | 0.5 | 0.3 | 99.9 | 100.0 | 240.9 | 149.5 | 44.6 |
% | Retention | 99.9 | 100.0 | 100.0 | 99.0 | 100.0 | 87.9 | 92.5 | 97.8 | |
F− | mg L−1 | Value | 4.4 | 4.2 | 4.8 | 5.4 | 5.9 | 26.2 * | 24.2 * | 23.2 * |
% | Retention | 97.3 | 97.4 | 97.0 | 96.7 | 96.3 | 83.7 | 85.0 | 85.6 | |
PO43− | mg L−1 | Value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.1 * | 41.6 * | 13.1 * |
% | Retention | 100 | 100 | 100 | 100 | 100 | 97.8 | 98.7 | 99.6 | |
SO42− | mg L−1 | Value | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 38.1 | 21.7 | 6.1 |
% | Retention | 99.9 | 100 | 100 | 100 | 100 | 98.2 | 99.0 | 99.7 | |
NH4+ | mg L−1 | Value | <2 | <2 | <2 | <2 | <2 | 6.4 | 6.4 | 6.4 |
% | Retention | >99.3 | >99.3 | >99.3 | >99.3 | >99.3 | 97.7 | 97.7 | 97.7 | |
Chemical Oxygen Demand | mg L−1 | Value | - | - | 14.0 | - | 15.0 | - | - | 15.0 |
% | Retention | - | - | 88.2 | - | 87.4 | - | - | 87.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliabue, M.; Tonziello, J.; Bottino, A.; Capannelli, G.; Comite, A.; Pagliero, M.; Boero, F.; Cattaneo, C. Laboratory Scale Evaluation of Fertiliser Factory Wastewater Treatment through Membrane Distillation and Reverse Osmosis. Membranes 2021, 11, 610. https://doi.org/10.3390/membranes11080610
Tagliabue M, Tonziello J, Bottino A, Capannelli G, Comite A, Pagliero M, Boero F, Cattaneo C. Laboratory Scale Evaluation of Fertiliser Factory Wastewater Treatment through Membrane Distillation and Reverse Osmosis. Membranes. 2021; 11(8):610. https://doi.org/10.3390/membranes11080610
Chicago/Turabian StyleTagliabue, M., J. Tonziello, A. Bottino, G. Capannelli, A. Comite, M. Pagliero, F. Boero, and C. Cattaneo. 2021. "Laboratory Scale Evaluation of Fertiliser Factory Wastewater Treatment through Membrane Distillation and Reverse Osmosis" Membranes 11, no. 8: 610. https://doi.org/10.3390/membranes11080610
APA StyleTagliabue, M., Tonziello, J., Bottino, A., Capannelli, G., Comite, A., Pagliero, M., Boero, F., & Cattaneo, C. (2021). Laboratory Scale Evaluation of Fertiliser Factory Wastewater Treatment through Membrane Distillation and Reverse Osmosis. Membranes, 11(8), 610. https://doi.org/10.3390/membranes11080610