Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Preparation of Nicotine (NCT) Extract
2.2.1. Extraction of Tobacco Leaves
2.2.2. Determination of NCT Content in the Extracts
2.3. Preparation and Characterization of NCT Fast Dissolving Films
2.3.1. NCT Fast Dissolving Film Preparation
2.3.2. Characterization of NCT Fast Dissolving Films
Morphology Characterization of NCT Fast Dissolving Films
Film Thickness
Film Weight
In Vitro Disintegration Time Study
Mechanical Strength Test
2.4. NCT Loading Efficiency
2.5. In Vitro NCT Release Study
2.6. Statistical Analysis
3. Results and Discussion
3.1. Tobacco Leaf Extract and NCT Yield Percentage
3.2. NCT Fast Dissolving Films
3.3. In Vitro NCT Release Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, P. Cigarette manufacture: (11A) Tobacco Blending. In Tobacco: Production, Chemistry, and Technology; Davis, D.L., Nielsen, M.T., Eds.; Blackwell Science, Inc.: Malden, MA, USA, 1999; pp. 346–352. [Google Scholar]
- Hu, R.-S.; Wang, J.; Li, H.; Ni, H.; Chen, Y.-F.; Zhang, Y.-W.; Xiang, S.-P.; Li, H.-H. Simultaneous extraction of nicotine and solanesol from waste tobacco materials by the column chromatographic extraction method and their separation and purification. Sep. Purif. Technol. 2015, 146, 1–7. [Google Scholar] [CrossRef]
- Kishioka, S.; Kiguchi, N.; Kobayashi, Y.; Saika, F. Nicotine Effects and the Endogenous Opioid System. J. Pharmacol. Sci. 2014, 125, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Stead, L.F.; Perera, R.; Bullen, C.; Mant, D.; Hartmann-Boyce, J.; Cahill, K.; Lancaster, T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 2012, 11, 1–267. [Google Scholar] [CrossRef]
- Ghulaxe, C.; Verma, R. Review on transdermal drug delivery systems. Pharma Innov. J. 2015, 4, 37–43. [Google Scholar]
- Patel, V.F.; Liu, F.; Brown, M. Advances in oral transmucosal drug delivery. J. Control. Release 2011, 153, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Center for Integrated Healthcare. Information for Using Nicotine Gum. Available online: https://www.mirecc.va.gov/cih-visn2/Documents/Patient_Education_Handouts/Information_for_Using_Nicotine_Gum_Version_3 (accessed on 30 March 2021).
- Brown, J.; Hajek, P.; McRobbie, H.; Locker, J.; Gillison, F.; McEwen, A.; Beard, E.; West, R. Cigarette craving and withdrawal symptoms during temporary abstinence and the effect of nicotine gum. Psychopharmacology 2013, 229, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Buratti, S.; Selmin, F.; Gennari, C.G.M.; Montanari, L. Nicotine fast dissolving films made of maltodextrins: A feasibility study. Aaps Pharmscitech 2010, 11, 1511–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, R.; Khanna, S.; Pawar, P.; Arora, S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig. 2013, 3, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Selmin, F.; Montanari, L. Fast dissolving films made of maltodextrins. Eur. J. Pharm. Biopharm. 2008, 70, 895–900. [Google Scholar] [CrossRef]
- Tantullavetch, Y.; Chutrtong, W.; Nimkulrat, S. The Development and Production of Nicotine Gum for Use in Smoking Cessation Therapy (the Second Period); Srinakharinwirot University: Bangkok, Thailand, 2007. [Google Scholar]
- Boateng, J.; Okeke, O. Evaluation of clay-functionalized wafers and films for nicotine replacement therapy via buccal mucosa. Pharmaceutics 2019, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Preis, M.; Gronkowsky, D.; Grytzan, D.; Breitkreutz, J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014, 66, 1102–1111. [Google Scholar] [CrossRef]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Fluids. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Prabhu, P.; Malli, R.; Koland, M.; Vijaynarayana, K.; D′souza, U.; Harish, N.; Shastry, C.; Charyulu, R. Formulation and evaluation of fast dissolving films of levocitirizine di hydrochloride. Int. J. Pharm. Investig. 2011, 1, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, K.; Vijaya, C. Formulation development of mouth dissolving film of etoricoxib for pain management. Adv. Pharm. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Jovanović, M.; Tomić, N.; Cvijić, S.; Stojanović, D.; Ibrić, S.; Uskoković, P. Mucoadhesive gelatin buccal films with propranolol hydrochloride: Evaluation of mechanical, mucoadhesive, and biopharmaceutical properties. Pharmaceutics 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Jones, N.; Bernardo-Gil, M.G.; Lourenco, M.G. Comparison of methods for extraction of tobacco alkaloids. J. AOAC Int. 2001, 84, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saengwan, W.; Muenkhwa, C.; Teweswarakul, J.; Khomkong, S.; Phonswai, A.; Khunlert, P.; Tongnak, N.; Klangboonkrong, A.; Punprakhon, A.; Bannakarn, I. Efficiency of Tobacco Solution on Controlling Scirtothrips Dosalis Hood; Department of Agriculture, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2016. [Google Scholar]
- Puripattanavong, J.; Songkram, C.; Lomlim, L.; Amnuaikit, T. Development of Concentrated Emulsion containing Nicotiana tabacum Extract Development of Concentrated Emulsion containing Nicotiana tabacum Extract for Use as Pesticide. J. Appl. Pharm. Sci. 2013, 3, 16–21. [Google Scholar] [CrossRef]
- Tassew, Z.; Chandravanshi, B.S. Levels of nicotine in Ethiopian tobacco leaves. SpringerPlus 2015, 4, 649. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.R.; Nichols, B.C. Burley Tobacco Leaf Composition according to Position on the Stalk. Univ. Tennessee Agric. Exp. Stn. Bull. 1953, 229, 1–15. [Google Scholar]
- Wang, S.-S.; Shi, Q.-M.; Li, W.-Q.; Niu, J.-F.; Li, C.-J.; Zhang, F.-S. Nicotine Concentration in Leaves of Flue-cured Tobacco Plants as Affected by Removal of the Shoot Apex and Lateral Buds. J. Integr. Plant. Biol. 2008, 50, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. National Center for Chronic Disease Prevention and Health Promotion. Office on Smoking and Health (US). In How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention; National Library of Medicine: Atlanta, GA, USA, 2010. [Google Scholar]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT 2016, 70, 213–222. [Google Scholar] [CrossRef]
- Jyoti, A.; Gurpreet, A.; Seema, S.; Rana, A.C. Fast dissolving films: A novel approach to oral drug delivery. IRJP 2011, 2, 69–74. [Google Scholar]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S.M.; Khaksar, R. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr. Polym. 2014, 101, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Jantrawut, P.; Boonsermsukcharoen, K.; Thipnan, K.; Chaiwarit, T.; Hwang, K.-M.; Park, E.-S. Enhancement of antibacterial activity of orange oil in pectin thin film by microemulsion. Nanomaterials 2018, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Alopaeus, J.F.; Hellfritzsch, M.; Gutowski, T.; Scherließ, R.; Almeida, A.; Sarmento, B.; Škalko-Basnet, N.; Tho, I. Mucoadhesive buccal films based on a graft co-polymer–A mucin-retentive hydrogel scaffold. Eur. J. Pharm. Sci. 2020, 142, 105142. [Google Scholar] [CrossRef]
- De Caro, V.; Giandalia, G.; Siragusa, M.G.; Giannola, L.I. Buccal delivery of methimazole as an alternative means for improvement of drug bioavailability: Permeation studies and matrix system design. Curr. Pharm. Des. 2012, 18, 5405–5410. [Google Scholar] [CrossRef]
- Liu, P.; De Wulf, O.; Laru, J.; Heikkilä, T.; Van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Peltonen, L.; Laaksonen, T. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech 2013, 14, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.N.; Kartzmark, E.M.; Falconer, W.E. The System: Nicotine−methylethyl ketone−water. Can. J. Chem. 1958, 36, 1475–1486. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P. Nicotine chemistry, metabolism, kinetics and biomarkers. Nicotine Psychopharmacol. 2009, 2009, 29–60. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.S.; Lin, S.; Madan, P.L. Preparation and evaluation of nicotine hydrogen tartrate fast dissolving films for smoking cessation. Asian J. Pharm. Sci. 2012, 7, 181–192. [Google Scholar]
- Londhe, V.Y.; Umalkar, K.B. Formulation development and evaluation of fast dissolving film of telmisartan. Indian J. Pharm. Sci. 2012, 74, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Ouda, G.I.; Dahmash, E.Z.; Alyami, H.; Iyire, A. A Novel Technique to Improve Drug Loading Capacity of Fast/Extended Release Orally Dissolving Films with Potential for Paediatric and Geriatric Drug Delivery. AAPS PharmSciTech 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Ranade, S.V.; Miller, K.M.; Richard, R.E.; Chan, A.K.; Allen, M.J.; Helmus, M.N. Physical characterization of controlled release of paclitaxel from the TAXUS? Express2? drug-eluting stent. J. Biomed. Mater. Res. 2004, 71, 625–634. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Finkelstein, A.; McClean, D.; Kar, S.; Takizawa, K.; Varghese, K.; Baek, N.; Park, K.; Fishbein, M.C.; Makkar, R.; Litvack, F.; et al. Local Drug Delivery via a Coronary Stent with Programmable Release Pharmacokinetics. Circulation 2003, 107, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, K.M.; Devineni, P.K.; Deekonda, S.; Shaik, S.; Uppala, N.P.; Nalluri, B.N. Development and evaluation of mouth dissolving films of amlodipine besylate for enhanced therapeutic efficacy. J. Pharm. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Okeke, O.C.; Boateng, J.S. Nicotine stabilization in composite sodium alginate based wafers and films for nicotine replacement therapy. Carbohydr. Polym. 2017, 155, 78–88. [Google Scholar] [CrossRef]
Tobacco Leaf Extract | % Yield of Tobacco Leaf Extract | % Yield of NCT Content in the Extract | |
---|---|---|---|
Water maceration extraction | Bottom | 47.33 ± 1.21 a | 1.27 ± 0.12 f |
Middle | 42.39 ± 3.58 a | 5.72 ± 0.58 g | |
Top | 47.61 ± 7.74 a | 12.07 ± 0.32 h | |
Ethanol maceration extraction | Bottom | 14.61 ± 0.07 b | 10.78 ± 0.45 h |
Middle | 14.95 ± 0.46 b | 15.31 ± 0.23 i | |
Top | 24.71 ± 1.51 c | 16.99 ± 1.17 i | |
Acid-base extraction | Bottom | 3.14 ± 0.54 d | 43.28 ± 1.43 j |
Middle | 3.27 ± 0.66 d | 57.19 ± 1.46 k | |
Top | 6.18 ± 1.30 e | 63.17 ± 1.10 m |
Film | Thickness (mm) | Weight (g) | Disintegration Time (s) | Normalized Disintegration Time (s) |
---|---|---|---|---|
NCT Film | 0.070 ± 0.001 a | 0.0314 ± 0.0010 a | 19.95 ± 1.55 a | 19.96 ± 1.64 a |
Blank | 0.079 ± 0.008 a | 0.0266 ± 0.0022 b | 11.63 ± 3.49 b | 10.42 ± 3.54 b |
Film | Tensile Strength (N/mm2) | Elongation at Break (%) | Young’s Modulus (N/mm2) | NCT Loading Efficiency (%) |
---|---|---|---|---|
NCT Film | 7.23 ± 0.31 a | 7.81 ± 0.08 a | 225.98 ± 7.38 a | 98.02 ± 6.12 a |
Blank | 4.18 ± 0.07 b | 4.93 ± 0.25 b | 120.10 ± 3.57 b | - |
Kinetic Model | Parameter | |
---|---|---|
Zero-order | r2 | 0.5333 |
k0 (min−1) | 2.5057 | |
First-order | r2 | 0.5287 |
k1 (min−1) | 0.0136 | |
Higuchi matrix | r2 | 0.9794 |
kH (min1/2) | 45.057 | |
Korsmeyer–Peppas | r2 | 0.9636 |
k (min−n) | 1.7434 | |
n | 0.3472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheawfu, K.; Kaewpinta, A.; Chanmahasathien, W.; Rachtanapun, P.; Jantrawut, P. Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film. Membranes 2021, 11, 403. https://doi.org/10.3390/membranes11060403
Kheawfu K, Kaewpinta A, Chanmahasathien W, Rachtanapun P, Jantrawut P. Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film. Membranes. 2021; 11(6):403. https://doi.org/10.3390/membranes11060403
Chicago/Turabian StyleKheawfu, Kantaporn, Adchareeya Kaewpinta, Wisinee Chanmahasathien, Pornchai Rachtanapun, and Pensak Jantrawut. 2021. "Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film" Membranes 11, no. 6: 403. https://doi.org/10.3390/membranes11060403
APA StyleKheawfu, K., Kaewpinta, A., Chanmahasathien, W., Rachtanapun, P., & Jantrawut, P. (2021). Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film. Membranes, 11(6), 403. https://doi.org/10.3390/membranes11060403