Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Bromination of Poly(2,6-dimethyl-1,4-phenyleneoxide) (PPO)
2.3. Synthesis of the DMEA-Grafted AEM
2.4. Characterization
2.4.1. Instrumentations
2.4.2. Measurement of Water Uptake and Ion Exchange Capacity of the DMEA-Grafted AEM
2.5. Batch Adsorption Process
2.6. Nonlinear Adsorption Isotherms
2.7. Adsorption Kinetics
2.8. Adsorption Thermodynamics
3. Results and Discussion
3.1. Bromination of Poly(2,6-Dimethyl-1,4-Phenylene Oxide)
3.2. FTIR and TGA Test
3.3. Morphological Study
3.4. Water Uptake and Ion Exchange Capacity
3.5. Effect of Operating Factors on Adsorption of MO onto the DMEA-Grafted AEM
3.6. Adsorption Isotherms
3.6.1. Two Parameters Nonlinear Adsorption Isotherms
3.6.2. Three Parameters Nonlinear Adsorption Isotherms
3.7. Adsorption Kinetics
3.8. Adsorption Thermodynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Code | Full name |
AEM | Anion exchange membrane |
BPPO | Brominated poly(2,6-dimethyl-1,4-phenylene oxide) |
PPO | Poly(2,6-dimethyl-1,4-phenylene oxide) |
MO | Methyl orange |
References
- Gamoudi, S.; Srasra, E. Adsorption of organic dyes by hdpy+-modified clay: Effect of molecular structure on the adsorption. J. Mol. Structure 2019, 1193, 522–531. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. Decolourization of industrial effluents—Available methods and emerging technologies—A review. Rev. Environ. Sci. Bio/Technol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Mironyuk, I.F.; Gun’ko, V.M.; Vasylyeva, H.V.; Goncharuk, O.V.; Tatarchuk, T.R.; Mandzyuk, V.I.; Bezruka, N.A.; Dmytrotsa, T.V. Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 2019, 277, 95–104. [Google Scholar] [CrossRef]
- Atrous, M.; Sellaoui, L.; Bouzid, M.; Lima, E.C.; Thue, P.S.; Bonilla-Petriciolet, A.; Ben Lamine, A. Adsorption of dyes acid red 1 and acid green 25 on grafted clay: Modeling and statistical physics interpretation. J. Mol. Liquids 2019, 294, 111610. [Google Scholar] [CrossRef]
- Mironyuk, I.; Tatarchuk, T.; Naushad, M.; Vasylyeva, H.; Mykytyn, I. Highly efficient adsorption of strontium ions by carbonated mesoporous tio2. J. Mol. Liquids 2019, 285, 742–753. [Google Scholar] [CrossRef]
- Park, K.H.; Parhi, P.K.; Kang, N.-H. Studies on removal of low content copper from the sea nodule aqueous solution using the cationic resin tp 207. Sep. Sci. Technol. 2012, 47, 1531–1541. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Parhi, P.K.; Pandey, S.; Bindhani, B.K.; Thatoi, H.; Panda, C.R. Active and passive biosorption of pb(ii)using live and dead biomass of marine bacterium bacillus xiamenensis pbrpsd202: Kinetics and isotherm studies. J. Environ. Manag. 2019, 247, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Golob, V.; Vinder, A.; Simonič, M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments 2005, 67, 93–97. [Google Scholar] [CrossRef]
- Tabatabaee, M.; Mirrahimi, S.A. Photodegradation of dye pollutant on ag/zno nanocatalyst under uv-irradiation. Orient. J. Chem. 2011, 27, 65. [Google Scholar]
- Annadurai, G.; Ling, L.Y.; Lee, J.-F. Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis. J. Hazard. Mater. 2008, 152, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Azhar, S.S.; Liew, A.G.; Suhardy, D.; Hafiz, K.F.; Hatim, M.I. Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Am. J. Appl. Sci. 2005, 2, 1499. [Google Scholar] [CrossRef]
- Joo, S.-H.; Kim, Y.-U.; Kang, J.-G.; Kumar, J.R.; Yoon, H.-S.; Parhi, P.K.; Shin, S.M. Recovery of rhenium and molybdenum from molybdenite roasting dust leaching solution by ion exchange resins. Mater. Trans. 2012, 53, 2034–2037. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Lashari, M.H.; Khraisheh, M.; Shahida, S.; Zafar, S.; Prapamonthon, P.; Rehman, A.; Anjum, S.; Akhtar, N.; Hanif, F. Adsorption kinetic, equilibrium and thermodynamic studies of eosin-b onto anion exchange membrane. Desalination Water Treat. 2019, 155, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Su, J.; Guo, L. Development of triethanolamine functionalized-anion exchange membrane for adsorptive removal of methyl orange from aqueous solution. Desalination Water Treat. 2021, 209, 342–352. [Google Scholar] [CrossRef]
- Janoš, P.; Buchtová, H.; Rýznarová, M. Sorption of dyes from aqueous solutions onto fly ash. Water Res. 2003, 37, 4938–4944. [Google Scholar] [CrossRef] [PubMed]
- Başar, C.A. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard. Mater. 2006, 135, 232–241. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Sumanjit; Walia, T.P.S. Use of dairy sludge for the removal of some basic dyes. J. Environ. Eng. Sci. 2008, 7, 433–438. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, L. The adsorption of basic dyes from aqueous solution on modified peat–resin particle. Water Res. 2003, 37, 1535–1544. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K. Batch adsorber design for different solution volume/adsorbent mass ratios using the experimental equilibrium data with fixed solution volume/adsorbent mass ratio of malachite green onto orange peel. Dyes Pigments 2007, 74, 590–594. [Google Scholar] [CrossRef]
- Gong, R.; Sun, Y.; Chen, J.; Liu, H.; Yang, C. Effect of chemical modification on dye adsorption capacity of peanut hull. Dyes Pigments 2005, 67, 175–181. [Google Scholar] [CrossRef]
- Vijayalakshmi, P.; Bala, V.S.S.; Thiruvengadaravi, K.V.; Panneerselvam, P.; Palanichamy, M.; Sivanesan, S. Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from pistachio nut shell. Sep. Sci. Technol. 2010, 46, 155–163. [Google Scholar] [CrossRef]
- Sumanjit, N.P. Adsorption of dyes on rice husk ash. Indian J. Chem. 2001, 40, 388–391. [Google Scholar]
- Sumanjit, R.K.; Mahajan, S.R.; Walia, T.P.S.; Kuar, R. Adsorptive removal of five acid dyes using various unconventional adsorbents. J. Surf. Sci. Technol. 2010, 26, 77–93. [Google Scholar]
- Ma, J.-W.; Wang, H.; Wang, F.-Y.; Huang, Z.-H. Adsorption of 2,4-dichlorophenol from aqueous solution by a new low-cost adsorbent—Activated bamboo charcoal. Sep. Sci. Technol. 2010, 45, 2329–2336. [Google Scholar] [CrossRef]
- Jain, S.; Jayaram, R.V. Adsorption of phenol and substituted chlorophenols from aqueous solution by activated carbon prepared from jackfruit (artocarpus heterophyllus) peel-kinetics and equilibrium studies. Sep. Sci. Technol. 2007, 42, 2019–2032. [Google Scholar] [CrossRef]
- Belala, Z.; Jeguirim, M.; Belhachemi, M.; Addoun, F.; Trouvé, G. Biosorption of copper from aqueous solutions by date stones and palm-trees waste. Environ. Chem. Lett. 2011, 9, 65–69. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Chen, H.-W.; Chien, P.-S.; Chiou, C.-S.; Liu, C.-C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. J. Hazard. Mater. 2011, 185, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J. 2011, 168, 77–85. [Google Scholar] [CrossRef]
- Xiao, S.; Shen, M.; Guo, R.; Huang, Q.; Wang, S.; Shi, X. Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J. Mater. Chem. 2010, 20, 5700–5708. [Google Scholar] [CrossRef]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-S.; Liu, C.-H.; Chu, K.H.; Suen, S.-Y. Removal of cationic dye methyl violet 2b from water by cation exchange membranes. J. Membr. Sci. 2008, 309, 239–245. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Liu, C.-H.; Chen, S.-C.; Suen, S.-Y. Adsorptive removal of anionic dye by inorganic–organic hybrid anion-exchange membranes. J. Membr. Sci. 2009, 337, 282–290. [Google Scholar] [CrossRef]
- Khan, M.I.; Ansari, T.M.; Zafar, S.; Buzdar, A.R.; Khan, M.A.; Mumtaz, F.; Prapamonthon, F.; Akhtar, M. Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies. Membr. Water Treat. 2018, 9, 79–85. [Google Scholar]
- Khan, M.I.; Khan, M.A.; Zafar, S.; Ashiq, M.N.; Athar, M.; Qureshi, A.M.; Arshad, M. Kinetic, equilibrium and thermodynamic studies for the adsorption of methyl orange using new anion exchange membrane (BII). Desalination Water Treat. 2017, 58, 285–297. [Google Scholar] [CrossRef]
- Khan, M.I.; Zafar, S.; Khan, M.A.; Buzdar, A.R.; Prapamonthon, P. Adsorption kinetic, equilibrium and thermodynamic study for the removal of congo red from aqueous solution. Desalination Water Treat. 2017, 98, 294–305. [Google Scholar] [CrossRef]
- Khan, M.I.; Wu, L.; Mondal, A.N.; Yao, Z.; Ge, L.; Xu, T. Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium. Membr. Water Treat. 2016, 7, 23–38. [Google Scholar] [CrossRef]
- Li, N.; Yan, T.; Li, Z.; Thurn-Albrecht, T.; Binder, W.H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ. Sci. 2012, 5, 7888–7892. [Google Scholar] [CrossRef]
- Khan, M.I.; Mondal, A.N.; Tong, B.; Jiang, C.; Emmanuel, K.; Yang, Z.; Wu, L.; Xu, T. Development of bppo-based anion exchange membranes for electrodialysis desalination applications. Desalination 2016, 391, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Zheng, C.; Mondal, A.N.; Hossain, M.M.; Wu, B.; Emmanuel, K.; Wu, L.; Xu, T. Preparation of anion exchange membranes from bppo and dimethylethanolamine for electrodialysis. Desalination 2017, 402, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Luque, R.; Prinsen, P.; Rehman, A.; Anjum, S.; Nawaz, M.; Shaheen, A.; Zafar, S.; Mustaqeem, M. Bppo-based anion exchange membranes for acid recovery via diffusion dialysis. Materials 2017, 10, 266. [Google Scholar] [CrossRef]
- Khan, M.; Luque, R.; Akhtar, S.; Shaheen, A.; Mehmood, A.; Idress, S.; Buzdar, S.; Rehman, A. Design of anion exchange membranes and electrodialysis studies for water desalination. Materials 2016, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Kumar, V.; Sain, P.K.; Kumar, M.; Awasthi, K. Synthesis and characterization of polyaniline membranes with-secondary amine additive containing n,n′-dimethyl propylene urea for fuel cell application. Int. J. Hydrogen Energy 2018, 43, 21715–21723. [Google Scholar] [CrossRef]
- Khan, M.I. Comparison of different quaternary ammonium groups on desalination performance of bppo-based anion exchange membranes. Desalination Water Treat. 2018, 108, 49–57. [Google Scholar] [CrossRef]
- Khan, M.I.; Su, J.; Lichtfouse, E.; Guo, L. Higher efficiency of triethanolamine-grafted anion exchange membranes for acidic wastewater treatment. Desalination Water Treat. 2020, 197, 41–51. [Google Scholar] [CrossRef]
- Ran, J.; Ding, L.; Yu, D.; Zhang, X.; Hu, M.; Wu, L.; Xu, T. A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers. J. Membr. Sci. 2018, 549, 631–637. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, M.I.; Zafar, S. Removal of different anionic dyes from aqueous solution by anion exchange membrane. Membr. Water Treat. 2017, 8, 259–277. [Google Scholar] [CrossRef]
- Xu, T.; Yang, W. Fundamental studies of a new series of anion exchange membranes: Membrane preparation and characterization. J. Membr. Sci. 2001, 190, 159–166. [Google Scholar]
- Khan, M.I.; Su, J.; Guo, L. Preparation and characterization of high-performance anion exchange membranes for acid recovery. Desalination Water Treat. 2020, 209, 144–154. [Google Scholar] [CrossRef]
- Khan, M.I.; Fernandez-Garcia, J.; Zhu, Q.-L. Fabrication of doubly charged anion-exchange membranes for enhancing hydroxide conductivity. Sep. Sci. Technol. 2020, 1–12. [Google Scholar] [CrossRef]
- Ho, Y.-S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shu, C.; Wang, N.; Feng, J.; Ma, H.; Yan, W. Adsorbent synthesis of polypyrrole/tio2 for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism. J. Colloid Interface Sci. 2017, 495, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Khalid, N.; Daud, M.; Mirza, M.L. Kinetic studies of the adsorption of thorium ions onto rice husk from aqueous media: Linear and nonlinear approach. Nucleus 2015, 52, 14–19. [Google Scholar]
- Ncibi, M.C. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef] [PubMed]
Adsorption Isotherm | Parameters | χ2 | |
---|---|---|---|
Langmuir | Qm | 1.63 × 10−4 ± 3.26 × 10−6 | 1.838 × 10−9 |
KL | 1.63 × 10−4 | ||
Freundlich | KF | 9.42 × 10−4 | 2.124 × 10−10 |
n | 3.3039 | ||
D-R | Qs | 2.98 × 10−4 ± 5.96 × 10−6 | 4.877 × 10−10 |
β | 3.22 × 10−3 | ||
E | 12.50 | ||
Temkin | bT | 1.29 × 105 | 1.584 × 10−9 |
aT | 4.59 × 105 | ||
Redlich-Peterson | KRP | 0.090 | 1.033 × 10−9 |
aR | 0.014 | ||
β | 0.61 | ||
SIPS | Ks | 0.025 | 8.998 × 10−10 |
β | 0.64 | ||
a | 124 | ||
Hill | qh | 0.69 | 2.126 × 10−10 |
nh | 0.30 | ||
kd | 733 |
Kinetic Models | Parameters | Values |
---|---|---|
Pseudo-first-order model | Q (exp.) | 18.65 |
Qe | 4.77 | |
k1 | 1.60 × 10−3 | |
R2 | 0.836 | |
Pseudo-second-order model | qe | 19.61 |
k2 | 1.17 × 10−3 | |
R2 | 0.999 | |
Elovich model | β | 0.43 |
α | 8.35 | |
R2 | 0.724 | |
Modified Freundlich equation | m | 6.76 |
k | 0.136 | |
R2 | 0.708 | |
Bangham equation | α | 0.150 |
ko | 2.73 × 10−3 | |
R2 | 0.709 |
Temperature (K) | ΔH | ΔS | ΔG |
---|---|---|---|
298 | −43.92 | ||
313 | 37.40 | 147.50 | −46.13 |
323 | −47.61 | ||
333 | −49.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Shanableh, A.; Fernandez, J.; Lashari, M.H.; Shahida, S.; Manzoor, S.; Zafar, S.; ur Rehman, A.; Elboughdiri, N. Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters. Membranes 2021, 11, 166. https://doi.org/10.3390/membranes11030166
Khan MI, Shanableh A, Fernandez J, Lashari MH, Shahida S, Manzoor S, Zafar S, ur Rehman A, Elboughdiri N. Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters. Membranes. 2021; 11(3):166. https://doi.org/10.3390/membranes11030166
Chicago/Turabian StyleKhan, Muhammad Imran, Abdallah Shanableh, Javier Fernandez, Mushtaq Hussain Lashari, Shabnam Shahida, Suryyia Manzoor, Shagufta Zafar, Aziz ur Rehman, and Noureddine Elboughdiri. 2021. "Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters" Membranes 11, no. 3: 166. https://doi.org/10.3390/membranes11030166
APA StyleKhan, M. I., Shanableh, A., Fernandez, J., Lashari, M. H., Shahida, S., Manzoor, S., Zafar, S., ur Rehman, A., & Elboughdiri, N. (2021). Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters. Membranes, 11(3), 166. https://doi.org/10.3390/membranes11030166