The Limitations in Current Studies of Organic Fouling and Future Prospects
Abstract
:1. Introduction
2. Alginate: A Good Model for Organic Fouling Studies but Not Perfect
3. Advances in Modeling of Membrane Fouling: Traditional versus Nontraditional Approaches
4. Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, A.; Zhao, Y.; Yan, Z.; Bai, L.; Yang, H.; Liang, H.; Li, G.; Ren, N. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control. Front. Environ. Sci. Eng. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Zhang, Y.; Sun, W.; Ao, X. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures. Front. Environ. Sci. Eng. 2020, 14, 39. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Zheng, L.; Sui, Q.; Zhong, H.; Cheng, M.; Wei, Y. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater. Front. Environ. Sci. Eng. 2020, 14, 101. [Google Scholar] [CrossRef]
- Meng, X.; Luosang, D.; Meng, S.; Wang, R.; Fan, W.; Liang, D.; Li, X.; Zhao, Q.; Yang, L. The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere 2021, 268, 129364. [Google Scholar] [CrossRef]
- Kang, G.-d.; Cao, Y.-m. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Ding, A.; Zhao, Y.; Ngo, H.H.; Bai, L.; Li, G.; Liang, H.; Ren, N.; Nan, J. Metabolic uncoupler, 3, 3′, 4′, 5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor. Front. Environ. Sci. Eng. 2020, 14, 1–12. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, K.; Xue, W.; Shen, Y.-x.; Tan, J.; Liang, S.; Wang, Y.; Huang, X. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Front. Environ. Sci. Eng. 2020, 14, 31. [Google Scholar] [CrossRef]
- Her, N.; Amy, G.; Park, H.-R.; Song, M. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res. 2004, 38, 1427–1438. [Google Scholar] [CrossRef]
- Sioutopoulos, D.C.; Karabelas, A.J. The effect of permeation flux on the specific resistance of polysaccharide fouling layers developing during dead-end ultrafiltration. J. Membr. Sci. 2015, 473, 292–301. [Google Scholar] [CrossRef]
- Xie, Z.; Nagaraja, N.; Skillman, L.; Li, D.; Ho, G. Comparison of polysaccharide fouling in forward osmosis and reverse osmosis separations. Desalination 2017, 402, 174–184. [Google Scholar] [CrossRef]
- Meng, S.; Wang, R.; Zhang, K.; Meng, X.; Xue, W.; Liu, H.; Liang, D.; Zhao, Q.; Liu, Y. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Front. Environ. Sci. Eng. 2021, 15, 1–10. [Google Scholar] [CrossRef]
- Meng, S.; Winters, H.; Liu, Y. Ultrafiltration behaviors of alginate blocks at various calcium concentrations. Water Res. 2015, 83, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Liu, Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Sci. Rep. 2016, 6, 1–9. [Google Scholar]
- Tong, X.; Zhao, X.-H.; Wu, Y.-H.; Bai, Y.; Ikuno, N.; Ishii, K.; Hu, H.-Y. The molecular structures of polysaccharides affect their reverse osmosis membrane fouling behaviors. J. Membr. Sci. 2021, 625, 118984. [Google Scholar] [CrossRef]
- Wang, R.; Liang, D.; Liu, X.; Fan, W.; Meng, S.; Cai, W. Effect of magnesium ion on polysaccharide fouling. Chem. Eng. J. 2020, 379, 122351. [Google Scholar] [CrossRef]
- Ye, Y.; Le Clech, P.; Chen, V.; Fane, A.G.; Jefferson, B. Fouling mechanisms of alginate solutions as model extracellular polymeric substances. Desalination 2005, 175, 7–20. [Google Scholar] [CrossRef]
- Katsoufidou, K.; Yiantsios, S.G.; Karabelas, A.J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. J. Membr. Sci. 2007, 300, 137–146. [Google Scholar] [CrossRef]
- Lee, S.; Ang, W.S.; Elimelech, M. Fouling of reverse osmosis membranes by hydrophilic organic matter: Implications for water reuse. Desalination 2006, 187, 313–321. [Google Scholar] [CrossRef]
- Kim, H.-C.; Dempsey, B.A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. J. Membr. Sci. 2013, 428, 190–197. [Google Scholar] [CrossRef]
- Jiang, J.-K.; Mu, Y.; Yu, H.-Q. Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. J. Colloid Interface Sci. 2019, 535, 318–324. [Google Scholar] [CrossRef]
- Lin, W.; Li, M.; Xiao, K.; Huang, X. The role shifting of organic, inorganic and biological foulants along different positions of a two-stage nanofiltration process. J. Membr. Sci. 2020, 602, 117979. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, G.; Long, Y.; Teng, J.; You, X.; Liao, B.-Q.; Lin, H. Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor. Bioresour. Technol. 2019, 293, 122103. [Google Scholar] [CrossRef] [PubMed]
- Jawad, J.; Hawari, A.H.; Zaidi, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 2020, 484, 114427. [Google Scholar] [CrossRef]
- Fouladitajar, A.; Ashtiani, F.Z.; Okhovat, A.; Dabir, B. Membrane fouling in microfiltration of oil-in-water emulsions; a comparison between constant pressure blocking laws and genetic programming (GP) model. Desalination 2013, 329, 41–49. [Google Scholar] [CrossRef]
- Gao, M.; Tian, J.; Li, J. The study of membrane fouling modeling method based on support vector machine for sewage treatment membrane bioreactor. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007; pp. 1393–1398. [Google Scholar]
- Anbari, E.; Adib, H.; Iranshahi, D. Experimental investigation and development of a SVM model for hydrogenation reaction of carbon monoxide in presence of Co–Mo/Al2O3 catalyst. Chem. Eng. J. 2015, 276, 213–221. [Google Scholar] [CrossRef]
- Zhong, H.; Miao, C.; Shen, Z.; Feng, Y. Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 2014, 128, 285–295. [Google Scholar] [CrossRef]
- Hermia, J. Constant pressure blocking filtration laws-application to power-lawnon-newtonian fluids. Trans. Inst. Chem. Eng. 1982, 60, 187–193. [Google Scholar]
- Jacob, J.; Pradanos, P.; Calvo, J.I.; Hernandez, A.; Jonsson, G.E. Fouling kinetics and associated dynamics of structural modifications. Colloids Surf. A Physicochem. Eng. Asp. 1998, 138, 173–183. [Google Scholar] [CrossRef]
- Cai, Y.-D.; Ricardo, P.-W.; Jen, C.-H.; Chou, K.-C. Application of SVM to predict membrane protein types. J. Theor. Biol. 2004, 226, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, H.; Liu, Y. Using a posterior probability support vector machine model to assess soil quality in Taiyuan, China. Soil Tillage Res. 2019, 185, 146–152. [Google Scholar] [CrossRef]
- Aalizadeh, R.; Nika, M.-C.; Thomaidis, N.S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019, 363, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, D.; Liu, T.; Liu, Y.; Yan, L.; Wei, Q.; Du, B.; Xu, W. EDTA functionalized magnetic biochar for Pb (II) removal: Adsorption performance, mechanism and SVM model prediction. Sep. Purif. Technol. 2019, 227, 115696. [Google Scholar] [CrossRef]
- Hamedi, H.; Ehteshami, M.; Mirbagheri, S.A.; Zendehboudi, S. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors. Chem. Eng. Res. Des. 2019, 144, 334–353. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Meng, S.; Liu, Y. The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes 2021, 11, 922. https://doi.org/10.3390/membranes11120922
Meng X, Meng S, Liu Y. The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes. 2021; 11(12):922. https://doi.org/10.3390/membranes11120922
Chicago/Turabian StyleMeng, Xianghao, Shujuan Meng, and Yu Liu. 2021. "The Limitations in Current Studies of Organic Fouling and Future Prospects" Membranes 11, no. 12: 922. https://doi.org/10.3390/membranes11120922
APA StyleMeng, X., Meng, S., & Liu, Y. (2021). The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes, 11(12), 922. https://doi.org/10.3390/membranes11120922