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Abstract: Microfiltration and ultrafiltration for water/wastewater treatment have gained global
attention due to their high separation efficiency, while membrane fouling still remains one of their
bottlenecks. In such a situation, many researchers attempt to obtain a deep understanding of fouling
mechanisms and to develop effective fouling controls. Therefore, this article intends to trigger
discussions on the appropriate choice of foulant surrogates and the application of mathematic models
to analyze fouling mechanisms in these filtration processes. It has been found that the commonly
used foulant surrogate (sodium alginate) cannot ideally represent the organic foulants in practical
feed water to explore the fouling mechanisms. More surrogate foulants or extracellular polymeric
substance (EPS) extracted from practical source water may be more suitable for use in the studies of
membrane fouling problems. On the other hand, the support vector machine (SVM) which focuses
on the general trends of filtration data may work as a more powerful simulation tool than traditional
empirical models to predict complex filtration behaviors. Careful selection of foulant surrogate
substances and the application of accurate mathematical modeling for fouling mechanisms would
provide deep insights into the fouling problems.

Keywords: membrane fouling; polysaccharide foulant; surrogate of foulants; fouling mechanism models

1. Introduction

Wastewater reclamation is one of the effective countermeasures to tackle the water re-
source crisis. As a promising technology, membrane processes either via direct filtration or
combined with other techniques have been widely used in the field of water treatment [1,2].
Membrane technology is highly efficient for organics removal and microbial interception.
However, membrane fouling, which reduces the treatment efficiency and lifetime of mem-
brane modules, is still a critical bottleneck restricting the wider development of membrane
technology [3]. Membrane fouling refers to the phenomenon that sludge flocs, colloidal
particles, bacteria/microorganism, dissolved macromolecules of organic matter or inor-
ganic salts deposit on the membrane surface or are adsorbed in the membrane pores due to
physicochemical and mechanical interactions with the membrane, resulting in a reduction
or blockage in the membrane pores and irreversible decrease in membrane flux [4]. Current
research interests in membrane fouling mainly include the following aspects: (i) membrane
fabrication and modification for efficient fouling control; (ii) optimization of the operating
conditions to minimize fouling (including the pre-treatment methods); (iii) adjustment of
the environmental conditions such as the pH, presence of cations, and feed composition;
and (iv) the development of novel simulation models for the analysis of fouling mech-
anism and prediction of fouling. All these foregoing studies pursue the same objective,
i.e., fouling control, while the fundamental understanding of the fouling mechanism and
the microstructure of fouling layers are still unclear. Therefore, this article attempts to
illustrate the current challenging problems in understanding the fouling mechanism of
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ultrafiltration/microfiltration and try to provide more useful recommendations for fouling
analysis and prevention.

2. Alginate: A Good Model for Organic Fouling Studies but Not Perfect

According to the type of dominant foulants, membrane fouling can be divided into
four categories: organic fouling, inorganic fouling, biofouling, and colloid fouling [5].
Generally, fouling controls include the optimization of hydrodynamic conditions and
operation parameters, online cleaning with backwash or chemicals, and ultrasonic cleaning,
which were carefully selected according to the fouling types [6,7]. It has been found that the
physico-chemical properties of the organic foulants in feed water play a significant role in
determining its fouling propensity [8–10], which actually is the footstone for a fundamental
understanding of the fouling mechanism. Furthermore, the complicated structure of biofilm
formed on membrane surface is also deeply affected by the organic matters from feed water
or secreted by the microorganisms [11]. The investigation on foulants identification and its
molecular structure is crucial for fouling studies in the membrane related field. Therefore,
researchers have made many efforts to decode the fouling mechanisms of organic foulants,
trying to provide an effective solution to the fouling problem. The main organic foulants
are protein, humic acid, and polysaccharides. Among them, polysaccharide foulants can
cross-link or combine with other organic molecules to form a three-dimensional network
structure, maintaining the mechanical stability of the foulant layer and thus playing a
more important role than other organic foulants in membrane fouling [12,13]. Furthermore,
the molecular structures of polysaccharide foulants rather than their function groups
may play a more important role in membrane fouling [4,14]. In addition, some of the
acidic polysaccharide foulants form transparent exopolymer particles (TEP), especially in
the presence of divalent and trivalent cations, which influence the fouling development
including organic fouling and biofouling [11,15]. These findings contribute to a better
understanding of the fouling mechanisms and promote the development of the techniques
in mitigating fouling problems.

In order to achieve a fundamental understanding of the fouling mechanism, surro-
gate foulant is usually employed in fouling studies. In 2002, alginate was considered to
have the representative function of extracellular polymeric substance (EPS) in biofilms
by fluorescence labeling [16]. Since then, sodium alginate was widely employed in stud-
ies of organic fouling and biofouling to represent the polysaccharide foulants or even
organic matter [16–18]. However, some researchers have claimed that sodium alginate
was a poor representation for either natural organic matter or organic matter in effluent
by comparing the organic composition [19]. Whereafter, Yang et al. also reported the
substantial differences in the colloid properties and membrane fouling behaviors between
sodium alginate and EPS [20]. As a consequence of these findings, employing sodium
alginate to represent all polysaccharides in fouling studies is not perfect. In our previous
research, we investigated seven common polysaccharides and tried to find their differ-
ences in fouling mechanisms [4]. Combined with model simulation, we classified them
into four fouling models. This attempt shows the great divergence lying in the abundant
organic foulants that can be present in the various feed water to membrane systems. Thus,
this “one-size-fits-all” approach is insufficient to deal with the complexity of the organic
foulant found in feed water to membrane systems. Generally, the feed waters to membrane
systems in water treatment include three types: surface water for water supply, effluent
from wastewater treatment plants (WWTP), and seawater for desalination. EPS contains
more organic matter. If membrane fouling is carried out according to these three kinds of
extraction, it will be more representative and more targeted. In view of this, more surrogate
foulants or EPS extracted from practical feed water should be applied to the studies of
membrane fouling problems.
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3. Advances in Modeling of Membrane Fouling: Traditional versus
Nontraditional Approaches

Constructing a mathematic model is a good way to analyze membrane fouling. A
fouling model can provide a qualitative evaluation of fouling type, figure out the main
cause of fouling, and further predict the fouling potential of a certain feed. With the
wide application of membrane separation technology, many filtration models have been
established, such as artificial neural network (ANN), genetic programming (GP) models,
variance partitioning analysis (VPA), and the classic Hermia models [21–24]. As one of the
state-of-the-art techniques, ANN possesses the ability of nonlinear function approach and
self-adaptive ability [25]. However, ANN requires a large number of parameters (such as
network topology, the initial value of weight and threshold, etc.) and the speed of network
learning and the detection accuracy is subject to the number of training samples [25]. It
is difficult to obtain a large database of filtration data; as such, this model cannot reach a
high degree of accuracy. In addition, GP was proposed as a novel approach in modeling
membrane fouling to predict permeate flux. Similar limitations with the ANN approach
are present in this GP model.

Certainly, the mathematical models mentioned above explain the mechanisms of the
membrane filtration process to a certain extent. However, these mathematical models
are extremely complex with many parameters and assumptions, which usually lead to
difficulty in parameter estimation and limited application scope [26,27]. Hermia established
four classical filtration models based on different fouling types, which depend on the value
of n in Equations (1) and (2) [15,28,29].

d2t
dV2 = K

[
dt
dV

]n
(1)

dJ
dt

= −KJ
(

Ae f f J
)2−n

(2)

K is a constant dependent on the property of membrane, Aeff is the effective surface
area of membrane (m2), and n is the blocking index dependent on the mechanism of
membrane fouling. When n equals 2, 1.5, 1, or 0, Equation (2) can be simplified as complete
blocking, intermediate blocking, standard blocking, and cake layer. The Hermia model
used the filtration data (J/Jo, i.e., the decline percentage of permeate flux) to predict the
fouling mechanisms. These models mainly take into account fouling trends, which are
“filtration data” in the paper. However, there are too many assumptions in the derivation
of the mathematic model, and this mechanical partitioning method makes the model’s
criticality unclear. Meanwhile, the classic Hermia models are established for specific
operation modes, while some inappropriate applications occur due to a misunderstanding
of these complex equations. Some endeavors have been made to improve the accuracy of
the Hermia models. For example, the applicable scope of Hermia classical model and mass
transfer model is clarified by investigating the role of structural and functional features
of various polysaccharides in membrane fouling [4]. However, this approach is time-
consuming and not applicable to all cases. Moreover, the Hermia models assume four ideal
scenarios which are not always in accordance with the practical filtration conditions [4]. In
the practical processes of membrane filtration, many factors have an impact on the results
of the model fitting including membrane characteristics, feed properties and filtration
modes [12]. More importantly, most of the existing models are based on laboratory data
(such as resistance-in-series model and Hermia models) rather than field data. It has a
positive effect on the study of the adsorption of foulants on the membrane surface but
reduces the reliability of the model applied to practical systems. Therefore, in order to
better control fouling problems, an effective model combining the mechanism analysis
with the empirical model should be established to provide decision support for the optimal
operation of membrane systems.
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The support vector machine (SVM) based on structural risk minimization is a machine
learning method suitable for small-scale datasets, which shows excellent performance in
limited samples, non-linear function, and multidimensional pattern recognition. SVM has
been applied to predict the protein types by employing the composition of amino acids
as inputs, which clearly shows the above advantages of SVM in machine learning [30].
Therefore, we consider identifying and establishing the connection between input pa-
rameters (filtration data) and output parameters (fouling mechanism) by SVM to predict
complex filtration processes. SVM was considered as a reliable accurate estimation method
to assess the soil quality, screen the non-target contaminants, and predict the adsorption
performance for application in the environmental field [31–33]. The employment of SVM
to validate membrane fouling was firstly proposed in the 2007 second IEEE Conference on
Industrial Electronics and Applications. In this study, it mainly considers three influential
factors of membrane fouling, including the property of membrane, operation condition
and the characteristic of filtrate. Recently, researchers found that the SVM technique
outperforms the other models in estimating the fouling resistance in MBR processes [34].
Therefore, the application analysis of SVM in membrane fouling is presented from this
perspective. The detailed operation procedure of SVM mainly includes the following steps:
Firstly, the collection of sample data is considered to be the primary task for the evaluation
of membrane fouling using SVM. The characteristic parameters of membrane fouling in
the sample data are then screened to adapt to different operating conditions. Based on
this, the key parameters are determined by optimizing the screening. All characteristic
parameters which reflect the degree of membrane fouling could be obtained and selected by
the forward model. For example, eight characteristic parameters such as initial membrane
flux were chosen as input vectors of SVM and adopted as the radial basis function to
improve the degree of accuracy by training and testing samples [25]. Based on the full
parameterization optimize, SVM can be used to focus on one of the multi-parameters, i.e.,
filtration behaviors. Although the operating pressure, pumping time, and other charac-
teristic parameters are simplified to a certain extent, the fouling mechanism can be more
accurately identified and predicted. To obtain general trends in the files of membrane
filtration, the weight of membrane flux to describe the whole process of membrane fouling
should be increased, and other operation parameters should be simplified. As such, the
database of SVM training based on mathematical models and practical parameters can
be obtained to identify the fouling mechanisms of unknown feed water to the membrane
system. Thus, due to the nonlinear relationship between the operating variables and the
output product of the fouling process, SVM may be much more powerful than traditional
empirical models to predict complex filtration processes.

4. Remarks

In order to obtain a fundamental understanding of membrane fouling, it is crucial to
establish a detailed database of reference foulants including important categories. Math-
ematical models can provide an insight into the fouling mechanism, while the present
models are limited in accurately characterizing the complex membrane fouling problems.
SVM may work as a good tool to recognize the fouling mechanisms and seek an appro-
priate surrogate for foulants in practical feed water. Consequently, with the successful
establishment of a database including representative foulants and the improvement of
mathematical models in predicting fouling, the fouling problems can be well understood
and effectively controlled.
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