Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery
Abstract
:1. Introduction
2. Common Types of Membrane Processes for Wastewater Treatment
2.1. Ultrafiltration
2.2. Forward Osmosis and Pressure Retarded Osmosis
2.3. Membrane Distillation
2.4. Hollow Fiber Membrane Contactor
3. Recent Development in Hollow Fiber Membrane in Wastewater Treatment
4. Challenges and Future Perspective
4.1. Membrane Availability
4.2. Membrane Surface Modification
4.3. Technology Aspect and Cost
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Zhang, J.; Xie, M.; Tong, X.; Yang, D.; Liu, S.; Qu, D.; Feng, L.; Zhang, L. Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis. Sci. Total Environ. 2021, 768, 144478. [Google Scholar] [CrossRef] [PubMed]
- Barros, Ó.; Costa, L.; Costa, F.; Lago, A.; Rocha, V.; Vipotnik, Z.; Silva, B.; Tavares, T. Recovery of Rare Earth Elements from Wastewater towards a Circular Economy. Molecules 2019, 24, 1005. [Google Scholar] [CrossRef] [Green Version]
- Institute for Rare Earths and Metals AG. Rare Earth Elements—Prices. 2021. Available online: https://en.institut-seltene-erden.de/our-service-2/ (accessed on 22 October 2021).
- Ibrahim, A.N.; Wirzal, M.D.H.; Nordin, N.A.H.; Halim, N.S.A. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment. IOP Conf. Series Earth Environ. Sci. 2018, 140, 012021. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Al-Maamari, R.S.; Sueyoshi, M.; Tasaki, M.; Okamura, K.; Al-Lawati, Y.; Nabulsi, R.Z.; Al-Battashi, M. Flotation, Filtration, and Adsorption: Pilot Trials for Oilfield Produced-Water Treatment. Oil Gas Facil. 2014, 3, 56–66. [Google Scholar] [CrossRef]
- Synder Filtration. Model Configuration Process of Hollow Fiber Membrane. 2021. Available online: https://synderfiltration.com/learning-center/articles/module-configurations-process/hollow-fiber-membranes/ (accessed on 22 October 2021).
- Azizo, A.S.; Wirzal, M.D.H.; Bilad, M.R.; Yusoff, A.R.M. Assessment of nylon 6, 6 nanofibre membrane for microalgae harvesting. In Proceedings of the AIP Conference Proceedings, Kedah, Malaysia, 3–5 April 2017. [Google Scholar]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M. Ásta; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Kim, J.-O.; Jung, J.-T.; Chung, J. Treatment performance of metal membrane microfiltration and electrodialysis inte-grated system for wastewater reclamation. Desalination 2007, 202, 343–350. [Google Scholar] [CrossRef]
- Meena, R.A.A.; Kannah, R.Y.; Sindhu, J.; Ragavi, J.; Kumar, G.; Gunasekaran, M.; Banu, J.R. Trends and resource recovery in biological wastewater treatment system. Bioresour. Technol. Rep. 2019, 7, 100235. [Google Scholar] [CrossRef]
- Gong, H.; Jin, Z.; Wang, Q.; Zuo, J.; Wu, J.; Wang, K. Effects of adsorbent cake layer on membrane fouling during hybrid coagulation/adsorption microfiltration for sewage organic recovery. Chem. Eng. J. 2017, 317, 751–757. [Google Scholar] [CrossRef]
- Huang, B.C.; Guan, Y.F.; Chen, W.; Yu, H.Q. Membrane fouling characteristics and mitigation in a coagula-tion-assisted microfiltration process for municipal wastewater pre-treatment. Water Res. 2017, 123, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Goh, P.; Wong, K.; Ismail, A. Membrane technology: A versatile tool for saline wastewater treatment and resource recovery. Desalination 2022, 521, 115377. [Google Scholar] [CrossRef]
- Rongwong, W.; Goh, K. Resource recovery from industrial wastewaters by hydrophobic membrane contactors: A review. J. Environ. Chem. Eng. 2020, 8, 104242. [Google Scholar] [CrossRef]
- Thomas Vroman. Mechanisms of Hollow-Fiber Membrane Fouling Removal Used in Water Treatment: Critical Backwash Fluxes and Membrane Deformation for an Enhanced Backwash Efficiency. Polymers. Université Paul Sabatier—Toulouse III, 2020. English. Available online: https://tel.archives-ouvertes.fr/tel-02978055/document (accessed on 22 October 2021).
- Alresheedi, M.T.; Basu, O.D. Support media impacts on humic acid, cellulose, and kaolin clay in reducing fouling in a sub-merged hollow fiber membrane system. J. Membr. Sci. 2014, 450, 282–290. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Preparation and characterization of PVDF–PVP–TiO2 composite hol-low fiber membranes for oily wastewater treatment using submerged membrane system. Desalin. Water Treat. 2015, 53, 1213–1223. [Google Scholar]
- Zhang, S.; Wang, P.; Fu, X.; Chung, T.-S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Res. 2014, 52, 112–121. [Google Scholar] [CrossRef]
- Zhao, S.; Minier-Matar, J.; Chou, S.; Wang, R.; Fane, A.G.; Adham, S. Gas field produced/process water treatment using forward osmosis hollow fiber membrane: Membrane fouling and chemical cleaning. Desalination 2017, 402, 143–151. [Google Scholar] [CrossRef]
- Cho, H.; Choi, Y.; Lee, S. Effect of pretreatment and operating conditions on the performance of membrane distillation for the treatment of shale gas wastewater. Desalination 2018, 437, 195–209. [Google Scholar] [CrossRef]
- Jia, F.; Yin, Y.; Wang, J. Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. Prog. Nucl. Energy 2018, 103, 20–27. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, X.; Gusnawan, P.; Zhang, G.; Yu, J. Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: From the seawater to oilfield produced water. J. Membr. Sci. 2021, 619, 118802. [Google Scholar] [CrossRef]
- Sancho, I.; Licon, E.; Valderrama, C.; de Arespacochaga, N.; López-Palau, S.; Cortina, J.L. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors. Sci. Total Environ. 2017, 584–585, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Wang, R.; Shi, L.; She, Q.; Tang, C.; Fane, A.G. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 2012, 389, 25–33. [Google Scholar] [CrossRef]
- Damtie, M.M.; Volpin, F.; Yao, M.; Tijing, L.D.; Hailemariam, R.H.; Bao, T.; Park, K.-D.; Shon, H.K.; Choi, J.-S. Ammonia recovery from human urine as liquid fertilizers in hollow fiber membrane contactor: Effects of permeate chemistry. Environ. Eng. Res. 2020, 26, 190523. [Google Scholar] [CrossRef]
- Mohanty, K.; Purkait, M.K. Overview of Membrane Science and Technology. In Membrane Technologies and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Chia, W.Y.; Chia, S.R.; Khoo, K.S.; Chew, K.W.; Show, P.L. Sustainable membrane technology for resource recovery from wastewater: Forward osmosis and pressure retarded osmosis. J. Water Process Eng. 2021, 39, 101758. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Lu, K.J.; Zuo, J.; Chang, J.; Kuan, H.N.; Chung, T.-S. Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation. Environ. Sci. Technol. 2018, 52, 4472–4480. [Google Scholar] [CrossRef] [PubMed]
- ScienceDeshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar]
- Qi, Z.; Cussler, E. Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid. J. Membr. Sci. 1985, 23, 321–332. [Google Scholar] [CrossRef]
- Darestani, M.; Haigh, V.; Couperthwaite, S.; Millar, G.; Nghiem, L. Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. J. Environ. Chem. Eng. 2017, 5, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, H.A. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 1996, 112, 229–240. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Cao, H.; Duan, F.; Su, C.; Lu, C.; Chang, J.; Ding, H. High-selectivity membrane absorption process for recovery of ammonia with electrospun hollow fiber membrane. Sep. Purif. Technol. 2019, 216, 136–146. [Google Scholar] [CrossRef]
- Lim, S.; Tran, V.H.; Akther, N.; Phuntsho, S.; Shon, H.K. Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications. J. Membr. Sci. 2019, 586, 281–291. [Google Scholar] [CrossRef]
- Yan, H.; Wu, L.; Wang, Y.; Irfan, M.; Jiang, C.; Xu, T. Ammonia capture from wastewater with a high ammonia nitrogen concentration by water splitting and hollow fiber extraction. Chem. Eng. Sci. 2020, 227, 115934. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Hou, L.; Wang, J. Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment. Nucl. Eng. Technol. 2020, 52, 581–588. [Google Scholar] [CrossRef]
- Korenak, J.; Hélix-Nielsen, C.; Bukšek, H.; Petrinić, I. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. J. Clean. Prod. 2019, 210, 1483–1495. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, J.; Wang, S.; Xu, C.; Yang, K.; Xu, M. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere 2018, 206, 278–284. [Google Scholar] [CrossRef]
- Sunsandee, N.; Phatanasri, S.; Pancharoen, U. Separation of homogeneous palladium catalysts from pharmaceutical industry wastewater by using synergistic recovery phase via HFSLM system. Arab. J.Chem. 2021, 14. [Google Scholar] [CrossRef]
- Li, H.; Zeng, X.; Shi, W.; Zhang, H.; Huang, S.; Zhou, R.; Qin, X. Recovery and purification of potato proteins from potato starch wastewater by hollow fiber separation membrane integrated process. Innov. Food Sci. Emerg. Technol. 2020, 63, 102380. [Google Scholar] [CrossRef]
- Volpin, F.; Chekli, L.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, H.; Shon, H.K. Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine. Sep. Purif. Technol. 2019, 212, 368–375. [Google Scholar] [CrossRef]
- Naidu, G.; Tijing, L.; Johir, M.A.H.; Shon, H.; Vigneswaran, S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J. Membr. Sci. 2020, 599, 117832. [Google Scholar] [CrossRef]
- Zhang, J.; Dow, N.; Duke, M.; Ostarcevic, E.; Li, J.-D.; Gray, S. Identification of material and physical features of membrane distillation membranes for high performance desalination. J. Membr. Sci. 2010, 349, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Pijuan, M.; Rodriguez-Roda, I.; Blandin, G. Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater before Anaerobic Digestion: A Pilot Scale Study. Membranes 2019, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tun, L.L.; Jeong, D.; Jeong, S.; Cho, K.; Lee, S.; Bae, H. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation. J. Membr. Sci. 2016, 512, 13–20. [Google Scholar] [CrossRef]
- Volpin, F.; Chekli, L.; Phuntsho, S.; Cho, J.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere 2018, 203, 482–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsebaeai, M.K.; Ahmad, A.L. Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J. Ind. Eng. Chem. 2020, 86, 13–34. [Google Scholar] [CrossRef]
- Choudhury, M.R.; Anwar, N.; Jassby, D.; Rahaman, M.S. Fouling and wetting in the membrane distillation driven wastewater reclamation process—A review. Adv. Colloid Interface Sci. 2019, 269, 370–399. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, L.; Jang, Y.; Lee, J.-G.; Jeong, S.; Lee, S.; Leiknes, T.; Ghaffour, N. Fouling development in direct contact membrane distillation: Non-invasive monitoring and destructive analysis. Water Res. 2018, 132, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Muhamad, N.; Mokhtar, N.M.; Naim, R.; Lau, W.; Ismail, A. A Review of Membrane Distillation Process: Before, During and After Testing. Int. J. Eng. Technol. Sci. 2019, 6, 62–81. [Google Scholar] [CrossRef]
- Kamali, M.; Suhas, D.; Costa, M.E.; Capela, I.; Aminabhavi, T.M. Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem. Eng. J. 2019, 368, 474–494. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials 2020, 13, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Xiao, C.; Huang, Q.; Liu, H.; Zhao, J. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem. Eng. J. 2021, 403, 126295. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Li, J.; Guo, W.; Ngo, H.H. In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: A critical review. J. Membr. Sci. 2017, 528, 187–200. [Google Scholar] [CrossRef]
- Yaacob, N.; Goh, P.S.; Ismail, A.F.; Nazri, N.A.M.; Ng, B.C.; Abidin, M.N.Z.; Yogarathinam, L.T. ZrO2-TiO2 Incorporated PVDF Dual-Layer Hollow Fiber Membrane for Oily Wastewater Treatment: Effect of Air Gap. Membranes 2020, 10, 124. [Google Scholar] [CrossRef] [PubMed]
Applications | Membrane Material | Technology | Feed Solution | Results | Ref. |
---|---|---|---|---|---|
Municipal domestic wastewater | PP | HFMC | Synthetic human urine | Ammonia recovery efficiency varied from 88.47% to 90.90% | [1] |
Domestic wastewaters | PVDF | UF | Domestic wastewaters | 60% cake removal | [18] |
Synthetic wastewater | PVDF | UF | Synthetic surface wastewater | 35–50% reduction in membrane fouling | [19] |
Oily wastewater | PVDF | UF | Oily wastewater | 70.48 L/m2 h permeate flux, 99.7% of oil removal | [20] |
Oily wastewater | PVDF | FO-MD | Oily wastewater | >90% feed water recovery | [21] |
Gas field wastewater | PES | FO | Mixture of gas field produced water | Reduce the process water volume by 50% at high average water flux of 15.6 L/m2 h | [22] |
Shale gas wastewater | PVDF, PE, PP | DCMD | Real shale gas wastewater from oil and gas field | 13.6% to 27.7% flux reduction, achieve 50% recovery ratio | [23] |
Radioactive wastewater | PP | MD | Simulated radioactive wastewater | Removal efficiency >99.67% | [24] |
Oilfield wastewater, Seawater | PVDF | MD | Simulated seawater and actual oilfield produced water | Almost 100% of permeate water recovery, 99.9% of salt rejection | [25] |
Domestic wastewater | PP | HFMC | High rate activated sludge effluent | The ammonia recovery ratio >98%. | [26] |
Seawater, wastewater | PES, Polyamide | FO, PRO | Seawater brine, wastewater brine | Achieve water flux of 40.3 L/m2 h (FO), achieve power density as high as 10.6 W/m2 (PRO) | [27] |
Domestic wastewater | PVDF | HFMC | Synthetic human urine | Production of high-quality fertilizers | [28] |
Application | Membrane and Categories | Remarks | Ref. |
---|---|---|---|
Recovery of N-P compound fertilizer from human urine | Polypropylene HF (Accurel Q3/2, Membrana Germany) & submerged HFMC |
| [1] |
Integration of zeolite adsorption and HFMC | Natural clinoptilolite (Z) zeolite and propylene HFMC Liquid-Cel (Membrane–Charlotte, NC, USA) |
| [26] |
Ammonia recovery from human urine as liquid fertilizers | PVDF HFM (Econity, Korea) and Direct Contact Membrane Distillation (DCMD) |
| [28] |
Removal of ammonia from wastewater | Electrospun PVDF-HFP HFM |
| [37] |
Osmotic membrane bioreactor (OMBR) | Membrane substrates: PES HFM, PA selective layer: MPD, TMC |
| [38] |
Removal of ammonia from wastewater | CMX, AMX, BP-1E (Astrom Corp Japan), HFMC (Pureseaspring Corp., China) |
| [39] |
Radioactive wastewater treatment | HTI CTA-ES membrane |
| [40] |
Textile wastewater | FO Aquaporin Inside™ membranes |
| [41] |
Removal of Pb(II) from wastewater | Al2O3-NaA zeolite composite HFM |
| [42] |
Removal of palladium catalysts from pharmaceutical industry wastewater | Polypropylene HFSLM system (Liqui-Cel, Membrana/Celgard, Charlotte, NC, USA). |
| [43] |
Recovery and purification of potato proteins from potato starch wastewater | Integrated PSF-HF (UF) and PSF-IP HF (NF) membrane |
| [44] |
Extraction of distilled water from human urine | FO: Flat sheet PA-TFC membrane (Toray Chemical Inc., Tokyo, Japan) MD: PVDF (Durapore®-GVHP) and PTFE (Fluoropore®-FGLP) |
| [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naim, R.; Pei Sean, G.; Nasir, Z.; Mokhtar, N.M.; Safiah Muhammad, N.A. Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery. Membranes 2021, 11, 839. https://doi.org/10.3390/membranes11110839
Naim R, Pei Sean G, Nasir Z, Mokhtar NM, Safiah Muhammad NA. Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery. Membranes. 2021; 11(11):839. https://doi.org/10.3390/membranes11110839
Chicago/Turabian StyleNaim, Rosmawati, Goh Pei Sean, Zinnirah Nasir, Nadzirah Mohd Mokhtar, and Nor Amirah Safiah Muhammad. 2021. "Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery" Membranes 11, no. 11: 839. https://doi.org/10.3390/membranes11110839
APA StyleNaim, R., Pei Sean, G., Nasir, Z., Mokhtar, N. M., & Safiah Muhammad, N. A. (2021). Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery. Membranes, 11(11), 839. https://doi.org/10.3390/membranes11110839