New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used in Membrane Fabrication
2.2. XRD and Raman Analysis for the Studied Nanopowders
2.3. Membrane Fabrication
2.4. Characterization Methods
3. Results and Discussions
3.1. SEM and EDX Studies
3.1.1. SEM Surface Observations
3.1.2. Cross-Section Observations
3.1.3. EDX Observations
3.2. Raman Spectroscopy of Membranes
3.3. Hydrophilicity, Porosity, and Roughness
3.3.1. Water Contact Angle
3.3.2. Porosity
3.3.3. AFM Observations
3.4. Permeation Properties
3.4.1. Permeability
3.4.2. Retention Tests
3.4.3. Relative Flux
3.4.4. Relative Flux Reduction (RFR)
3.5. Mechanical Properties
3.5.1. Elongation-at-Break
3.5.2. Tensile Strength
3.6. Compaction Factor
3.7. Determination of Total Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xua, H.; Ding, M.; Chen, W.; Li, Y.; Wang, K. Nitrogen-doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance. Sep. Purif. Technol. 2018, 195, 70–82. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Radovici, C.; Ghiurea, M.; Paven, H.; Iorga, M.D. Influence of rutile and anatase TiO2 nanoparticles on polyethylene properties. Polym.-Plast. Technol. 2011, 50, 196–202. [Google Scholar] [CrossRef]
- Prasad, K.; Pinjari, D.V.; Pandit, A.B.; Mhaske, S.T. Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique. Ultrason. Sonochem. 2010, 17, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Q.; Tan, X.; Wang, Y.; Jin, R.; Gao, S. Enhanced photocatalytic performance of TiO2 NTs decorated with chrysanthemum-like BiOI nanoflowers. Sep. Purif. Technol. 2019, 215, 565–572. [Google Scholar] [CrossRef]
- Bet-moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 2016, 283, 29–46. [Google Scholar] [CrossRef]
- Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.H.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Lee, C.; Jung, K.W.; Jung, D. Structure related photocatalytic properties of TiO2. Bull. Korean Chem. Soc. 2009, 30, 402–404. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, G.; Fischer, C.H.; Bahring, S.; Almtoft, K.P.; Tonning, K.; Mikkelsen, S.H.; Christensen, F. Occurrence and Effects of Nanosized Anatase Titanium Dioxide in Consumer Products; Environmental Project No. 1603; The Danish Environmental Protection Agency: Copenhagen, Denmark, 2014; ISBN 978-87-93283-02-2. [Google Scholar]
- Wu, H.; Liu, Y.; Mao, L.; Jiang, C.; Ang, J.; Lu, X. Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection. J. Membr. Sci. 2017, 532, 20–29. [Google Scholar] [CrossRef]
- Ng, H.K.M.; Leo, C.P.; Lim, T.S.; Low, S.C.; Ooi, B.S. Polishing monoclonal antibody using pH-responsive TiO2/polysulfone membrane in dual size-exclusion strategy. Sep. Purif. Technol. 2019, 213, 359–367. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Zheng, Q. Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes. J. Polym. Sci. Pol. Phys. 2006, 44, 879–887. [Google Scholar] [CrossRef]
- Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S. Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 2011, 273, 85–92. [Google Scholar] [CrossRef]
- Bae, T.H.; Tak, T.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Oh, J.S.; Nowon, K.; Lee, Y.T. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 2009, 345, 13–20. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 2011, 273, 226–234. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; van der Bruggen, B. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES–TiO2 membranes. J. Colloid. Interface Sci. 2011, 363, 540–550. [Google Scholar] [CrossRef]
- Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Puteh, M.H.; Rahman, M.A.; Jaafar, J.; Adrus, N.; Hashim, N.A. Antifouling behavior and separation performance of immobilized TiO2 in dual layer hollow fiber membranes. Polym. Eng. Sci. 2018, 58, 1636–1643. [Google Scholar] [CrossRef]
- Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Puteh, M.H.; Rahman, M.A.; Jaafar, J. Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings. J. Membr. Sci. 2015, 479, 123–131. [Google Scholar] [CrossRef]
- Yanan, Y.; Peng, W. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer 2006, 47, 2683–2688. [Google Scholar] [CrossRef]
- Mericq, J.P.; Mendret, J.; Brosillon, S.; Faur, C. High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci. 2015, 123, 283–291. [Google Scholar] [CrossRef]
- Li, J.B.; Zhu, J.W.; Zheng, M.S. morphologies and properties of poly(phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci. 2007, 103, 3623–3629. [Google Scholar] [CrossRef]
- Yu, L.Y.; Shen, H.M.; Xu, Z.L. PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J. Appl. Polym. Sci. 2009, 113, 1763–1772. [Google Scholar] [CrossRef]
- Luo, M.L.; Zheo, J.Z.; Tang, W.; Pu, C.S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci. 2005, 249, 76–84. [Google Scholar] [CrossRef]
- Yin, S.; Ihara, K.; Liu, B.; Wang, Y.; Li, R.; Sato, T. Preparation of anatase, rutile and brookite type anion doped titania photocatalyst nanoparticles and thin films. Phys. Scr. 2007, 2007, 268–273. [Google Scholar] [CrossRef]
- Pal, A.; Dey, T.K.; Debnath, A.K.; Bhushan, B.; Sahu, A.K.; Bindal, R.C.; Kar, S. Mixed-matrix membranes with enhanced antifouling activity: Probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2. R. Soc. Open Sci. 2017, 4, 170368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanaor, D.A.H.; Sorell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Purkait, M.K. Impact of synthesized amino alcohol plasticizer on themorphology and hydrophilicity of polysulfone ultrafiltration membrane. J. Membr. Sci. 2017, 522, 202–215. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Aber, S.; Mahmoodi, N.M. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep. Purif. Technol. 2018, 192, 369–382. [Google Scholar] [CrossRef]
- Mohsenpour, S.; Safekordi, A.; Tavakolmoghadam, M.; Rekabdar, F.; Hemmati, M. Comparison of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive. Polymer 2016, 97, 559–568. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Alhoshan, M.; Dass, L.A.; Muthumareeswaran, M.R. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide. Sci. Rep. 2017, 7, 41976. [Google Scholar] [CrossRef] [Green Version]
- Bolis, V.; Busco, C.; Ciarletta, M.; Distasi, C.; Erriquez, J.; Fenoglio, I.; Livraghi, S.; Morel, S. Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J. Colloid. Interf. Sci. 2012, 369, 28–39. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Z.; Shan, M.; Min, C.; Zhou, B.; Li, Y.; Li, B.; Liu, L.; Qian, X. Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep. Purif. Technol. 2013, 103, 78–83. [Google Scholar] [CrossRef]
- Sun, M.; Su, Y.; Mu, C.; Jiang, Z. Improved antifouling property of PES ultrafiltration membranes using additive of silica−PVP nanocomposite. Ind. Eng. Chem. Res. 2010, 49, 790–796. [Google Scholar] [CrossRef]
- Amiri, F.; Moghadassi, A.; Bagheripour, E.; Parvizian, F. Fabrication and characterization of PES based nanofiltration membrane modified by zeolite nanoparticles for water desalination. J. Membr. Sci. Res. 2017, 3, 50–56. [Google Scholar] [CrossRef]
- Dipheko, T.D.; Matabola, K.P.; Kotlhao, K.; Moutloali, R.M.; Klink, M. Fabrication and assessment of ZnO modified polyethersulfone membranes for fouling reduction of bovine serum albumin. Int. J. Polym. Sci. 2017, 2017, 3587019. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Motaung, T.E.; Luyt, A.S.; Saladino, M.L.; Caponetti, E. Study of morphology, mechanical properties, and thermal degradation of polycarbonate-titania nanocomposites as function of titania crystalline phase and content. Polym. Compos. 2013, 34, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.S.; Torbati, S.F.; Shahmirzadi, M.A.A.; Tavangar, T. Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polym. Advan. Technol. 2018, 29, 2619–2631. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Khumalo, N.; Dlamini, D.; Mamba, B.B. Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133. [Google Scholar] [CrossRef]
- Kibechu, R.W.; Ndinteh, D.T.; Msagati, T.A.M.; Mamba, B.B.; Sampath, S. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water. Phys. Chem. Earth 2017, 100, 126–134. [Google Scholar] [CrossRef]
- Kim, H.J.; Fouda, A.E.; Jonasson, K. In situ study on kinetic behavior during asymmetric membrane formation via phase inversion process using Raman spectroscopy. J. Appl. Polym. Sci. 2000, 75, 135–141. [Google Scholar] [CrossRef]
- Horiba. Raman Bands. Available online: http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/bands.pdf (accessed on 20 July 2021).
- Larkin, P. Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123870186. [Google Scholar]
- Smith, E.; Den, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons Ltd.: Chichester, UK, 2005; ISBN 0471497940. [Google Scholar]
- Yang, Y.; Zhang, X.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Demirel, E.; Zhang, B.; Papakyriakou, M.; Xia, S.; Chen, Y. Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. J. Membr. Sci. 2017, 529, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Yogarathinam, L.T.; Gangasalam, A.; Ismail, A.F.; Arumugam, S.; Narayanan, A. Concentration of whey protein from cheese whey effluent using ultrafiltration by combination of hydrophilic metal oxides and hydrophobic polymer. J. Chem. Technol. Biot. 2018, 93, 2576–2591. [Google Scholar] [CrossRef]
- Lin, J.; Tang, C.Y.; Huang, C.; Tang, Y.P.; Ye, W.; Li, J.; Shen, J.; van den Boek, R.; van Impe, J.; Volodin, A.; et al. A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. J. Membr. Sci. 2016, 501, 1–14. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalin. Water Treat. 2015, 53, 1213–1223. [Google Scholar] [CrossRef]
- Kim, J.; Sotto, A.; Chang, J.; Nam, D.; Boromand, A.; van der Bruggen, B. Embedding TiO2 nanoparticles versus surface coating by layer-by-layer deposition on nanoporous polymeric films. Micropor. Mesopor. Mat. 2013, 173, 121–128. [Google Scholar] [CrossRef]
- Saki, S.; Uzal, N.; Ates, N. The size and concentration effects of Al2O3 nanoparticles on PSF membranes with enhanced structural stability and filtration performance. Desalin. Water Treat. 2017, 84, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Yunos, M.Z.; Harun, Z.; Basri, H.; Shohur, M.F.; Jamalludin, M.R.; Hassan, S. Effect of zinc oxide on performance of ultrafiltration membrane for humic acid separation. J. Teknol. 2013, 65, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Vatanpour, V.; Madaeni, S.S.; Khataee, A.R.; Salehi, E.; Zinadini, S.; Monfared, H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012, 292, 19–29. [Google Scholar] [CrossRef]
- Johnson, D.; Hilal, N. Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination 2015, 356, 149–164. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci. 2011, 378, 73–84. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Chen, K.; Li, S.N.; Yin, X.T.; Zhang, Z.; Xu, H.T. Effect of ferrosoferric oxide content on the performances of polysulfone–ferrosoferric oxide ultrafiltration membranes. J. Membr. Sci. 2008, 315, 164–171. [Google Scholar] [CrossRef]
- Celik, E.; Choi, H. Carbon Nanotube/Polyethersulfone Composite Membranes for Water Filtration. In Modern Applications in Membrane Science and Technology; Escobar, I.C., Van der Bruggen, B., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2012; Volume 1078, pp. 257–269. [Google Scholar] [CrossRef]
- Haghighat, N.; Vatanpour, V.; Sheydaei, M.; Nikjavan, Z. Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities. Sep. Purif. Technol. 2020, 237, 116374. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, M.; Hou, J.; Wang, J.; Lin, J.; Zhang, Y.; Liu, J.; van der Bruggen, B. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J. Mater. Chem. A 2016, 4, 1980–1990. [Google Scholar] [CrossRef]
Membrane Code | NP Conc. [wt.%] | Crystalline Structure |
---|---|---|
Control | - | - |
0.1R | 0.1 | rutile |
0.1A | anatase | |
0.5R | 0.5 | rutile |
0.5A | anatase | |
1R | 1 | rutile |
1A | anatase |
Membrane | (a) Top-View | (b) Cross-Section |
---|---|---|
Titanium [%] | Titanium [%] | |
Control | - | - |
0.1R | 0.04 ± 0.01 | 0.03 ± 0.02 |
0.5R | 0.11 ± 0.05 | 0.35 ± 0.12 |
1R | 0.52 ± 0.07 | 0.55 ± 0.14 |
0.1A | 0.14 ± 0.04 | 0.16 ± 0.05 |
0.5A | 0.20 ± 0.25 | 0.27 ± 0.11 |
1A | 0.88 ± 0.06 | 0.43 ± 0.29 |
Raman Peak [cm−1] | Functional Group/Molecular Vibrations |
---|---|
644 | Stretching vibration of C-S aliphatic chain |
Vibration of asymmetric deformation of C-S-C bond | |
795 | Out-of-plane asymmetric displacement vibrations of C-H bond in the benzene ring |
Aliphatic C-C chain deformation vibration | |
1080 | Planar vibration of C-H bond in benzene ring |
Stretch vibration of aromatic C-S bond | |
Symmetrical stretch vibration of SO2 bond | |
1114 | Asymmetrical stretch vibration of C-O-C bond |
Asymmetrical stretch vibration of SO2 bond | |
1151 | Benzene ring breathing vibration mode coupled with C-S and C-O linkage movements |
Symmetrical deformation vibration of C-O-C bond | |
1591 | In-plane deformation vibration of benzene rings |
Membrane | Water Contact Angle [°] | Porosity, ε [%] | Roughness, Sa [nm] |
---|---|---|---|
Control | 73.6 ± 3.6 | 45.3 ± 7.4 | 4.4 ± 0.5 |
0.1R | 66.6 ± 2.4 | 46.7 ± 8.1 | 3.8 ± 0.2 |
0.5R | 61.6 ± 3.3 | 52.1 ± 6.5 | 3.8 ± 0.8 |
1R | 60.5 ± 2.3 | 57.4 ± 6.6 | 5.7 ± 1.7 |
0.1A | 64.8 ± 2.2 | 44.5 ± 9.1 | 4.1 ± 0.6 |
0.5A | 61.4 ± 1.7 | 49.2 ± 8.7 | 4.2 ± 1.1 |
1A | 57.7 ± 1.1 | 52.2 ± 12.2 | 7.7 ± 1.9 |
Membrane | RFR [%] |
---|---|
Control | 54.3 ± 1.9 |
0.1R | 24.8 ± 2.4 |
0.5R | 25.9 ± 2.6 |
1R | 39.6 ± 2.4 |
0.1A | 29.3 ± 2.1 |
0.5A | 32.6 ± 2.6 |
1A | 44.7 ± 2.1 |
Membrane | Compaction Factor [%] | Standard Deviation |
---|---|---|
Control | 32.5 | ±2.9 |
0.1R | 17.3 | ±2.9 |
0.5R | 11.6 | ±0.4 |
1R | 8.5 | ±1.1 |
0.1A | 23.1 | ±1.9 |
0.5A | 15.9 | ±0.8 |
1A | 13.1 | ±0.8 |
Membrane | PI |
---|---|
Control | 0.536 |
0.1R | 0.812 |
0.5R | 0.917 |
1R | 0.803 |
0.1A | 0.802 |
0.5A | 0.892 |
1A | 0.824 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birsan, I.-G.; Pintilie, S.C.; Pintilie, L.G.; Lazar, A.L.; Circiumaru, A.; Balta, S. New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes. Membranes 2021, 11, 841. https://doi.org/10.3390/membranes11110841
Birsan I-G, Pintilie SC, Pintilie LG, Lazar AL, Circiumaru A, Balta S. New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes. Membranes. 2021; 11(11):841. https://doi.org/10.3390/membranes11110841
Chicago/Turabian StyleBirsan, Iulian-Gabriel, Stefan Catalin Pintilie, Laurentia Geanina Pintilie, Andreea Liliana Lazar, Adrian Circiumaru, and Stefan Balta. 2021. "New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes" Membranes 11, no. 11: 841. https://doi.org/10.3390/membranes11110841
APA StyleBirsan, I.-G., Pintilie, S. C., Pintilie, L. G., Lazar, A. L., Circiumaru, A., & Balta, S. (2021). New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes. Membranes, 11(11), 841. https://doi.org/10.3390/membranes11110841