Effect of Pectinolytic Enzyme Pretreatment on the Clarification of Cranberry Juice by Ultrafiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cranberry Juice and Depectinization
2.2. Ultrafiltration System
2.3. Operational Modes
2.3.1. Total Recycle Mode
2.3.2. Concentration Mode
2.4. Physicochemical Analysis of Fresh and Depectinized Juices and Ultrafiltration Permeates
2.5. Analysis of Phenolic Fractions of Fresh and Depectinized Juices and Ultrafiltration Permeates
2.5.1. Total Phenolic Content
2.5.2. Anthocyanin Content
2.5.3. Proanthocyanidin Content
2.6. Membrane Fouling Deposit Analysis
2.7. Statistical Analysis
3. Results
3.1. Total Recycle Mode
3.2. Concentration Mode
3.3. Physicochemical Characteristics of Fresh, Depectinized and Clarified Cranberry Juices
3.4. Polyphenol Content of Fresh, Depectinized and Clarified Cranberry
3.5. Characterization of Fouling Material
4. Discussion
4.1. Time Dependence between Permeate Flux and Transmembrane Pressure
4.2. Evolution of Permeate Flux during Clarification of Cranberry Juices
4.3. Effect of Depectinization and Clarification on Physicochemical Characteristics and Suspended Solids of Fresh, Depectinized and Clarified Cranberry Juices
4.4. Effect of Depectinization and Clarification on Polyphenol Content of Fresh, Depectinized and Clarified Cranberry Juices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Water Flux (L/m2·h) | |||
---|---|---|---|
50 kDa | 100 kDa | 500 kDa | |
Fresh juice | 164 ± 9 to 792 ± 68 | 266 ± 8 to 1169 ± 29 | 344 ± 83 to 890 ± 86 |
D60 | 173 ± 22 to 773 ± 46 | ND | 374 ± 0 to 910 ± 0 |
D120 | 152 ± 26 to 682 ± 26 | 299 ± 24 to 1246 ± 126 | 587 ± 111 to 1583 ± 81 |
References
- Girard, K.K.; Sinha, N.K. Cranberry, blueberry, currant, and gooseberry. In Handbook of Fruits and Fruit Processing; Blackwell Publishing Professional: Ames, IA, USA, 2006; p. 369. [Google Scholar]
- MAPAQ. Portrait-Diagnostic Sectoriel de la Canneberge au Québec. Available online: https://www.mapaq.gouv.qc.ca/fr/Publications/Portraitdiagnosticcanneberge.pdf (accessed on 12 January 2021).
- White, B.L.; Howard, L.R.; Prior, R.L. Impact of different stages of juice processing on the anthocyanin, flavonol, and procyanidin contents of cranberries. J. Agricult. Food Chem. 2011, 59, 4692–4698. [Google Scholar] [CrossRef]
- Pappas, E.; Schaich, K. Phytochemicals of cranberries and cranberry products: Characterization, potential health effects, and processing stability. Crit. Rev. Food Sci. Nutrit. 2009, 49, 741–781. [Google Scholar] [CrossRef]
- Khoo, C.; Falk, M. Cranberry polyphenols: Effects on cardiovascular risk factors. In Polyphenols in Human Health and Disease; Elsevier: Amesterdam, The Netherlands, 2014; pp. 1049–1065. [Google Scholar]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutrit. 2013, 4, 618–632. [Google Scholar] [CrossRef] [Green Version]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Compl. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef] [Green Version]
- Rane, H.S.; Bernardo, S.M.; Howell, A.B.; Lee, S.A. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm-and adherence-specific mechanisms. J. Antimicrob. Chemother. 2014, 69, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Kilara, A.; Van Buren, J.P. Clarification of apple juice. In Processed Apple Products; Springer: Berlin, Germany, 1989; pp. 83–96. [Google Scholar]
- Oszmiański, J.; Wojdyło, A. Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol. 2007, 224, 755–762. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Clarification of fruit juice with chitosan. Process Biochem. 2004, 39, 2229–2232. [Google Scholar] [CrossRef]
- Vatai, G. Separation technologies in the processing of fruit juices. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Elsevier: Amsterdam, The Netherlands, 2013; pp. 381–395. [Google Scholar]
- Alvarez, S.; Riera, F.; Alvarez, R.; Coca, J.; Cuperus, F.; Bouwer, S.T.; Boswinkel, G.; Van Gemert, R.; Veldsink, J.; Giorno, L. A new integrated membrane process for producing clarified apple juice and apple juice aroma concentrate. J. Food Eng. 2000, 46, 109–125. [Google Scholar] [CrossRef]
- Dornier, M.; Belleville, M.-P.; Vaillant, F. Membrane technologies for fruit juice processing. In Fruit Preservation; Springer: Berlin, Germany, 2018; pp. 211–248. [Google Scholar]
- Boddula, R.; Asiri, A.M. Self-Standing Substrates: Materials and Applications; Springer International Publishing: New York, NY, USA, 2019. [Google Scholar]
- Urošević, T.; Povrenović, D.; Vukosavljević, P.; Urošević, I.; Stevanović, S. Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod. Process. 2017, 106, 147–161. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. J. Food Eng. 2011, 107, 366–373. [Google Scholar] [CrossRef]
- Cassano, A.; Donato, L.; Drioli, E. Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling. J. Food Eng. 2007, 79, 613–621. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.; Dutta, S. Fruit juice processing using membrane technology: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 136–153. [Google Scholar] [CrossRef]
- Cai, M.; Hou, W.; Li, Z.; Lv, Y.; Sun, P. Understanding nanofiltration fouling of phenolic compounds in model juice solution with two membranes. Food Bioprocess. Technol. 2017, 10, 2123–2131. [Google Scholar] [CrossRef]
- Patsioura, A.; Galanakis, C.M.; Gekas, V. Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membr. Sci. 2011, 373, 53–63. [Google Scholar] [CrossRef]
- He, Y.; Ji, Z.; Li, S. Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment. Sep. Purif. Technol. 2007, 57, 366–373. [Google Scholar] [CrossRef]
- Ramadan, M.F. Enzymes in fruit juice processing. In Enzymes in Food Biotechnology; Elsevier: Amsteradam, The Netherlands, 2019; pp. 45–59. [Google Scholar]
- Maktouf, S.; Neifar, M.; Drira, S.J.; Baklouti, S.; Fendri, M.; Châabouni, S.E. Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food Bioprod. Process. 2014, 92, 14–19. [Google Scholar] [CrossRef]
- Alvarez, S.; Alvarez, R.; Riera, F.; Coca, J. Influence of depectinization on apple juice ultrafiltration. In Colloids and Surfaces A: Physicochemical and Engineering Aspects; Elsevier: Amsteradam, The Netherlands, 1998; Volume 138, pp. 377–382. [Google Scholar]
- Ortega, N.; De Diego, S.; Perez-Mateos, M.; Busto, M. Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chem. 2004, 88, 209–217. [Google Scholar] [CrossRef]
- Leu, M.; Marciniak, A.; Chamberland, J.; Pouliot, Y.; Bazinet, L.; Doyen, A. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration. J. Dairy Sci. 2017, 100, 7071–7082. [Google Scholar] [CrossRef]
- Cheryan, M. Ultrafiltration and Microfiltration Handbook; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Espinasse, B.; Bacchin, P.; Aimar, P. On an experimental method to measure critical flux in ultrafiltration. Desalination 2002, 146, 91–96. [Google Scholar] [CrossRef]
- Bacchin, P.; Aimar, P.; Field, R.W. Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W. Acidity titratable of fruit products (AOAC Official Method 942.15). In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Pap, N.; Pongrácz, E.; Jaakkola, M.; Tolonen, T.; Virtanen, V.; Turkki, A.; Horváth-Hovorka, Z.; Vatai, G.; Keiski, R.L. The effect of pre-treatment on the anthocyanin and flavonol content of black currant juice (Ribes nigrum L.) in concentration by reverse osmosis. J. Food Eng. 2010, 98, 429–436. [Google Scholar] [CrossRef]
- Kirk, D.; Montgomery, M.; Kortekaas, M. Clarification of pear juice by hollow fiber ultrafiltration. J. Food Sci 1983, 48, 1663–1667. [Google Scholar] [CrossRef]
- De Barros, S.; Andrade, C.; Mendes, E.; Peres, L. Study of fouling mechanism in pineapple juice clarification by ultrafiltration. J. Membr. Sci. 2003, 215, 213–224. [Google Scholar] [CrossRef]
- Echavarria, A.; Pagán, J.; Ibarz, A. Effect of previous enzymatic recirculation treatment through a tubular ceramic membrane on ultrafiltration of model solution and apple juice. J. Food Eng. 2011, 102, 334–339. [Google Scholar] [CrossRef]
- Song, L. A new model for the calculation of the limiting flux in ultrafiltration. J. Membr. Sci. 1998, 144, 173–185. [Google Scholar] [CrossRef]
- De Bruijn, J.; Venegas, A.; Martınez, J.; Bórquez, R. Ultrafiltration performance of Carbosep membranes for the clarification of apple juice. LWT Food Sci. Technol. 2003, 36, 397–406. [Google Scholar] [CrossRef]
- Bagci, P.O. Effective clarification of pomegranate juice: A comparative study of pretreatment methods and their influence on ultrafiltration flux. J. Food Eng. 2014, 141, 58–64. [Google Scholar] [CrossRef]
- Baklouti, S.; Ellouze-Ghorbel, R.; Mokni, A. Clarification of pomegranate juice by ultrafiltration: Study of juice quality and of the fouling mechanism. Fruits 2012, 67, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Cassano, A.; Conidi, C.; Tasselli, F. Clarification of pomegranate juice (Punica granatum L.) by hollow fibre membranes: Analyses of membrane fouling and performance. J. Chem. Technol. Biotechnol. 2015, 90, 859–866. [Google Scholar] [CrossRef]
- Jiraratananon, R.; Chanachai, A. A study of fouling in the ultrafiltration of passion fruit juice. J. Membr. Sci. 1996, 111, 39–48. [Google Scholar] [CrossRef]
- Rai, P.; Majumdar, G.; Sharma, G.; Gupta, S.D.; De, S. Effect of various cutoff membranes on permeate flux and quality during filtration of mosambi (Citrus sinensis (L.) Osbeck) juice. Food Bioprod Process. 2006, 84, 213–219. [Google Scholar] [CrossRef]
- Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of polyphenol−protein interactions. J. Agricult. Food Chem. 1996, 44, 80–85. [Google Scholar] [CrossRef]
- Laorko, A.; Li, Z.; Tongchitpakdee, S.; Chantachum, S.; Youravong, W. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice. J. Food Eng. 2010, 100, 514–521. [Google Scholar] [CrossRef]
- Girard, B.; Fukumoto, L. Membrane processing of fruit juices and beverages: A review. Crit. Rev. Food Sci. Nutrit. 2000, 40, 91–157. [Google Scholar] [CrossRef] [PubMed]
- Baciu, I.-E.; Jördening, H.-J. Kinetics of galacturonic acid release from sugar-beet pulp. Enzyme Microb. Technol. 2004, 34, 505–512. [Google Scholar] [CrossRef]
- Türkyılmaz, M.; Yemiş, O.; Özkan, M. Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chem. 2012, 134, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Acar, J. The production of cloudy apple néctar using total liquefaction enzymes. Fruit Process. 1999, 9, 314–317. [Google Scholar]
- Meyer, A.S.; Köser, C.; Adler-Nissen, J. Efficiency of enzymatic and other alternative clarification and fining treatments on turbidity and haze in cherry juice. J. Agric. Food Chem. 2001, 49, 3644–3650. [Google Scholar] [CrossRef]
- Chamchong, M.; Noomhorm, A. Effect of pH and enzymatic treatment on microfiltration and ultrafiltration of tangerine juice. J. Food Process Eng. 1991, 14, 21–34. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Analysis of fouling and juice quality in crossflow ultrafiltration of watermelon juice. Food Sci. Technol. 2018, 38, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Renaud, V.; Faucher, M.; Perreault, V.; Serre, E.; Dubé, P.; Boutin, Y.; Bazinet, L. Evolution of cranberry juice compounds during in vitro digestion and identification of the organic acid responsible for the disruption of in vitro intestinal cell barrier integrity. J. Food. Sci. Technol. 2020, 57, 1–14. [Google Scholar] [CrossRef]
- Banvolgyi, S.; Horváth, S.; Stefanovits-Bányai, É.; Békássy-Molnár, E.; Vatai, G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009, 241, 281–287. [Google Scholar] [CrossRef]
- Galaverna, G.; Di Silvestro, G.; Cassano, A.; Sforza, S.; Dossena, A.; Drioli, E.; Marchelli, R. A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chem. 2008, 106, 1021–1030. [Google Scholar] [CrossRef]
- Pap, N.; Mahosenaho, M.; Pongrácz, E.; Mikkonen, H.; Jaakkola, M.; Virtanen, V.; Myllykoski, L.; Horváth-Hovorka, Z.; Hodúr, C.; Vatai, G. Effect of ultrafiltration on anthocyanin and flavonol content of black currant juice (Ribes nigrum L.). Food Bioprocess Technol. 2012, 5, 921–928. [Google Scholar] [CrossRef]
- Kechinski, C.P.; Guimarães, P.V.R.; Noreña, C.P.Z.; Tessaro, I.C.; Marczak, L.D.F. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci. 2010, 75, C173–C176. [Google Scholar] [CrossRef] [PubMed]
- Havlíková, L.; Míková, K. Heat stability of anthocyanins. Z Lebensm. Unters. Forch. 1985, 181, 427–432. [Google Scholar] [CrossRef]
- Verbeyst, L.; Oey, I.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem. 2010, 123, 269–274. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Vukosavljević, P.; Veljović, M.S. Clarification of red raspberry juice using microfiltration with gas backwashing: A viable strategy to maximize permeate flux and minimize a loss of anthocyanins. Food Bioprod. Process. 2013, 91, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Paterson, A.; Piggott, J. Effects of pectolytic enzyme treatments on anthocyanins in raspberry juice. Int. J. Food Sci. Technol. 1990, 25, 596–600. [Google Scholar] [CrossRef]
- Tanchev, S.; Vladimirov, G.; Ioncheva, N. Effect of some pectolytic enzymes on the destruction of anthocyanins. Nauchni Trudove Vissh Institute po Khranitelna i Vkusova Promyshlennost 1969, 16, 77–82. [Google Scholar]
- Versari, A.; Biesenbruch, S.; Barbanti, D.; Farnell, P.; Galassi, S. Effects of pectolytic enzymes on selected phenolic compounds in strawberry and raspberry juices. Food Res. Int. 1997, 30, 811–817. [Google Scholar] [CrossRef]
- Blom, H.; Juul, N.V. The effect of homogenization and enzyme treatment on colour and pulp stability in cherry nectar production. Lebensmittel Technologie 1982, 15, 14–16. [Google Scholar]
- Lin, Z.; Fischer, J.; Wicker, L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chem. 2016, 194, 986–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur. Food Res. Technol. 2008, 228, 239. [Google Scholar] [CrossRef]
- Cancino-Madariaga, B.; Ruby, R.; Astudillo Castro, C.; Saavedra Torrico, J.; Lutz Riquelme, M. Analysis of the membrane fouling mechanisms involved in clarified grape juice ultrafiltration using statistical tools. Ind. Eng. Chem. Res. 2012, 51, 4017–4024. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J. Food Eng. 2017, 195, 1–13. [Google Scholar] [CrossRef]
- Susanto, H.; Feng, Y.; Ulbricht, M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. 2009, 91, 333–340. [Google Scholar] [CrossRef]
UF Membrane MWCO (kDa) | Jcrit (kg/m2·h) | Jlim (kg/m2·h) | Optimal TMP (kPa) | |
---|---|---|---|---|
Fresh juice | 50 | 44.1 ± 0.9 a,b | 44.8 ± 1.1 a | 192 ± 2.9 b |
100 | 52.5 ± 0.7 c | 53.2 ± 0.1 a | 191 ± 4.0 b | |
500 | 42.1 ± 3.8 a | 42.6 ± 3.1 a | 153 ± 1.2 a | |
D60 | 50 | 42.9 ± 2.6 a | 46.5 ± 4.5 a | 241 ± 3.4 d |
100 | 43.2 ± 1.9 a | 47.9 ± 2.8 a | 205 ± 2.2 c | |
500 | 46.5 ± 6.3 a,b | 47.1 ± 8.0 a | 241 ± 4.7 d | |
D120 | 50 | 46.6 ± 0.6 b | 50.4 ± 1.8 a | 243 ± 0.9 d |
100 | 47.0 ± 4.2 a,b,c | 51.0 ± 5.4 a | 205 ± 8.0 c | |
500 | 52.2 ± 2.4 c | 54.2 ± 3.0 a | 252 ± 10 d |
Total Flux Decline (%) | |||
---|---|---|---|
Fresh Juice | D60 | D120 | |
50 kDa | 42.0 ± 5.5 c | 29.4 ± 4.1 d | 27.5 ± 3.3 d |
100 kDa | 55.3 ± 9.7 a,b | 38.4 ± 3.2 c | 35.7 ± 4.7 c,d |
500 kDa | 57.6 ± 5.9 a | 45.2 ± 14.3 b,c | 41.5 ± 2.6 c |
pH | °Brix | Titratable Acidity (g/L Citric Acid Equivalent) | Clarity (%T) | Total Polyphenols (mg/L) | Total PACs (ppm) | Total Anthocyanins (ppm) | ||
---|---|---|---|---|---|---|---|---|
Fresh juice | Non-clarified | 2.77 ± 0.02 b,c | 4.0 ± 0.2 b,c | 13.0 ± 0.14 b,c | 40.9 ± 1.0 f | 358 ± 53 d | 78 ± 10 a,b,c,d,e | 68 ± 8 a |
50 kDa | 2.81 ± 0.01 a,b | 3.7 ± 0.1 d,e,f | 11.8 ± 0.3 e,f | 95.3 ± 1.8 a,b | 495 ± 23 b | 66 ± 6 e,f | 71 ± 3 a | |
100 kDa | 2.85 ± 0.02 a | 3.5 ± 0.1 e,f | 11.7 ± 0.5 f | 94.0 ± 1.2 a,b | 473 ± 15 b | 61 ± 10 e,f | 70 ± 3 a | |
500 kDa | 2.77 ± 0.02 b,c | 3.5 ± 0.1 f | 11.9 ± 0.5 f | 78.0 ± 2.9 e | 360 ± 62 d | 70 ± 10 d,e,f | 59 ± 12 b | |
D60 | Non-clarified | 2.70 ± 0.03 d,e | 4.4 ± 0.3 a | 13.2 ± 0.02 b | 36.7 ± 0.2 g | 506 ± 21 b | 80 ± 3 a,b,c,d | 38 ± 4 c,d |
50 kDa | 2.85 ± 0.01 a | 3.7 ± 0.0 d,e | 12.0 ± 0.2 e,f | 95.1 ± 2.5 a,b | 465 ± 5 b,c | 78 ± 8 a,b,c,d,e | 39 ± 1 c | |
100 kDa | 2.86 ± 0.02 a | 3.7 ± 0.1 d,e | 12.3 ± 0.2 d,e | 97.4 ± 2.5 a | 463 ± 28 b,c | 73 ± 2 c,d,e,f | 35 ± 2 c,d,e | |
500 kDa | 2.75 ± 0.06 c,d | 3.8 ± 0.1 c,d | 12.7 ± 0.7 b,c,d | 80.3 ± 1.8 e | 397 ± 88 c,d | 72 ± 16 c,d,e,f | 38 ± 9 c,d | |
D120 | Non-clarified | 2.66 ± 0.02 e | 4.1 ± 0.0 b | 13.8 ± 0.02 a | 25.6 ± 0.1 h | 578 ± 33 a | 91 ± 3 a | 31 ± 4 c,d,e |
50 kDa | 2.83 ± 0.01 a | 3.8 ± 0.1 c,d | 12.6 ± 0.3 c,d | 90.1 ± 0.5 c | 462 ± 50 b,c | 83 ± 6 a,b,c | 29 ± 1 d,e | |
100 kDa | 2.87 ± 0.01 a | 3.8 ± 0.1 c,d | 12.3 ± 0.1 d,e | 91.7 ± 1.8 b,c | 450 ± 16 b,c | 76 ± 4 b,c,d,e | 28 ± 1 e | |
500 kDa | 2.70 ± 0.08 d,e | 3.8 ± 0.1 c,d | 12.9 ± 0.5 b,c | 86.0 ± 3.3 d | 498 ± 16 b | 87 ± 2 a,b | 27 ± 6 e |
Total Polyphenols (mg/L) | Total Anthocyanins (ppm) | ||
---|---|---|---|
Fresh juice | 50 kDa | 232 ± 49 c,d,e | 22 ± 7 b |
100 kDa | 259 ± 28 b,c,d | 25 ± 8 a,b | |
500 kDa | 102 ± 34 e | 12 ± 5 c | |
D60 | 50 kDa | 354 ± 89 a,b | 28 ± 5 a,b |
100 kDa | 360 ± 42 a,b | 27 ± 7 a,b | |
500 kDa | 123 ± 55 e | 9 ± 4 c | |
D120 | 50 kDa | 310 ± 113 b,c | 23 ± 2 a,b |
100 kDa | 460 ± 98 a | 33 ± 8 a | |
500 kDa | 182 ± 19 d,e | 10 ± 1 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perreault, V.; Gouin, N.; Bérubé, A.; Villeneuve, W.; Pouliot, Y.; Doyen, A. Effect of Pectinolytic Enzyme Pretreatment on the Clarification of Cranberry Juice by Ultrafiltration. Membranes 2021, 11, 55. https://doi.org/10.3390/membranes11010055
Perreault V, Gouin N, Bérubé A, Villeneuve W, Pouliot Y, Doyen A. Effect of Pectinolytic Enzyme Pretreatment on the Clarification of Cranberry Juice by Ultrafiltration. Membranes. 2021; 11(1):55. https://doi.org/10.3390/membranes11010055
Chicago/Turabian StylePerreault, Véronique, Noémie Gouin, Amélie Bérubé, William Villeneuve, Yves Pouliot, and Alain Doyen. 2021. "Effect of Pectinolytic Enzyme Pretreatment on the Clarification of Cranberry Juice by Ultrafiltration" Membranes 11, no. 1: 55. https://doi.org/10.3390/membranes11010055
APA StylePerreault, V., Gouin, N., Bérubé, A., Villeneuve, W., Pouliot, Y., & Doyen, A. (2021). Effect of Pectinolytic Enzyme Pretreatment on the Clarification of Cranberry Juice by Ultrafiltration. Membranes, 11(1), 55. https://doi.org/10.3390/membranes11010055