Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extraction and Purification Juice
2.3. Total Phenolics and Anthocyanins Determination
2.4. Antioxidant Tests
2.5. Anti-Inflammatory Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simple Sugars, Organic Acids and Total Phenolics Content
3.2. Anthocyanins Analysis
3.3. Antioxidant Activity
3.4. Anti-Inflammatory Activity (AI)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition of certain Morus species. J. Zhejiang Univ.Sci. B (Biomed. Biotechnol.) 2010, 11, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Da Graça Campos, M. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Gerasopouls, D.; Stravroulakis, G. Quality characteristics of four mulberry (Morus sp) cultivars in the area of Chania, Greece. J. Sci. Food Agric. 1997, 73, 261–264. [Google Scholar] [CrossRef]
- Kelkar, S.M.; Bapat, V.A.; Ganapathi, T.R.; Kalig, G.S.; Rao, P.S.; Heble, M.R. Determination of hypoglycemic activity in Morus indica L. (mulberry) shoot cultures. Curr. Sci. 1996, 71, 71–72. [Google Scholar]
- Asano, N.; Yamashita, T.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Sci. Food Agric. 2001, 49, 4208–4213. [Google Scholar] [CrossRef]
- Asano, N.; Oseky, K.; Tomioka, E.; Kizu, H.; Matsui, K. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr. Res. 1994, 259, 243–255. [Google Scholar] [CrossRef]
- Du, J.; He, Z.D.; Jiang, R.W.; Ye, W.C.; Xu, H.X.; But, P.P.H. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry 2003, 62, 1235–1238. [Google Scholar] [CrossRef]
- Daj, S.J.; Ma, Z.B.; Wu, Y.; Yu, D.Q. Guangsangons F-J, anti-oxidant and anti-inflammatory Diels-Alder type adducts, from Morus macroura Miq. Phytochemistry 2004, 65, 3135–3141. [Google Scholar]
- Andallu, B.; Suryakantham, V.; Srikanthi, B.L.; Reddy, G.K. Effect of mulberry (Morus indica L.) therpy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin. Chim. Acta 2001, 314, 47–53. [Google Scholar] [CrossRef]
- Oki, T.; Kobayashi, M.; Nakamura, T.; Okuyama, A.; Masuda, M.; Shiratusuchi, H.; Suda, I. Changes in radical-scavenging activity and components of mulberry fruit during maturation. J. Food Sci. 2006, 71, C18–C22. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hortic. 2008, 116, 41–46. [Google Scholar] [CrossRef]
- Pawloska, A.M.; Oleszek, W.; Braca, A. Quali-quantitative analyses of flavonoids of Morus nigra L and Morus alba L. fruits. J. Agric. Food Chem. 2008, 56, 3377–3380. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Cornelius, C.; Stella, A.M.; Calabrese, S.J. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenative disordes: role of hormosis and vitagenes. Neurochem. Res. 2010, 35, 1880–1915. [Google Scholar] [CrossRef] [PubMed]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in healths, disease and aging. CNS Neurol. Disord. Drug Targest 2011, 10, 192–207. [Google Scholar] [CrossRef]
- Fransen, M.; Norgren, M.; Wang, B.; Apanasets, O.; Van Veldhoven, P.P. Aging, age-related diseases and peroxisomes. Subcell. Biochem. 2013, 69, 45–65. [Google Scholar] [PubMed]
- Hélie, S.; Paul, E.J.; Ashby, F.G. A neurocomputational account of cognitive deficits in Parkinson’s disease. Neuropsychologia 2011, 50, 2290–2302. [Google Scholar] [CrossRef][Green Version]
- O’Neill, C. PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp. Gerontol. 2013, 48, 647–653. [Google Scholar] [CrossRef]
- Turgut, N.H.; Mert, D.G.; Kara, H.; Egilmez, H.R.; Arslanbas, E.; Tepe, B.; Gungor, H.; Yilmaz, N.; Tuncel, N.B. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactosee-induced aging mice. Pharm. Biol. 2016, 54, 1052–1064. [Google Scholar] [CrossRef]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules 2018, 23, 1004. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, G.; Chen, W.; Xu, Y.; Wu, J. Quantification and purification of mulberry anthocyanins with macroporus resins. J. Biomed. Biotechnol. 2004, 5, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Sývacý, A.; Sökmen, M. Seasonal changes in antioxidant activity, total phenolic and anthocyanin constituent of the steams of two Morus species (Morus alba L. and Morus nigra L.). Plant Growth Regul. 2004, 44, 251–256. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Comp. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 15th ed.; Association of Official Analytical Chemist: Washington DC, USA, 1990.
- Singleton, V.L.; Orthofer, R. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Bendini, A.; Bonoli, M.; Cerretani, L.; Biguzzi, B.; Lercker, G.; Gallina Toschi, T. Liquid–liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods. J. Chrom. A 2003, 985, 425–433. [Google Scholar] [CrossRef]
- Negro, C.; Longo, L.; Vasapollo, G.; De Bellis, L.; Miceli, A. Biochemical, antioxidant and anti-inflammatory properties of promegranate fruits growing in Southern Italy (Salento, Apulia). Acta Aliment. 2012, 41, 190–199. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applyng an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma as measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gundogdu, M.; Muradoglu, F.; Gazioglu Sensoy, R.I.; Ylmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Koyuncu, F. Organic acid composition of native black mulberry fruit. Chem. Nat. Compd. 2004, 40, 367–369. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic composition and antioxidant activity of whyte mulberry (Morus alba L.) fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Ercisli, S.; Tosun, M.; Duralija, B.; Voca, S.; Sengul, M.; Turan, M. Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol. Biotechnol. 2010, 48, 102–106. [Google Scholar] [CrossRef]
- Özgen, M.; Serçe, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar] [CrossRef]
- Calin-Sanchez, A.; Martinez-Nicolas, J.J.; Munera-Picazo, S.; Carbonell-Barrachina, A.A.; Legua, P.; Hernandez, F. Bioactive compounds and sensory quality of black and white mulberries grown in Spain. Plant Food Hum. Nutr. 2013, 68, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Nozolino, C.; Isabelle, P.; Das, G. Seasonal changes in phenolics constituents of jack pine seedling (Pinus banksiana) in relation to the purpling phenomenon. Can. J. Bot. 1990, 68, 2010–2017. [Google Scholar] [CrossRef]
- Christie, P.J.; Alfenito, M.R.; Walbot, V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanins pigmentation in maize seedlings. Planta 1994, 194, 541–549. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Dugo, P.; Mondello, L.; Errante, G.; Zappia, G.; Dugo, G. Identification of anthocyaninsin berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J. Agric. Food Chem. 2001, 49, 3897–3992. [Google Scholar] [CrossRef]
- Bae, S.H.; Suh, H.J. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci. Technol. 2007, 40, 955–965. [Google Scholar] [CrossRef]
- Shivashankara, K.S.; Jalikop, S.H.; Roy, T.K. Species variability for fruit antioxidant and radical scavenging ability in mulberry. Int. J. Fruit Sci. 2010, 10, 355–366. [Google Scholar] [CrossRef]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyaniding glycosides in cherry and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Zhang, Y.; Nair, M.G. Inhibition of proliferation of human cancer cell and cyclooxygenase enzymes by anthocyanidins and catechins. Nutr. Cancer 2003, 46, 101–106. [Google Scholar] [CrossRef] [PubMed]
Genotype | Moisture | Glucose | Fructose | Malic Acid | Citric Acid | TPC | ODC |
---|---|---|---|---|---|---|---|
M. nigra | 78.2 ± 1.1 a | 3.9 ± 0.1 a | 3.7 ± 0.1 a | 0.1 ± 0.1 a | 0.9 ± 0.1 a | 485.5 ± 7.1 a | 101.2 ± 6.2 a |
M. alba Legittimo nero | 77.7 ± 1.3 a | 3.3 ± 0.1 a | 3.0 ± 0.1 b | 0.1 ± 0.1 a | 0.2 ± 0.1 b | 423.6 ± 4.2 b | 60.4 ± 3.1 b |
M. alba Nello | 77.6 ± 1.2 a | 3.2 ± 0.1 a | 3.2 ± 0.1 b | 0.1 ± 0.1 a | 0.1 ± 0.1 b | 141.2 ± 6.1 c | 26.2 ± 2.1 c |
Genotype | C3S | C3G | C3R | P3G | P3R | TA |
---|---|---|---|---|---|---|
M. nigra | 3.1 ± 0.3 a | 138.6 ± 1.5 b | 52.3 ± 2.1 b | 10.4 ± 1.1 a | 1.7 ± 0.1 a | 206.1 ± 1.8 b |
M. alba Legittimo nero | 0.5 ± 0.1 b | 212.2 ± 1.1 a | 71.8 ± 0.3 a | 4.7 ± 0.2 b | 0.1 ± 0.1 c | 289.2 ± 0.9 a |
M. alba Nello | 0.1 ± 0.1 c | 18.2 ± 0.4 c | 5.2 ± 0.2 c | 1.0 ± 0.1 c | 0.2 ± 0.1 b | 24.7 ± 0.3 c |
Genotype | DPPH Test | ABTS Test | FRAP Test |
---|---|---|---|
M. nigra | 32.9 ± 0.7 a | 26.1 ± 1.5 a | 21.3 ± 1.1 a |
M. alba Legittimo nero | 22.7 ± 1.4 b | 11.6 ± 2.3 b | 10.6 ± 1.5 b |
M. alba Nello | 18.5 ± 2.3 c | 7.3 ± 2.1 b | 1.7 ± 0.9 c |
Genotype/Component | AI (IC50, µg/mL) | |
---|---|---|
COX1 | COX2 | |
M. nigra | 125 ± 5 b | 64 ± 7 b |
M. alba Legittimo nero | 140 ± 7 c | 81 ± 8 c |
M. alba Nello | 185 ± 9 d | 97 ± 5 c |
Nimesulide | 5 ± 1 a | 2 ± 1 a |
Ibuprofen | 6 ± 1 a | 5 ± 1 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negro, C.; Aprile, A.; De Bellis, L.; Miceli, A. Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants 2019, 8, 223. https://doi.org/10.3390/antiox8070223
Negro C, Aprile A, De Bellis L, Miceli A. Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants. 2019; 8(7):223. https://doi.org/10.3390/antiox8070223
Chicago/Turabian StyleNegro, Carmine, Alessio Aprile, Luigi De Bellis, and Antonio Miceli. 2019. "Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia)" Antioxidants 8, no. 7: 223. https://doi.org/10.3390/antiox8070223
APA StyleNegro, C., Aprile, A., De Bellis, L., & Miceli, A. (2019). Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants, 8(7), 223. https://doi.org/10.3390/antiox8070223