Dimerocostus strobilaceus (Caña Agria) as an Emerging Reservoir of Bioactive Metabolites with Potential Antioxidant, Antimicrobial, Anticancer and Anti-Inflammatory Health Benefits
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Physicochemical Analysis
2.2. Plant Extract
2.3. Phytochemical Screening
2.4. Bioactive Compounds
2.4.1. Vitamin C Identification
2.4.2. Organic Acid Identification
2.4.3. Carotenoids Identification
2.4.4. Phenolic Compound Identification
2.5. Antimicrobial Activity
2.5.1. Antibacterial Activity
Antibacterial Activity for Multidrug-Resistant Bacteria
2.5.2. Antifungal Activity
2.6. Antioxidant Activity
2.7. Anticancer Activity
2.8. Anti-Inflammatory Activity
2.9. Statistical Analysis
3. Results
3.1. Physico-Chemical Analysis
3.2. Bioactive Compounds
3.3. Antimicrobial Activity
3.4. Antioxidant Activity
3.5. Anticancer Activity
3.6. Anti-Inflammatory Activity
4. Discussion
4.1. Physico-Chemical Analysis
4.2. Bioactive Compounds
4.3. Antimicrobial Activity
4.4. Antioxidant Activity
4.5. Anticancer Activity
4.6. Anti-Inflammatory Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akram, M.; Mahmood, K. Awareness and Current Knowledge of Neurogenerative Disorders. Pharm. Pharmacol. Rep. 2024, 3, rqae023. [Google Scholar]
- Shamim; Kumar, S.; Ali, T.; Shanno, K. Clinical Application of Plants. Futur. Trends Herb. Med. Food Prod. 2024, 2, 173–214. [Google Scholar] [CrossRef]
- Wagh, P.; Handge, K.; Kurhade, S.; Wagh, S.; Bhoir, V. The Hidden Powers of Calotropis Gigantea: Exploring Its Medicinal, Toxic, and Ecological Dimensions. Curr. Trends Pharm. Pharm. Chem. 2024, 11, 160–167. [Google Scholar] [CrossRef]
- Niazi, P.; Monib, A. The Role of Plants in Traditional and Modern Medicine. J. Pharmacogn. Phytochem. 2024, 13, 643–647. [Google Scholar] [CrossRef]
- Soto, K.; Pérez, J.; Mendoza, M.; Apátiga-Castro, M.; López-Romero, J.; Mendoza, S.; Manzano-Ramírez, A. Antioxidants in Traditional Mexican Medicine and Their Applications as Antitumor Treatments. Pharmaceuticals 2023, 16, 482. [Google Scholar] [CrossRef]
- Saikumari, D.; Rani, S.; Saxena, N. A Review: Role of Medicinal Plants in Traditional Medicine. Int. J. Sci. Res. 2021, 10, 251–255. [Google Scholar] [CrossRef]
- Ayobamidele, F.; Enohnyaket, E. A Review of Plants with Anticancer Properties. J. Clin. Med. Res. 2023, 5, 138–161. [Google Scholar] [CrossRef]
- De-Fazio, R.; Oppedisano, F.; Caioni, G.; Tilocca, B.; Piras, C.; Britti, D. Plants with Antimicrobial Activity against Escherichia Coli, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2024, 12, 1784. [Google Scholar] [CrossRef]
- Piras, C.; Tilocca, B.; Castagna, F.; Roncada, P.; Britti, D.; Palma, E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics 2022, 11, 919. [Google Scholar] [CrossRef]
- Lomartire, S.; Gonçalves, A. An Overview on Antimicrobial Potential of Edible Terrestrial Plants and Marine Macroalgae Rhodophyta and Chlorophyta Extracts. Mar. Drugs 2023, 21, 163. [Google Scholar] [CrossRef]
- Rasool, A.; Mushtaq, K.; Ahmed, A.; Jan, A.; Hassan, S. Medicinal Plants: Role, Distribution and Future. J. Pharmacogn. Phytochem. 2020, 9, 2111–2114. [Google Scholar]
- Borah, P.; Banik, B. Medicinal Plants and Their Compounds with Anticancer Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128175927. [Google Scholar]
- Alsubhi, N. The Use of Medicinal Plants for Combating Breast Cancer: A Comprehensive Review. J. Exp. Biol. Agric. Sci. 2023, 11, 24–40. [Google Scholar] [CrossRef]
- Azab, A. Top Edible Wild Plants of Eastern Mediterranean Region. Part I: Anticancer Activity. Eur. J. Med. Plants 2023, 34, 29–51. [Google Scholar] [CrossRef]
- Omara, T.; Kiprop, A.; Ramkat, R.; Cherutoi, J.; Kagoya, S.; Moraa, D.; Azeze, T.; Nteziyaremye, P.; Nyambura, L.; Jepchirchir, A.; et al. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. Evid.-Based Complement. Altern. Med. 2020, 2020, 3529081. [Google Scholar] [CrossRef] [PubMed]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- WFO The World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 14 June 2024).
- Ferrerira, C.; Rocha, S.; Ribeiro, A.; Duarte, F.; Goncalves, C.; Passos, M.; Fernandes, L. Avaliação de Espécies de Costaceae Para Uso Ornamental. Rev. Bras. Hortic. Ornam. 2011, 17, 63. [Google Scholar] [CrossRef]
- El-Omari, N.; Bakrim, S.; Bakha, M.; Lorenzo, J.; Rebezov, M.; Shariati, M.; Aboulaghras, S.; Balahbib, A.; Khayrullin, M.; Bouyahya, A. Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021, 13, 3714. [Google Scholar] [CrossRef]
- US-ISO-750:1998; Fruit and Vegetable Products—Determination of Titratable Acidity. ISO: Geneva, Switzerland, 2009.
- Coyago-Cruz, E.; Méndez, G.; Escobar-Quiñonez, R.; Cerna, M.; Heredia-Moya, J. Lacmellea Oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices. Antioxidants 2025, 14, 924. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Temviriyanukul, P.; Chaikham, P. Effects of Freeze Drying and Convective Hot-Air Drying on Predominant Bioactive Compounds, Antioxidant Potential and Safe Consumption of Maoberry Fruits. LWT 2023, 184, 9. [Google Scholar] [CrossRef]
- Nwankwo, C.; Okpomor, E.; Dibagar, N.; Wodecki, M.; Zwierz, W.; Figiel, A. Recent Developments in the Hybridization of the Freeze-Drying Technique in Food Dehydration: A Review on Chemical and Sensory Qualities. Foods 2023, 12, 3437. [Google Scholar] [CrossRef]
- León-Fernández, A.; Balois Morales, R.; Bautista-Rosales, P.; Palomino-Hermosillo, Y.; Bello-Lara, J.; López-Rivas, C. Extracción de Compuestos Fitoquímicos de Inflorescencia y Frutos de Guanábana (Annona muricata L.). Acta Agrícola Pecu. 2021, 7. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Méndez, G.; Moya, M. Marti Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato (Solanum betaceum) at Different Altitudes. Foods 2023, 12, 3494. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.; Benítez, A.; Corell, M.; Hernanz, D.; Mapelli-Brahm, P.; Stinco, C.; Coyago-Cruz, E. Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers. Foods 2021, 10, 2625. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Alarcón, A.; Guachamin, A.; Méndez, G.; Osorio, E.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Beltrán-Sinchiguano, E.; Vera, E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants 2024, 13, 1297. [Google Scholar] [CrossRef]
- Coyago-cruz, E.; Zúñiga-miranda, J.; Méndez, G.; Guachamin, A.; Escobar-Quiñonez, R.; Barba-Ostria, C.; Heredia-Moya, J. Relationship between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity. Antioxidants 2025, 14, 1105. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Hossain, M.E.; Mithi, F.M.; Ahmed, M.; Saldías, M.; Akkol, E.K.; Sobarzo-Sánchez, E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics 2021, 10, 1076. [Google Scholar] [CrossRef]
- CLSI M02 Performance Standards for Antimicrobial Disk Suspectibility Tests, Approved Standard-Eleventh Edition; Clinical and Laboratory Standards Institue: Wayne, PA, USA, 2018; Volume 38, pp. 2162–2914.
- Balouiri, M.; Sadiki, M.; Ibnsouda, S. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- CLSI M44-A2 Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. Approved Guideline—Second Edition; Clinical and Laboratory Standards Institue: Wayne, PA, USA, 2009; Volume 29, p. 29.
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Schmölz, L.; Koeberle, A.; Krauth, V.; Glei, M.; Galli, F.; Werz, O.; Birringer, M.; Lorkowski, S. α-Tocopherol Long-Chain Metabolite α-13′-COOH Affects the Inflammatory Response of Lipopolysaccharide-Activated Murine RAW264.7 Macrophages. Mol. Nutr. Food Res. 2015, 59, 1524–1534. [Google Scholar] [CrossRef]
- Canga, I.; Vita, P.; Oliveira, A.; Castro, M.; Pinho, C. In Vitro Cytotoxic Activity of African Plants: A Review. Molecules 2022, 27, 4989. [Google Scholar] [CrossRef] [PubMed]
- Lekmine, S.; Boussekine, S.; Kadi, K.; Ignacio, A.; García, M. A Comparative Study on Chemical Profile and Biological Activities of Aerial Parts (Stems, Flowers, Leaves, Pods and Seeds) of Astragalus Gombiformis. Biocatal. Agric. Biotechnol. 2020, 27, 101668. [Google Scholar] [CrossRef]
- Gilbert, K.; Renner, T. Acid or Base? How Do Plants Regulate the Ecology of Their Phylloplane? AoB Plants 2021, 13, plab032. [Google Scholar] [CrossRef] [PubMed]
- Pecherina, A.; Grinberg, M.; Ageyeva, M.; Zanegina, D.; Akinchits, E.; Brilkina, A.; Vodeneev, V. Salt-Induced Changes in Cytosolic PH and Photosynthesis in Tobacco and Potato Leaves. Int. J. Mol. Sci. 2023, 24, 491. [Google Scholar] [CrossRef]
- Ma, W.-F.; Li, Y.-B.; Nai, G.-J.; Liang, G.-P.; Ma, Z.-H.; Chen, B.-H.; Mao, J. Changes and Response Mechanism of Sugar and Organic Acids in Fruits under Water Deficit Stress. PeerJ 2022, 10, e13691. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.; Rosas, U.; Calva-Vásquez, G.; Sandoval-Zpotitla, E. Does Acid Rain Alter the Leaf Anatomy and Photosynthetic Pigments in Urban Trees? Plants 2020, 9, 862. [Google Scholar] [CrossRef]
- Lin, X.; Wu, B.; Wang, J.; Wang, G.; Chen, Z.; Liang, Y.; Liu, J.; Wang, H. Effects of Geographical and Climatic Factors on the Intrinsic Water Use Efficiency of Tropical Plants: Evidence from Leaf 13 C. Plants 2023, 12, 951. [Google Scholar] [CrossRef]
- Helios, W.; Kotecki, A.; Kozak, M.; Jama-Rodze, A. Content and Uptake of Ash and Selected Nutrients (K, Ca, S) with Biomass of Miscanthus × Giganteus Depending on Nitrogen Fertilization. Agriculture 2021, 11, 76. [Google Scholar] [CrossRef]
- Reddin, C.; Ferguson, J.; Murphy, R.; Clarke, A.; Judge, C.; Griffith, V.; Alvarez, A.; Smyth, A.; Mente, A.; Yusuf, S.; et al. Global Mean Potassium Intake: A Systematic Review and Bayesian Meta—Analysis. Eur. J. Nutr. 2023, 62, 2027–2037. [Google Scholar] [CrossRef]
- Nouvenne, A.; Meschi, T. The Optimal Dietary Calcium Intake for Preventing Incident and Recurrent Symptomatic Kidney Stone Disease. Mayo Clin. Proceeding 2022, 97, 1416–1418. [Google Scholar] [CrossRef]
- Muiesan, M.; Buso, G.; Rosei, C. Less Sodium and More Potassium to Reduce Cardiovascular Risk. Eur. Hear. J. Suppl. 2023, 25, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Huh, C. Comparison of Physicochemical Properties by Different Parts of Rhus Verniciflua and Food Properties of Rhus Verniciflua Seed. Korean J. Food Preserv. 2022, 29, 873–883. [Google Scholar] [CrossRef]
- Coyago-Cruz, E. Estudio Sobre el Contenido en Carotenoides y Compuestos Fenólicos de Tomates y Flores en el Contexto de la Alimentación Funcional. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2017. [Google Scholar]
- Coyago-Cruz, E.; Moya, M.; Méndez, G.; Villacís, M.; Rojas-Silva, P.; Corell, M.; Mapelli-Brahm, P.; Vicario, I.; Meléndez-Martínez, A. Exploring Plants with Flowers: From Therapeutic Nutritional Benefits to Innovative Sustainable Uses. Foods 2023, 12, 4066. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.; Ortolá, M.; García-Mares, F.; Desamparados, M. Moringa Oleifera: An Unknown Crop in Developed Countries Change. Foods 2021, 10, 31. [Google Scholar] [CrossRef]
- Eggersdorfer, M. What Is the Optimal Intake of Vitamin C? Proc. Nutr. Soc. 2020, 79, 2020. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J. Carotenoides En Agroalimentación y Salud; Editorial; Editorial Terracota: Ciudad de México, Mexico, 2017; ISBN 9788415413356. [Google Scholar]
- Simkin, A.; Kapoor, L.; Priya, C.; Tanja, D.; Tracy, A.H. The Role of Photosynthesis Related Pigments in Light Harvesting, Photoprotection and Enhancement of Photosynthetic Yield in Planta. Photosynth. Res. 2021, 152, 23–42. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Barrigas, A.; Guachamin, A.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Vera, E. Bioactive Composition of Tropical Flowers and Their Antioxidant and Antimicrobial Properties. Foods 2024, 13, 3766. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B.; Wie, S.H.; Kim, J.; Ki, M.; Cho, Y.; Lim, S.; Lee, J.; Kwon, K.; Lee, H.; et al. Fluoroquinolone Can Be an Effective Treatment Option for Acute Pyelonephritis When the Minimum Inhibitory Concentration of Levofloxacin for the Causative Escherichia Coli Is ≤ 16 Mg/L. Antibiotics 2021, 10, 37. Antibiotics 2021, 10, 37. [Google Scholar] [CrossRef]
- Colclough, A.; Alav, I.; Whittle, E.; Pugh, H.; Darby, E.; Legood, S.; McNeil, H.; Blair, J. RND Efflux Pumps in Gram-Negative Bacteria; Regulation, Structure and Role in Antibiotic Resistance. Future Microbiol. 2020, 15, 143–157. [Google Scholar] [CrossRef]
- Maher, C.; Hassan, K. The Gram-Negative Permeability Barrier: Tipping the Balance of the in and the Out. MBio 2023, 14, e01205-23. [Google Scholar] [CrossRef]
- Mendes, S.; Combo, S.; Allain, T.; Domingues, S.; Buret, A.; Da Silva, G. Co-Regulation of Biofilm Formation and Antimicrobial Resistance in Acinetobacter Baumannii: From Mechanisms to Therapeutic Strategies. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1405–1423. [Google Scholar] [CrossRef]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial Activity of Organic Acids against Campylobacter Spp. and Development of Combinations—A Synergistic Effect? PLoS ONE 2020, 17, e0239312. [Google Scholar] [CrossRef] [PubMed]
- Santis, A.; Speranza, B.; Corbo, M. Potential Antimicrobial Activity of Weak Acids in Combination with PH and Temperature on Alicyclobacillus acidoterrestris. Biol. Life Sci. Forum 2023, 26, 1. [Google Scholar] [CrossRef]
- Ranggaini, D.; Halim, J.; Tjoe, A. Aktivitas Antioksidan Dengan Metode DPPH Dan ABTS Terhadap Ekstrak Etanol Daun Amaranthus hybridus L. J. Kedokt. Gigiterpadu 2024, 6, 65–69. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Coyago-Cruz, E.; Heredia-Moya, J.; Guamán-Bautista, J.; Guamán, L. Phytochemical Composition and Biological Properties of Macleania rupestris Fruit Extract: Insights into Its Antimicrobial and Antioxidant Activity. Antioxidants 2025, 14, 394. [Google Scholar] [CrossRef]
- Gordiienko, A.; Blaheyevskiy, M.; Iurchenko, I. A Comparative Study of Phenolic Compound Antioxidant Activity by the Polarography Method, Using Microsomal Lipid Peroxidation in Vitro. Curr. Issues Pharm. Med. Sci. 2018, 31, 186–189. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Joli, N.; Skelin, A.; Cagalj, M.; Frleta, R. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Baeza-Morales, A.; Medina-Garc, M.; Mart, P.; Pascual-Garc, S.; Sempere-Ortells, J. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants 2024, 13, 1060. [Google Scholar] [CrossRef]
- Gao, Y.; Focsan, A. Antioxidant Activity in Supramolecular Carotenoid Complexes Favored by Nonpolar Environment and Disfavored by Hydrogen Bonding. Antioxidants 2020, 9, 625. [Google Scholar] [CrossRef]
- Elkady, A. Targeting Prostate Cancer Cell Proliferation, Stemness and Metastatic Potential Using Costus speciosus Derived Phytochemicals. Am. J. Transl. Res. 2019, 11, 2550–2569. [Google Scholar]
- Nair, S.; Hettihewa, M.; Rupasinghe, H. Apoptotic and Inhibitory Effects on Cell Proliferation of Hepatocellular Carcinoma HepG2 Cells by Methanol Leaf Extract of Costus speciosus. BioMed Res. Int. 2014, 2014, 637098. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhuayan, I.; Alnamshan, M.; Alqosaibi, A.; Elmazoudy, R.; Al-Eidan, A.; Alkhulaifi, F.; Alahmady, N.; Alenezi, N.; Almustafa, M.; Al-Dossari, S. Exploring the Anticancer Potential of Costus speciosus: A Comprehensive Review. Braz. J. Biol. 2025, 85, e294310. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Verma, M.; Pandey, S.; Kumar, R.; Khan, F.; Pandey, P. Anticancer Potential of Quercetin, Epigallocatechin Gallate, Kaempferol, Apigenin, and Curcumin against Several Human Carcinomas. Endocr. Metab. Immune Disord.-Drug Targets 2025, 25, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, A.; Loka, M.; Pandey, A.; Bishayee, A. Ferulic Acid-Mediated Modulation of Apoptotic Signaling Pathways in Cancer. Adv. Protein Chem. Struct. Biol. 2021, 125, 215–257. [Google Scholar] [CrossRef]
- Guo, H.; Ren, F.; Zhang, L.; Zhang, X.; Yang, R. Kaempferol Induces Apoptosis in HepG2 Cells via Activation of the Endoplasmic Reticulum Stress Pathway. Mol. Med. Rep. 2016, 13, 2791–2800. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, W.; Liu, H.; Jiang, Y.; Li, F.; Wu, M.; Waterhouse, G.; Sun-Waterhouse, D.; Li, D. Quercetin Induces Apoptosis in HepG2 Cells via Directly Interacting with YY1 to Disrupt YY1-P53 Interaction. Metabolites 2023, 13, 229. [Google Scholar] [CrossRef]
- Cui, S.; Wu, Q.; Wang, J.; Li, M.; Qian, J.; Li, S. Quercetin Inhibits LPS-Induced Macrophage Migration by Suppressing the INOS/FAK/Paxillin Pathway and Modulating the Cytoskeleton. Cell Adhes. Migr. 2019, 13, 1–12. [Google Scholar] [CrossRef]
- Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the War against Inflammation with Natural Products. Front. Pharmacol. 2018, 9, 976. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, S.; Chand, T.; Pruthi, V.; Kumar, P.; Goel, N. Extrapolation of Phenolic Compounds as Multi-Target Agents against Cancer and Inflammation. J. Biomol. Struct. Dyn. 2019, 37, 2355–2369. [Google Scholar] [CrossRef]
- Elazab, S.; Safhi, F.; Al-Akeel, R.; Deraz, R.; Sarkar, S.; Gamal, R. Gallic Acid and Taurine Attenuate Thiamethoxam-Induced Hepatotoxicity in Rats by Modulating SIRT-1/PGC-1α, NF-ΚB/INOS, and P53/Bax/Caspase-3 Pathways. Pharmaceuticals 2025, 18, 1112. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiang, P.; Gao, Y. Lutein Prevents Osteoarthritis through Nrf2 Activation and Downregulation of Inflammation. Arch. Med. Sci. 2018, 14, 617–624. [Google Scholar] [CrossRef]
- Wu, S.; Chen, R.; Chen, J.; Yang, N.; Li, K.; Zhang, Z.; Zhang, R. Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules 2023, 28, 7540. [Google Scholar] [CrossRef]
- Selim, S.; Al, S. Anti-Inflammatory, Antioxidant and Antiangiogenic Activities of Diosgenin Isolated from Traditional Medicinal Plant, Costus speciosus (Koen Ex.Retz.) Sm. Nat. Prod. Res. 2016, 30, 1830–1833. [Google Scholar] [CrossRef]
- Al-Attas, A.; El-Shaer, N.; Mohamed, G.; Ibrahim, S.; Esmat, A. Anti-Inflammatory Sesquiterpenes from Costus speciosus Rhizomes. J. Ethnopharmacol. 2015, 176, 365–374. [Google Scholar] [CrossRef]


| Parameters | Leaves | Stems | Seeds |
|---|---|---|---|
| pH | 5.5 ± 0.0 b | 6.1 ± 0.0 a | 4.2 ± 0.1 c |
| SS (°Brix) | 0.1 ± 0.0 b | 0.5 ± 0.0 a | 0.1 ± 0.0 b |
| TA (%) | 0.2 ± 0.1 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a |
| Humidity (%) | 80.4 ± 1.5 a | 76.8 ± 1.8 b | 79.3 ± 0.5 a |
| Ash (%) | 2.7 ± 0.6 a | 1.6 ± 0.1 c | 1.9 ± 0.2 b |
| Mineral profile (mg/100 g DW) | |||
| Ca | 3559.5 ± 33.9 a | 577.2 ± 11.2 b | 341.4 ± 13.8 c |
| Fe | 291.5 ± 56.5 a | 71.2 ± 0.8 b | 42.5 ± 1.1 c |
| K | 4074.8 ± 42.5 a | 3288.8 ± 49.5 b | 981.3 ± 67.2 c |
| Mg | 390.3 ± 47.9 a | 172.7 ± 1.9 b | 120.0 ± 2.0 c |
| Na | 14.1 ± 2.0 a | 11.7 ± 0.2 b | 17.8 ± 3.7 a |
| Metabolites | Leaves | Stems | Seeds |
|---|---|---|---|
| Steroids | - | + | - |
| Terpenoids | - | + | - |
| Phenols | + | + | + |
| Tannins | + | + | + |
| Alkaloids | - | - | - |
| Flavonoids | + | - | - |
| Anthraquinones | - | - | - |
| Saponins | - | - | - |
| Acetogenins | + | + | + |
| Parameters | Leaves | Stems | Seeds |
|---|---|---|---|
| Vitamin C (mg/100 g DW) | 16.7 ± 0.7 a | 0.4 ± 0.0 c | 9.4 ± 0.8 b |
| Organic acid (mg/100 g DW) | |||
| Citric acid | 196.7 ± 19.5 a | 117.7 ± 14.0 c | 126.2 ± 6.8 b |
| Malic acid | 551.9 ± 30.2 b | 615.7 ± 40.0 a | 575.9 ± 42.5 ab |
| Tartaric acid | 51.1 ± 0.9 b | 76.9 ± 16.3 a | 42.7 ± 7.0 c |
| Total organic acid | 799.8 ± 50.6 a | 810.3 ± 70.3 a | 744.9 ± 28.8 b |
| Carotenoids (mg/100 g DW) | |||
| Lutein | 65.3 ± 4.0 a | 1.0 ± 0.0 b | 0.4 ± 0.0 c |
| Zeinoxanthin | 2.3 ± 0.0 | ||
| Violaxanthin | 15.1 ± 2.1 a | 0.2 ± 0.0 b | 0.1 ± 0.0 c |
| Zeaxanthin | 2.1 ± 0.2 a | 0.1 ± 0.0 b | |
| α-Carotenoid | 4.9 ± 0.4 | ||
| β-Carotenoid | 266.6 ± 5.0 a | 1.1 ± 0.1 b | |
| Carotenoid total | 356.4 ± 1.7 a | 2.4 ± 0.1 b | 0.5 ± 0.0 c |
| Chlorophylls and their derivatives (mg/100 g DW) | |||
| Chlorophyll b | 87.9 ± 7.8 a | 6.8 ± 0.1 b | |
| Pheophytin b | 35.4 ± 2.5 a | 0.4 ± 0.1 c | 1.8 ± 0.1 b |
| Total chlorophyll | 123.3 ± 3.1 a | 7.2 ± 0.1 b | 2.3 ± 0.0 c |
| Phenolic compounds (mg/100 g DW) | |||
| Gallic acid | 39.8 ± 3.1 a | 23.7 ± 2.9 b | 8.4 ± 0.1 c |
| 4-Hydroxibenzoic acid | 34.9 ± 0.4 b | 35.0 ± 1.8 b | 44.6 ± 1.1 a |
| Caffeic acid | 27.1 ± 0.8 b | 49.8 ± 1.3 b | 1325.4 ± 95.3 a |
| Syringic acid | 154.2 ± 1.1 a | 86.9 ± 12.2 b | 19.1 ± 1.8 c |
| Chlorogenic acid | 35.7 ± 0.0 b | 252.7 ± 1.5 a | |
| Ferulic acid | 75.9 ± 1.2 b | 2008.3 ± 74.1 a | |
| Kaempferol | 101.8 ± 1.8 | ||
| Quercetin glucoside | 54.5 ± 0.0 | ||
| Quercetin | 34.7 ± 1.5 | ||
| Total phenolics | 558.7 ± 14.2 b | 195.4 ± 20.9 c | 3658.5 ± 17.3 a |
| Leaves | Stems | Seeds | |
|---|---|---|---|
| Bacteria strain | |||
| E. coli ATCC 8739 | 20.8 | 10.5 | 10.5 |
| P. aeruginosa ATCC 9027 | - | 41.8 | 41.8 |
| S. aureus ATCC 6538P | 41.7 | 41.8 | 41.8 |
| S. mutans ATCC 25175 | 5.2 | - | - |
| Fungi strain | |||
| C. albicans ATCC 1031 | 10.4 | 41.8 | 41.8 |
| C. tropicalis ATCC 13803 | 10.4 | 41.8 | 41.8 |
| Multidrug-resistant bacteria * | |||
| Klebsiella pneumoniae | - | - | - |
| Escherichia coli | - | - | - |
| Salmonella enterica serovar Kentucky | - | - | - |
| Enterococcus faecalis | - | - | - |
| Staphylococcus epidermidis | - | - | - |
| Enterococcus faecium | - | - | - |
| Pseudomonas aeruginosa | - | - | - |
| Parameters | Leaves | Stems | Seeds |
|---|---|---|---|
| DPPH | 2.8 ± 0.3 c | 4.3 ± 0.2 b | 5.0 ± 0.2 a |
| ABTS | 4.5 ± 0.5 b | 3.4 ± 0.4 c | 6.0 ± 0.8 a |
| Compound | HeLa | HCT116 | THJ29T | HepG2 | NIH3T3 | ||||
|---|---|---|---|---|---|---|---|---|---|
| IC50 | TI b | IC50 | TI b | IC50 | TI b | IC50 | TI b | IC50 | |
| Caña agria | 0.1100 ± 0.00700 | 1.3 | 0.1700 ± 0.00800 | 0.8 | 0.1000 ± 0.00900 | 1.4 | 0.0800 ± 0.01200 | 1.8 | 0.1400 ± 0.01200 |
| CDDP | 0.0012 ± 0.00001 | 2.2 | 0.0022 ± 0.00004 | 1.2 | 0.0046 ± 0.00005 | 0.6 | 0.0037 ± 0.00004 | 0.7 | 0.0027 ± 0.00005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Gonzalez-Pastor, R.; Méndez, G.; Usinia-Carranza, J.; Puente-Pineda, J.A.; Zúñiga-Miranda, J.; Cerna, M.; Heredia-Moya, J. Dimerocostus strobilaceus (Caña Agria) as an Emerging Reservoir of Bioactive Metabolites with Potential Antioxidant, Antimicrobial, Anticancer and Anti-Inflammatory Health Benefits. Antioxidants 2025, 14, 1298. https://doi.org/10.3390/antiox14111298
Coyago-Cruz E, Gonzalez-Pastor R, Méndez G, Usinia-Carranza J, Puente-Pineda JA, Zúñiga-Miranda J, Cerna M, Heredia-Moya J. Dimerocostus strobilaceus (Caña Agria) as an Emerging Reservoir of Bioactive Metabolites with Potential Antioxidant, Antimicrobial, Anticancer and Anti-Inflammatory Health Benefits. Antioxidants. 2025; 14(11):1298. https://doi.org/10.3390/antiox14111298
Chicago/Turabian StyleCoyago-Cruz, Elena, Rebeca Gonzalez-Pastor, Gabriela Méndez, Jeico Usinia-Carranza, Juan A. Puente-Pineda, Johana Zúñiga-Miranda, Marco Cerna, and Jorge Heredia-Moya. 2025. "Dimerocostus strobilaceus (Caña Agria) as an Emerging Reservoir of Bioactive Metabolites with Potential Antioxidant, Antimicrobial, Anticancer and Anti-Inflammatory Health Benefits" Antioxidants 14, no. 11: 1298. https://doi.org/10.3390/antiox14111298
APA StyleCoyago-Cruz, E., Gonzalez-Pastor, R., Méndez, G., Usinia-Carranza, J., Puente-Pineda, J. A., Zúñiga-Miranda, J., Cerna, M., & Heredia-Moya, J. (2025). Dimerocostus strobilaceus (Caña Agria) as an Emerging Reservoir of Bioactive Metabolites with Potential Antioxidant, Antimicrobial, Anticancer and Anti-Inflammatory Health Benefits. Antioxidants, 14(11), 1298. https://doi.org/10.3390/antiox14111298

