Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Chromatographic Conditions and Mass Spectrometry Detection
2.4. Total Phenolic Content and Antioxidant Capacity Assays
2.5. Reactive Oxygen/Nitrogen Species Scavenging
2.6. Enzyme Inhibitions
2.7. Cell Viability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Profile of Olive Byproduct Extracts by HPLC-QTOF
3.1.1. Oleuropein and Its Related Compounds
3.1.2. Iridoids
3.1.3. Flavonoids
3.1.4. Other Compounds
3.2. Cosmetic Potential of Industrial Olive Byproduct-Enriched Extracts
3.2.1. Total Phenolic Content and Antioxidant Activity
3.2.2. Reactive Oxygen/Nitrogen Species Scavenging
3.2.3. Enzyme Inhibition
3.2.4. Cell Viability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Production of Olives. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 13 December 2020).
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: Challenge application in cosmetic industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Leva, A. Olive Tree in the Mediterranean Area: A Mirror of the Tradition and the Biotechnological Innovation; Leva, A., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; ISBN 978-1-53614-307-2. [Google Scholar]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Guermazi, Z.; Gharsallaoui, M.; Perri, E.; Gabsi, S.; Benincasa, C. Integrated approach for the eco design of a new process through the life cycle analysis of olive oil: Total use of olive by-products. Eur. J. Lipid Sci. Technol. 2017, 119, 1700009. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kassaveti, A. Current and potential uses of composted olive oil waste. Int. J. Food Sci. Technol. 2007, 42, 281–295. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Caleja, C.; Finimundy, T.C.; Pereira, C.; Barros, L.; Calhelha, R.C.; Sokovic, M.; Ivanov, M.; Carvalho, A.M.; Rosa, E.; Ferreira, I.C. Challenges of traditional herbal teas: Plant infusions and their mixtures with bioactive properties. Food Funct. 2019, 10, 5939–5951. [Google Scholar] [CrossRef] [PubMed]
- Gorini, I.; Iorio, S.; Ciliberti, R.; Licata, M.; Armocida, G. Olive oil in pharmacological and cosmetic traditions. J. Cosmet. Dermatol. 2019, 18, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P.; Machado, I.K.; Garavaglia, J.; Zani, V.T.; de Souza, D.; Dal Bosco, S.M. Beneficios polifenoles hoja de olivo (Olea europaea L.) para la salud humana. Nutr. Hosp. 2015, 31, 1427–1433. [Google Scholar] [CrossRef]
- Araki, R.; Fujie, K.; Yuine, N.; Watabe, Y.; Nakata, Y.; Suzuki, H.; Isoda, H.; Hashimoto, K. Olive leaf tea is beneficial for lipid metabolism in adults with prediabetes: An exploratory randomized controlled trial. Nutr. Res. 2019, 67, 60–66. [Google Scholar] [CrossRef]
- Yancheva, S.; Mavromatis, P.; Georgieva, L. Polyphenol profile and antioxidant activity of extracts from olive leaves. J. Cent. Eur. Agric. 2016, 17, 154–163. [Google Scholar] [CrossRef]
- Rekik, O.; Ben Mansour, A.; Bouaziz, M. Evaluation of phenolic composition and antioxidant activity changes in olive flowers during development using HPLC/DAD and LC-MS/MS. Electrophoresis 2018, 39, 1663–1672. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of “Sikitita” olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents “Arbequina” and “Picual” olive leaves. LWT Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Sanz, M.T.; Blanco, B.; Beltrán, S.; Niknam, S.M. Freeze dried extract from olive leaves: Valorisation, extraction kinetics and extract characterization. Food Bioprod. Process. 2020, 124, 196–207. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Alcantara, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Režek Jambrak, A.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Taamalli, A.; Quirantes-Piné, R.; Roldan-Segura, C.; Arráez-Román, D.; Segura-Carretero, A.; Micol, V.; Zarrouk, M. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line. J. Pharm. Biomed. Anal. 2015, 105, 156–162. [Google Scholar] [CrossRef]
- Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of ultrasound-assisted extraction of flavonoids from olive (Olea europaea) leaves, and evaluation of their antioxidant and anticancer activities. Molecules 2018, 23, 2513. [Google Scholar] [CrossRef]
- Taamalli, A.; Feriani, A.; Lozano-Sanchez, J.; Ghazouani, L.; El Mufti, A.; Allagui, M.S.; Segura-Carretero, A.; Mhamdi, R.; Arráez-Roman, D. Potential hepatoprotective activity of supercritical carbon dioxide olive leaf extracts against CCl4-induced liver damage. Foods 2020, 9, 804. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Olivares-Vicente, M.; Rodríguez-Pérez, C.; Herranz-López, M.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Encinar, J.A.; Micol, V. AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. PLoS ONE 2017, 12, e0173074. [Google Scholar] [CrossRef]
- Navarro, M.; Morales, F.J.; Ramos, S. Olive leaf extract concentrated in hydroxytyrosol attenuates protein carbonylation and the formation of advanced glycation end products in a hepatic cell line (HepG2). Food Funct. 2017, 8, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vit. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Laporta, O.; Pérez-Fons, L.; Mallavia, R.; Caturla, N.; Micolet, V. Isolation, characterization and antioxidant capacity assessment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato). Food Chem. 2007, 101, 1425–1437. [Google Scholar] [CrossRef]
- Pinto, D.; de la Cádiz-Gurrea, M.L.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’Acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by Supercritical Fluid Extraction with CO2: A Response Surface Methodology approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.; Mukherjee, P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011, 303, 247–252. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.K.; Mukherjee, P.K. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica. Pharm. Biol. 2013, 51, 1182–1187. [Google Scholar] [CrossRef]
- Lameirão, F.; Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Sut, S.; Dall’acqua, S.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Green-sustainable recovery of phenolic and antioxidant compounds from industrial chestnut shells using ultrasound-assisted extraction: Optimization and evaluation of biological activities in vitro. Antioxidants 2020, 9, 267. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Khemakhem, I.; Gargouri, O.D.; Dhouib, A.; Ayadi, M.A.; Bouaziz, M. Oleuropein rich extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration. Sep. Purif. Technol. 2017, 172, 310–317. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Falcão, S.I.; Peres, A.M.; Domingues, M.R.M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chem. 2011, 129, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Nunes, M.A.; Oliveria, M.B.P.P. Chapter 12—Applications of recovered bioactive compounds in cosmetics and health care products. In Olive Mill Waste; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2017; pp. 255–274. [Google Scholar]
- Peralbo-Molina, Á.; Priego-Capote, F.; Luque De Castro, M.D. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole- quadrupole-time-of-flight mass detector. J. Agric. Food Chem. 2012, 60, 11542–11550. [Google Scholar] [CrossRef]
- Cardioactive Compounds Isolated from Woody Perennials. Patent No. WO1996010408A1, 11 April 1995.
- Yuan, H.Y.; Kwaku, O.R.; Pan, H.; Han, J.X.; Yang, C.R.; Xu, M. Iridoid glycosides from the Genus Gentiana (Gentianaceae) and their Chemotaxonomic Sense. Nat. Prod. Commun. 2017, 12, 1663–1670. [Google Scholar] [CrossRef]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.G.; Salles, L.A.; Sakamoto, S.; Stein, A.C.; Cargnin, S.T.; Cassel, E.; Vargas, R.F.; Rates, S.M.K.; Poser, G.L. Effect of storage time and conditions on the diene valepotriates content of the extract of Valeriana glechomifolia obtained by supercritical carbon dioxide. Phytochem. Anal. 2012, 23, 222–227. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2009, 633, 283–292. [Google Scholar] [CrossRef]
- Sugaya, K.; Hashimoto, F.; Ono, M.; Ito, Y.; Masuoka, C.; Nohara, T. Anti-Oxidative constituents from Leonurii Herba (Leonurus japonicus). Food Sci. Technol. Int. 1998, 4, 278–281. [Google Scholar] [CrossRef]
- Nie, H.; Huang, S.; Li, X.; Gong, J.; Wu, F.; Yin, J.; Liao, Y.; Wu, S.; Luo, Y. Identification of compounds from chufa (Eleocharis dulcis) peels with inhibitory acrylamide formation activity. Rev. Bras. Farmacogn. 2019, 29, 483–487. [Google Scholar] [CrossRef]
- Correia, R.M.; Andrade, R.; Tosato, F.; Nascimento, M.T.; Pereira, L.L.; Araújo, J.B.S.; Pinto, F.E.; Endringer, D.C.; Padovan, M.P.; Castro, E.V.R.; et al. Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. J. Food Compos. Anal. 2020, 94, 103637. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Zengin, G.; Segura-Carretero, A.; Lobine, D.; Mahomoodally, M.F. Chemical fingerprint and bioactivity evaluation of Globularia orientalis L. and Globularia trichosantha Fisch. & C. A. Mey, using non-targeted HPLC-ESI-QTOF-MS approach. Phytochem. Anal. 2019, 30, 237–252. [Google Scholar] [CrossRef]
- Takac, S.; Karakaya, A. Recovery of phenolic antioxidants from olive mill wastewater. Recent Pat. Biomed. Eng. 2009, 2, 230–237. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Goldschmidt Lins, P.; Marina Piccoli Pugine, S.; Márcio Scatolini, A.; Pires de Melo, M. Antioxidant actions of olive leaf extract (Olea europaea L.) on reactive species scavengers. J. Anal. Pharm. Res. 2020, 9, 68–71. [Google Scholar] [CrossRef]
- Orak, H.H.; Karamać, M.; Amarowicz, R.; Orak, A.; Penkacik, K. Genotype-related differences in the phenolic compound profile and antioxidant activity of extracts from olive (Olea europaea L.) leaves. Molecules 2019, 24, 1130. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Moustakas, K.; Talebi, A.F.; Goli, S.A.H.; Rajaeifar, M.A.; Khoshnevisan, B.; Jouzani, G.S.; Peng, W.; Kim, K.-H.; et al. Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). J. Clean. Prod. 2021, 278, 123916. [Google Scholar] [CrossRef]
- Nunes, M.A.; Páscoa, R.N.M.J.; Alves, R.C.; Costa, A.S.G.; Bessada, S.; Oliveira, M.B.P.P. Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: The case of monocultivar pomaces. Waste Manag. 2020, 103, 378–387. [Google Scholar] [CrossRef]
- Abaza, L.; Youssef, N.B.; Djebali, H.M.; Faouzia, H.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 2011, 62, 96–104. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Alaiz, M.; Vioque, J.; Girón-Calle, J.; Fernández-Bolaños, J. Polyphenols associated to pectic polysaccharides account for most of the antiproliferative and antioxidant activities in olive extracts. J. Funct. Foods 2019, 62, 103530. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Silva, A.M.S.; Santos, C.M.M.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Lima, J.L.F.C. 2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorganic Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef]
- Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species. Food Chem. 2012, 135, 1740–1749. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Chisté, R.C.; Freitas, M.; Da Silva, A.F.; Visentainer, J.V.; Fernandes, E. Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species. Food Chem. 2014, 165, 140–148. [Google Scholar] [CrossRef]
- Goldschmidt Lins, P.; Piccoli Pugine, S.M.; Scatolini, A.M.; Pires de Melo, M. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 2018, 4, 805. [Google Scholar] [CrossRef]
- Orak, H.H.; Isbilir, S.S.; Yagar, H. Determination of antioxidant properties of lyophilized olive leaf water extracts obtained from 21 different cultivars. Food Sci. Biotechnol. 2012, 21, 1065–1074. [Google Scholar] [CrossRef]
- Marangi, F.; Pinto, D.; De Francisco, L.; Alves, R.C.; Puga, H.; Sut, S.; Dall, S.; Rodrigues, F.; Oliveira, M.B.P.P. Hardy kiwi leaves extracted by multi-frequency multimode modulated technology: A sustainable and promising by-product for industry. Food Res. Int. 2018, 112, 184–191. [Google Scholar] [CrossRef]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Fernanda Bahia, M. Walnut (Juglans regia) leaf extracts are strong scavengers of pro-oxidant reactive species. Food Chem. 2008, 106, 1014–1020. [Google Scholar] [CrossRef]
- Kumar, R.S.; Rajkapoor, B.; Perumal, P. Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2012, 2, 256–261. [Google Scholar] [CrossRef]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Bahia, M.F. Protective effect of Castanea sativa and Quercus robur leaf extracts against oxygen and nitrogen reactive species. J. Photochem. Photobiol. B Biol. 2008, 91, 87–95. [Google Scholar] [CrossRef]
- Barizão, É.O.; Visentainer, J.V.; de Cinque Almeida, V.; Ribeiro, D.; Chisté, R.C.; Fernandes, E. Citharexylum solanaceum fruit extracts: Profiles of phenolic compounds and carotenoids and their relation with ROS and RNS scavenging capacities. Food Res. Int. 2016, 86, 24–33. [Google Scholar] [CrossRef]
- Reinoso, B.D.; Couto, D.; Moure, A.; Fernandes, E.; Domínguez, H.; Parajó, J.C. Optimization of antioxidants—Extraction from Castanea sativa leaves. Chem. Eng. J. 2012, 203, 101–109. [Google Scholar] [CrossRef]
- De La Puerta, R.; Domínguez, M.E.M.; Ruíz-Gutíerrez, V.; Flavill, J.A.; Hoult, J.R.S. Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci. 2001, 69, 1213–1222. [Google Scholar] [CrossRef]
- Huguet-Casquero, A.; Xu, Y.; Gainza, E.; Pedraz, J.L.; Beloqui, A. Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. Int. J. Pharm. 2020, 586, 119515. [Google Scholar] [CrossRef]
- Angelis, A.; Mavros, P.; Nikolaou, P.E.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L. Phytochemical analysis of olive flowers’ hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collagenase inhibition activity. Fitoterapia 2020, 143, 104602. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Stern, R.; Jedrzejas, M.J. Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action. Chem. Rev. 2006, 106, 818–839. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Schlupp, P.; Schmidts, T.M.; Pössl, A.; Wildenhain, S.; Lo Franco, G.; Lo Franco, A.; Lo Franco, B. Effects of a phenol-enriched purified extract from olive mill wastewater on skin cells. Cosmetics 2019, 6, 30. [Google Scholar] [CrossRef]
Compound Number | Proposed Compound | RT | m/z | Molecular Formula | MS/MS | O20 | O30 |
---|---|---|---|---|---|---|---|
1 | Gluconic acid | 3.8 | 195 | C6H12O7 | 129 | X | X |
2 | Sucrose | 4.98 | 341 | C12H22O11 | 179 | X | X |
3 | Citric acid | 6.49 | 191 | C6H8O7 | 111 | X | |
4 | Vanillin | 6.63 | 151 | C8H8O3 | - | X | |
5 | Methyl xylobioside | 7.19 | 295 | C11H20O9 | 181, 151, 191 | X | |
6 | Methyl gallate glucoside | 7.51 | 563 | C14H18O10 | 277 | X | |
7 | Leonuriside | 8.14 | 331 | C14H20O9 | 169, 139 | X | |
8 | Methyl xylobioside | 8.65 | 295 | C11H20O9 | 153 | X | |
9 | Oleoside Isomer 1 | 8.88 | 389 | C16H22O11 | 137, 295 | X | X |
10 | Loganic acid | 9.32 | 375 | C16H24O10 | 315, 213, 209 | X | X |
11 | Oleoside Isomer 2 | 10.11 | 389 | C16H22O11 | 183, 121 | X | X |
12 | Aralidioside | 10.59 | 447 | C18H24O13 | 153 | X | X |
13 | Hydroxytyrosol | 11.06 | 153 | C8H10O3 | 123, 135 | X | X |
14 | Taxifolin | 11.84 | 303 | C15H12O7 | 161, 179, 153 | X | |
15 | Iridoid glicoside derivative | 12.26 | 553 | C22H34O16 | 181, 411 | X | |
16 | Allobetonicoside | 12.95 | 505 | C21H30O14 | 161 | X | |
17 | Eriobioside | 13.23 | 567 | C23H36O16 | 181, 223, 161, 341, 403, 505 | X | |
18 | Elenolic acid glucoside Isomer 1 | 13.64 | 403 | C17H24O11 | 161 | X | X |
19 | Elenolic acid glucoside Isomer 2 | 14.04 | 403 | C17H24O11 | 161 | X | |
20 | Loganin | 15.65 | 389 | C17H26O10 | 327, 267 | X | |
21 | Acetylbarlerin | 16.25 | 489 | C21H30O13 | 145, 163, 327 | X | X |
22 | Oleoside Isomer 3 | 17.46 | 389 | C16H22O11 | 345 | X | X |
23 | Benzyl primeveroside | 17.98 | 401 | C18H26O10 | 223 | X | X |
24 | Cinnamoside | 18.21 | 517 | C24H38O12 | 387, 459, 409, 175 | X | X |
25 | Depressine | 19.45 | 687 | C25H30O13 | 525, 161 | X | |
26 | Paniculatin | 20.06 | 593 | C27H30O15 | 353, 383, 473, 175 | X | |
27 | Kaempferol diglucoside | 21.77 | 609 | C27H30O16 | 447, 285, 197, 153 | X | X |
28 | Phenethyl primeveroside Isomer 1 | 23.41 | 415 | C19H28O10 | 151, 175, 223 | X | |
29 | Hydroxyoleuropein Isomer 1 | 23.78 | 555 | C25H32O14 | 151 | X | |
30 | Phenethyl primeveroside Isomer 2 | 23.87 | 415 | C19H28O10 | 151, 123 | X | X |
31 | Oleuropein glucoside Isomer 1 | 25.35 | 701 | C31H42O18 | 315, 285, 447, 337 | X | X |
32 | Verbascoside | 26.1 | 623 | C29H36O15 | 161, 461 | X | X |
33 | Syringaresinol | 26.87 | 417 | C22H26O8 | 181, 166, 387 | X | |
34 | Hydroxyoleuropein Isomer 2 | 26.93 | 555 | C25H32O14 | 161, 417, 181 | X | X |
35 | Calceolarioside A | 27.2 | 477 | C23H26O11 | 161 | X | |
36 | Kaempferol rutinoside | 27.88 | 593 | C27H30O15 | 285 | X | X |
37 | Luteolin glucoside | 28.2 | 447 | C21H20O11 | 285 | X | X |
38 | Oleuropein glucoside Isomer 2 | 29.31 | 701 | C31H42O18 | 609, 300, 539, 269 | X | X |
39 | Methoxyoleuropein | 29.74 | 569 | C26H34O14 | 151, 223, 537, 403, 553 | X | X |
40 | Oleuropein Isomer 1 | 30.36 | 539 | C25H32O13 | 307, 275, 149, 377 | X | X |
41 | Luteolin glucoside | 31.85 | 447 | C21H20O11 | 285 | X | X |
42 | Oleuropein Isomer 2 | 32.38 | 539 | C25H32O13 | 307, 275, 403, 149, 377 | X | X |
43 | Ligstroside | 32.98 | 523 | C25H32O12 | 291, 259, 361 | X | X |
44 | Oleuropein Isomer 3 | 33.4 | 539 | C25H32O13 | 307, 275, 121, 223 | X | X |
45 | Oleuropein Isomer 4 | 34.45 | 539 | C25H32O13 | 307, 275, 153, 377 | X | X |
46 | Oleoeuropein aglycone Isomer 1 | 35.16 | 377 | C19H22O8 | 307, 149, 275 | X | X |
47 | Oleoeuropein aglycone Isomer 2 | 35.79 | 377 | C19H22O8 | 307, 149, 139, 11, 275 | X | |
48 | Oleuropein derivative | 36.53 | 763 | C36H44O18 | 539, 307 | X | |
49 | Oleoeuropein aglycone Isomer 3 | 37.07 | 377 | C19H22O8 | 307, 275 | X |
TPC a | FRAP b | TEAC c | ORAC c | |
---|---|---|---|---|
O20 | 193 ± 9 | 1.66 ± 0.03 | 0.80 ± 0.05 | 3.91 ± 0.01 |
O30 | 217 ± 3 | 1.90 ± 0.06 | 0.95 ± 0.02 | 3.99 ± 0.08 |
HOCl | O2●− | NO● | |
---|---|---|---|
O. europaea byproduct extracts | |||
O20 | 33 ± 2 a | 29 ± 2 a | 1.7 ± 0.1 a |
O30 | 34 ± 3 a | 20.0 ± 0.6 a | 1.7 ± 0.1 a |
Positive controls | |||
Gallic acid | 4.0 ± 0.4 b | 6.0 ± 0.5 b | 0.20 ± 0.03 b |
Catechin | 0.42 ± 0.03 b | 43 ± 4 c | 0.95 ± 0.04 c |
Concentrations (μg/mL) | |||||
---|---|---|---|---|---|
0.1 | 1 | 10 | 100 | 1000 | |
Medium | 100.01 ± 16.05 | 100.01 ± 16.05 | 100.01 ± 16.05 | 100.01 ± 16.05 | 100.01 ± 16.05 |
Triton X-100 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
O20 | 100.23 ± 20.82 | 100.21 ± 21.94 | 113.60 ± 22.86 | 106.79 ± 17.60 | 61.05 ± 10.86 * |
O30 | 100.63 ± 7.08 | 105.65 ± 14.45 | 98.92 ± 14.82 | 107.31 ± 8.64 | 42.06 ± 5.33 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cádiz-Gurrea, M.d.l.L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants 2021, 10, 245. https://doi.org/10.3390/antiox10020245
Cádiz-Gurrea MdlL, Pinto D, Delerue-Matos C, Rodrigues F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants. 2021; 10(2):245. https://doi.org/10.3390/antiox10020245
Chicago/Turabian StyleCádiz-Gurrea, María de la Luz, Diana Pinto, Cristina Delerue-Matos, and Francisca Rodrigues. 2021. "Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study" Antioxidants 10, no. 2: 245. https://doi.org/10.3390/antiox10020245
APA StyleCádiz-Gurrea, M. d. l. L., Pinto, D., Delerue-Matos, C., & Rodrigues, F. (2021). Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants, 10(2), 245. https://doi.org/10.3390/antiox10020245