Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?
Abstract
:1. Introduction
Study (year) | Disorder Studied | Method Employed | Subject Number (n) | Regions Investigated | Abnormality |
---|---|---|---|---|---|
Reiss (1988) [28] | FXS | MRI | FXS, 4 males. | Cerebellum | Significantly ↓ size of posterior portion of the cerebellar vermis. |
Greco (2011) [29] | FXS | Post mortem neuropathological study. | FXS, 3 males. | Cerebellum and hippocampus (HC). | Significant morphological changes in both the cerebellum and HC. |
Meguid et al., (2012) [30] | FXS | MRI | FXS, 11 males. | Cortical morphology | ↑ in whole hemispheric and lobar cortical volume. |
Courchesne et al., 2001 [31] | ASD | MRI | ASD 60 participants | Total Brain volume (TBV) | ↑ TBV in 90% of ASD group 2–4 years. |
Carper et al., 2002 [32] | ASD | MRI | ASD, 38 males | Gray Matter Volume (GMV) | 2–3 years, GM and White Matter (WM) hyperplasia (20% enlargement) no difference in 9–11.5 years. |
Redcay & Courchesne 2005 [ 33] | ASD | Meta-analysis of 15 studies. | ASD, 49 males. | TBV | ↓ in brain size at birth, dramatic ↑ within 1st year, plateau by adulthood. |
Dalton et al., 2008 [23] | ASD & FXS | MRI | 9 FXS, 14 ASD, 15 controls. | Fusiform Gyrus (FG). | Both groups ↓ activation in FG associated with looking at faces. ↑ Activation in FXS compared with ASD and controls in general. |
Hazlett et al., 2009 [34] | FXS & ASD | MRI | FXS, 52 males, ASD 63 males, Developmental Delay (DD) 19 males, Controls 31 males. | Brain volume in substructures associated with behavioural features of ASD. | FXS + ASD had substantially enlarged CN volume and smaller amygdala (AMY) than FXS only. ASD subjects modest ↑ in CN volumes, compared to controls more robust ↑ in AMY volume. |
Wilson, (2009) [35] | FXS & ASD. | MRI | FXS 10 (7 male), ASD 10 (8 male) and Controls 10 (7 male). | Voxel Based Morphometry (VBM) to identify volumetric changes. | Regional GMV in frontal, parietal, temporal and cingulate gyri as well as CN and CRB, were larger in FXS group relative to ASD. |
Hoeft (2011) [36] | FXS & ASD | MRI | 52 FXS, 63 ASD | Whole brain morphometric patterns. | Generally ↑ volume in ASD compared to controls, ASD in turn had ↑ volume compared to FXS. |
2. Electroencephalography (EEG)
3. ERP Studies
4. ERP Studies in FXS
Most commonly reported Event Related Potentials (ERPs), where they occur and what they mean.
- P100 = A Positive going component with peak occurring at approximately 100 ms post stimulus. The P100 reflects early sensory processing.
- P200 = A positive going potential that peaks around 200 ms post stimulus. P200 is found to be maximal over centro-frontal and parieto-occipital areas of the brain. Appears to be modulated by a diverse number of cognitive tasks.
- N100 = A large negative going evoked potential, it peaks in adults between 80–120 ms, post stimulus. Localized largely in the fronto-central region of the scalp. It occurs in response to sensory stimuli or unpredictable stimuli.
- N170 = Involved in the neural processing of faces. ERPS elicited from images of the face are compared to those elicited by other visual stimuli, the former show increased negativity 130–200 ms after stimulus presentation. N170 is found to be maximal over occipito-temporal electrode sites.
- N200 = A negative going wave that peaks between 200–350 ms post stimulus and is found primarily over anterior scalp sites. It is thought to be a mismatch detector, but has also been found to reflect executive cognitive functions. It has also been recently been used to study language.
- P200 = A positive going electrical potential that peaks between 150 and 275 ms, post stimulus. Located around centro-frontal and parieto-occipital regions. It is modulated by a large diverse number of cognitive tasks. P2 is typically elicited as part of the normal response to visual stimuli.
- P300 = A positive going component occurring between 250–500 ms. ERP component elicited in the process of decision making. P3 is thought to reflect processes involved in stimulus evaluation, novelty detection or categorization. Usually elicited by the oddball paradigm in which one stimulus occurs a small number of times (target) and another occurs the majority of the time (standard). Measured most strongly in the parietal lobe. The presence, magnitude, topography and timing of this signal are often used as a metric of cognitive function in decision making processes.
- Mismatch Negativity (MMN) = An ERP component that occurs due to an odd stimulus in a sequence of stimuli. It can be elicited regardless of the individual’s attention. The localisation of the MMN can change depending of the nature of the stimulus.
5. ERP Studies in ASD
6. Resting State EEG (rEEG)
Most commonly reported EEG frequency bands and what they are thought to represent.
- Alpha (8–13 Hz): Usually occurs when a person is relaxed or in a trance like state.
- Beta (13–30 Hz): Has been associated with states of alertness and agitation
- Delta (1–3 Hz): Usually occur when a person is in a state of lethargy and are not attentive
- Theta (4–7 Hz): Intuitive creative can also be unfocused.
- Gamma (30–50 Hz): Thinking, integrated thought. High-level information.
7. Resting State in FXS
8. Resting State in ASD
9. Methods: Selection of Stimuli, Numbers and Power Issues
10. Discussion
11. Interpretation of ERPs Studies in ASD and FXS
12. Resting State in FXS and ASD
13. Relationship between EEG and Underlying Neurobiology: How Might EEG Aid in the Understanding of These Disorders Aetiologically?
14. Conclusions
- How can topology of the neuronal networks be connected to the underlying neuronal mechanisms of ASD and FXS through electrophysiological measures, in order to gain a greater understanding of the underlying neurobiological processes of these disorders?
- Can EEG and EEG-derived data be employed as a method to assess the similarities and differences in neural processing between FXS and ASD and TD controls, in order to be able to distinguish between these groups?
- Can biological markers be identified that are unique to each group, so that earlier diagnosis of these disorders may be possible, and thus possibly lead to earlier intervention?
- Is it possible to recruit larger subject groups with varying IQs, gender and symptom severity along with appropriately matched controls to inform on the developmental trajectories of these disorders?
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Comery, T.A.; Harris, J.B.; Willems, P.J.; Oostra, B.A.; Irwin, S.A.; Weiler, I.J.; Greenough, W.T. Abnormal dendritic spines in Fragile X knockout mice: Maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 1997, 94, 5401–5404. [Google Scholar] [CrossRef] [PubMed]
- Irwin, S.A.; Galvez, R.; Greenough, W.T. Dendritic spine structural anomalies in Fragile-X mental retardation syndrome. Cereb. Cortex 2000, 10, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Bear, M.F.; Huber, K.M.; Warren, S.T. The mGluR theory of Fragile X mental retardation. Trends Neurosci. 2004, 27, 370–377. [Google Scholar] [CrossRef] [PubMed]
- El Idrissi, A.; Ding, X.H.; Scalia, J.; Trenkner, E.; Brown, W.T.; Dobkin, C. Decreased GABA(A) receptor expression in the seizure-prone Fragile X mouse. Neurosci. Lett. 2005, 377, 141–146. [Google Scholar]
- D’Hulst, C.; de Geest, N.; Reeve, S.P.; van Dam, D.; de Deyn, P.P.; Hassan, B.A.; Kooy, R.F. Decreased expression of the GABAA receptor in Fragile X Syndrome. Brain Res. 2006, 1121, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA 2014, 311, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- El-Ansary, A.; al-Ayadhi, L. Gabaergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J. Neuroinflamm. 2014, 11. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Reutiman, T.J.; Folsom, T.D.; Thuras, P.D. GABA(A) receptor downregulation in brains of subjects with autism. J. Autism Dev. Disord. 2009, 39, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D.; Kneeland, R.E.; Liesch, S.B. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X Mental Retardation Protein and GABAA receptor beta 3 in adults with autism. Anat. Rec. 2011, 294, 1635–1645. [Google Scholar] [CrossRef]
- Rogers, S.J.; Wehner, D.E.; Hagerman, R. The behavioral phenotype in Fragile X: Symptoms of autism in very young children with Fragile X Syndrome, idiopathic autism, and other developmental disorders. J. Dev. Behav. Pediatr. 2001, 22, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.; Dissanayake, C.; Bui, Q.M.; Huggins, R.; Taylor, A.K.; Loesch, D.Z. Autism spectrum phenotype in males and females with Fragile X full mutation and premutation. J. Autism Dev. Disord. 2007, 37, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.S.; Lightbody, A.A.; Reiss, A.L. Compulsive, self-injurious, and autistic behavior in children and adolescents with Fragile X Syndrome. Ame. J. Men. Retard. 2008, 113, 44–53. [Google Scholar] [CrossRef]
- Kaufmann, W.E.; Cortell, R.; Kau, A.S.; Bukelis, I.; Tierney, E.; Gray, R.M.; Cox, C.; Capone, G.T.; Stanard, P. Autism spectrum disorder in Fragile X Syndrome: Communication, social interaction, and specific behaviors. Am. J. Med. Genet. Part A 2004, 129A, 225–234. [Google Scholar] [CrossRef]
- Harris, S.W.; Hessl, D.; Goodlin-Jones, B.; Ferranti, J.; Bacalman, S.; Barbato, I.; Tassone, F.; Hagerman, P.J.; Herman, H.; Hagerman, R.J. Autism profiles of males with Fragile X Syndrome. Am. J. Ment. Retard. 2008, 113, 427–438. [Google Scholar] [CrossRef] [PubMed]
- McDuffie, A.; Abbeduto, L.; Lewis, P.; Kover, S.; Kim, J.S.; Weber, A.; Brown, W.T. Autism spectrum disorder in children and adolescents with Fragile X Syndrome: Within-syndrome differences and age-related changes. Am. J. Intell. Dev. Disabil. 2010, 115, 307–326. [Google Scholar] [CrossRef]
- Bailey, D.B., Jr.; Hatton, D.D.; Mesibov, G.; Ament, N.; Skinner, M. Early development, temperament, and functional impairment in autism and Fragile X Syndrome. J. Autism Dev. Disord. 2000, 30, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.T.; Jenkins, E.C.; Friedman, E.; Brooks, J.; Wisniewski, K.; Raguthu, S.; French, J. Autism is associated with the Fragile-X Syndrome. J. Autism Dev. Disord. 1982, 12, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Abbeduto, L.; Schroeder, S.; Serlin, R. Contribution of social and information-processing factors to eye-gaze avoidance in Fragile X Syndrome. Am. J. Ment. Retard. 2007, 112, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.J.; Hazlett, H.C.; Lightbody, A.A.; Reiss, A.L.; Piven, J. Repetitive and self-injurious behaviors: Associations with caudate volume in autism and Fragile X Syndrome. J. Neurodev. Disord. 2013, 5. [Google Scholar] [CrossRef]
- Belser, R.C.; Sudhalter, V. Conversational characteristics of children with Fragile X Syndrome: Repetitive speech. Am. J. Ment. Retard. 2001, 106, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Goodlin-Jones, B.L.; Tassone, F.; Gane, L.W.; Hagerman, R.J. Autistic spectrum disorder and the Fragile X Premutation. J. Dev. Behav. Pediatr. 2004, 25, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Kau, A.S.; Tierney, E.; Bukelis, I.; Stump, M.H.; Kates, W.R.; Trescher, W.H.; Kaufmann, W.E. Social behavior profile in young males with Fragile X Syndrome: Characteristics and specificity. Am. J. Med. Genet. Part A 2004, 126A, 9–17. [Google Scholar] [CrossRef]
- Dalton, K.M.; Holsen, L.; Abbeduto, L.; Davidson, R.J. Brain function and gaze fixation during facial-emotion processing in Fragile X and autism. Autism Res. 2008, 1, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, H.C.; Poe, M.D.; Lightbody, A.A.; Styner, M.; MacFall, J.R.; Reiss, A.L.; Piven, J. Trajectories of early brain volume development in Fragile X Syndrome and autism. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, A.; Ringli, M.; Kurth, S.; Schaerer, M.; Geiger, A.; Jenni, O.G.; Huber, R. EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb. Cortex 2011, 21, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.H.; Minshew, N.J.; Field, K.; Sparks, B.F.; Singh, N. Effects of age on brain volume and head circumference in autism. Neurology 2002, 59, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, E.; Taylor, M.J. Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Mol. Autism 2011, 2. [Google Scholar] [CrossRef]
- Reiss, A.L.; Patel, S.; Kumar, A.J.; Freund, L. Preliminary communication: Neuroanatomical variations of the posterior fossa in men with the Fragile X (martin-bell) syndrome. Am. J. Med. Genet. 1988, 31, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.M.; Navarro, C.S.; Hunsaker, M.R.; Maezawa, I.; Shuler, J.F.; Tassone, F.; Delany, M.; Au, J.W.; Berman, R.F.; Jin, L.W.; et al. Neuropathologic features in the hippocampus and cerebellum of three older men with Fragile X Syndrome. Mol. Autism 2011, 2. [Google Scholar] [CrossRef]
- Meguid, N.A.; Fahim, C.; Sami, R.; Nashaat, N.H.; Yoon, U.; Anwar, M.; el-Dessouky, H.M.; Shahine, E.A.; Ibrahim, A.S.; Mancini-Marie, A.; et al. Cognition and lobar morphology in full mutation boys with Fragile X Syndrome. Brain Cogn. 2012, 78, 74–84. [Google Scholar] [PubMed]
- Courchesne, E.; Karns, C.M.; Davis, H.R.; Ziccardi, R.; Carper, R.A.; Tigue, Z.D.; Chisum, H.J.; Moses, P.; Pierce, K.; Lord, C.; et al. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology 2001, 57, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Carper, R.A.; Moses, P.; Tigue, Z.D.; Courchesne, E. Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage 2002, 16, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Courchesne, E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol. Psychiatry 2005, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, H.C.; Poe, M.D.; Lightbody, A.A.; Gerig, G.; Macfall, J.R.; Ross, A.K.; Provenzale, J.; Martin, A.; Reiss, A.L.; Piven, J. Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with Fragile X Syndrome and autism. J. Neurodev. Disord. 2009, 1, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.B.; Tregellas, J.R.; Hagerman, R.J.; Rogers, S.J.; Rojas, D.C. A voxel-based morphometry comparison of regional gray matter between Fragile X Syndrome and autism. Psychiatry Res. 2009, 174, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, F.; Walter, E.; Lightbody, A.A.; Hazlett, H.C.; Chang, C.; Piven, J.; Reiss, A.L. Neuroanatomical differences in toddler boys with Fragile X Syndrome and idiopathic autism. Arch. Gen. Psychiatry 2011, 68, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Baumgardner, T.L.; Reiss, A.L.; Freund, L.S.; Abrams, M.T. Specification of the neurobehavioral phenotype in males with Fragile X Syndrome. Pediatrics 1995, 95, 744–752. [Google Scholar] [PubMed]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed]
- St Clair, D.M.; Blackwood, D.H.; Oliver, C.J.; Dickens, P. P3 abnormality in Fragile X Syndrome. Biol. Psychiatry 1987, 22, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Chan, S.H.; Khan, S.; Schneider, A.; Nanakul, R.; Teichholtz, S.; Niu, Y.Q.; Seritan, A.; Tassone, F.; Grigsby, J.; et al. Neural substrates of executive dysfunction in Fragile X-associated tremor/ataxia syndrome (FXTAS): A brain potential study. Cereb. Cortex 2013, 23, 2657–2666. [Google Scholar] [CrossRef] [PubMed]
- Castren, M.; Paakkonen, A.; Tarkka, I.M.; Ryynanen, M.; Partanen, J. Augmentation of auditory n1 in children with Fragile X Syndrome. Brain Topogr. 2003, 15, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Van der Molen, M.J.; van der Molen, M.W.; Ridderinkhof, K.R.; Hamel, B.C.; Curfs, L.M.; Ramakers, G.J. Auditory and visual cortical activity during selective attention in Fragile X Syndrome: A cascade of processing deficiencies. Clin. Neurophysiol. 2012, 123, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Knoth, I.S.; Vannasing, P.; Major, P.; Michaud, J.L.; Lippe, S. Alterations of visual and auditory evoked potentials in Fragile X Syndrome. Int. J. Dev. Neurosci. 2014, 36, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Rotschafer, S.E.; Razak, K.A. Auditory processing in Fragile X Syndrome. Front. Cell. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.J.; Bishop, D.V. Do children with autism “switch off” to speech sounds? An investigation using event-related potentials. Dev. Sci. 2008, 11, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, E.; Kilman, B.A.; Galambos, R.; Lincoln, A.J. Autism: Processing of novel auditory information assessed by event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1984, 59, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, E.; Lincoln, A.J.; Kilman, B.A.; Galambos, R. Event-related brain potential correlates of the processing of novel visual and auditory information in autism. J. Autism Dev. Disord. 1985, 15, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Finley, C.; Phillips, S.; Galpert, L.; Lewy, A. Reduced P3 amplitude of the event-related brain potential: Its relationship to language ability in autism. J. Autism Dev. Disord. 1988, 18, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Sokhadze, E.; Baruth, J.; Tasman, A.; Sears, L.; Mathai, G.; el-Baz, A.; Casanova, M.F. Event-related potential study of novelty processing abnormalities in autism. Appl. Psychophysiol. Biofeedback 2009, 34, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, W.S.; Raz, N.; August, G.J. Visual augmenting/reducing and P300 in autistic children. J. Autism Dev. Disord. 1987, 17, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.J.; Hinkley, L.B.; Hill, S.S.; Nagarajan, S.S. Sensory processing in autism: A review of neurophysiologic findings. Pediatr. Res. 2011, 69. [Google Scholar] [CrossRef]
- Ceponiene, R.; Lepisto, T.; Shestakova, A.; Vanhala, R.; Alku, P.; Naatanen, R.; Yaguchi, K. Speech-sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proc. Natl. Acad. Sci. USA 2003, 100, 5567–5572. [Google Scholar] [CrossRef] [PubMed]
- Kemner, C.; Verbaten, M.N.; Cuperus, J.M.; Camfferman, G.; van Engeland, H. Auditory event-related brain potentials in autistic children and three different control groups. Biol. Psychiatry 1995, 38, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Erwin, R.; van Lancker, D.; Guthrie, D.; Schwafel, J.; Tanguay, P.; Buchwald, J.S. P3 responses to prosodic stimuli in adult autistic subjects. Electroencephalogr. Clin. Neurophysiol. 1991, 80, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Elia, M.; Agarwal, N.; Lanuzza, B.; Musumeci, S.A.; Pennisi, G. The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clin. Neurophysiol. 2003, 114, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Kroger, A.; Bletsch, A.; Krick, C.; Siniatchkin, M.; Jarczok, T.A.; Freitag, C.M.; Bender, S. Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2014, 9, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.; Dawson, G.; Webb, S.J.; Panagiotides, H.; Carver, L.J. Event-related brain potentials reveal anomalies in temporal processing of faces in autism spectrum disorder. J. Child Psychol. Psychiatry Allied Discip. 2004, 45, 1235–1245. [Google Scholar] [CrossRef]
- Webb, S.J.; Dawson, G.; Bernier, R.; Panagiotides, H. ERP evidence of atypical face processing in young children with autism. J. Autism Dev. Disord. 2006, 36, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Hileman, C.M.; Henderson, H.; Mundy, P.; Newell, L.; Jaime, M. Developmental and individual differences on the P1 and N170 ERP components in children with and without autism. Dev. Neuropsychol. 2011, 36, 214–236. [Google Scholar] [CrossRef] [PubMed]
- Churches, O.; Wheelwright, S.; Baron-Cohen, S.; Ring, H. The N170 is not modulated by attention in autism spectrum conditions. Neuroreport 2010, 21, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Cygan, H.B.; Tacikowski, P.; Ostaszewski, P.; Chojnicka, I.; Nowicka, A. Neural correlates of own name and own face detection in autism spectrum disorder. PLoS ONE 2014, 9, e86020. [Google Scholar] [CrossRef] [PubMed]
- Gunji, A.; Inagaki, M.; Inoue, Y.; Takeshima, Y.; Kaga, M. Event-related potentials of self-face recognition in children with pervasive developmental disorders. Brain Dev. 2009, 31, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.J.; Merkle, K.; Murias, M.; Richards, T.; Aylward, E.; Dawson, G. ERP responses differentiate inverted but not upright face processing in adults with ASD. Soc. Cogn. Affect. Neurosci. 2012, 7, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E. Epilepsy in Fragile X Syndrome. Dev. Med. Child Neurol. 2002, 44, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Van der Molen, M.J.; van der Molen, M.W. Reduced alpha and exaggerated theta power during the resting-state eeg in Fragile X Syndrome. Biol. Psychol. 2013, 92, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Van der Molen, M.J.; Stam, C.J.; van der Molen, M.W. Resting-state EEG oscillatory dynamics in Fragile X Syndrome: Abnormal functional connectivity and brain network organization. PLoS ONE 2014, 9, e88451. [Google Scholar] [CrossRef] [PubMed]
- Bookheimer, S.Y.; Wang, A.T.; Scott, A.; Sigman, M.; Dapretto, M. Frontal contributions to face processing differences in autism: Evidence from fMRI of inverted face processing. J. Int. Neuropsychol. Soc. 2008, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.J.; Hefter, R.L.; Cherkasova, M.V.; Manoach, D.S. Investigations of face expertise in the social developmental disorders. Neurology 2007, 69, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Dalton, K.M.; Nacewicz, B.M.; Johnstone, T.; Schaefer, H.S.; Gernsbacher, M.A.; Goldsmith, H.H.; Alexander, A.L.; Davidson, R.J. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 2005, 8, 519–526. [Google Scholar] [PubMed]
- Cea-del Rio, C.A.; Huntsman, M.M. The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front. Cell. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Cantor, D.S.; Thatcher, R.W.; Hrybyk, M.; Kaye, H. Computerized EEG analyses of autistic children. J. Autism Dev. Disord. 1986, 16, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Chez, M.G.; Chang, M.; Krasne, V.; Coughlan, C.; Kominsky, M.; Schwartz, A. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005. Epilepsy Behav. 2006, 8, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Spence, S.J.; Schneider, M.T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 2009, 65, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Just, M.A.; Cherkassky, V.L.; Keller, T.A.; Minshew, N.J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 2004, 127, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Carson, A.M.; Salowitz, N.M.; Scheidt, R.A.; Dolan, B.K.; van Hecke, A.V. Electroencephalogram coherence in children with and without autism spectrum disorders: Decreased interhemispheric connectivity in autism. Autism Res. 2014, 7, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Soong, W.T.; Gau, S.S.; Wu, Y.Y.; Lai, M.C.; Yeh, F.C.; Chiang, W.Y.; Kuo, L.W.; Jaw, F.S.; Tseng, W.Y. The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: A study using diffusion spectrum imaging tractography. Psychiatry Res. 2011, 192, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R.; Ziegler, D.A.; Deutsch, C.K.; O’Brien, L.M.; Kennedy, D.N.; Filipek, P.A.; Bakardjiev, A.I.; Hodgson, J.; Takeoka, M.; Makris, N.; et al. Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain 2005, 128, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in eeg coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D.; Edden, R.A.; Jones, D.K.; Swettenham, J.B.; Singh, K.D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8356–8361. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.F.; van Kooten, I.A.; Switala, A.E.; van Engeland, H.; Heinsen, H.; Steinbusch, H.W.; Hof, P.R.; Trippe, J.; Stone, J.; Schmitz, C. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006, 112, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Keeser, D.; Samson, A.C.; Kirsch, V.; Blautzik, J.; Grothe, M.; Erat, O.; Hegenloh, M.; Coates, U.; Reiser, M.F.; et al. Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: A multimodal MRI study. PLoS ONE 2013, 8, e67329. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Brown, J.A.; Beck-Pancer, D.; Hernandez, L.M.; Dennis, E.L.; Thompson, P.M.; Bookheimer, S.Y.; Dapretto, M. Altered functional and structural brain network organization in autism. NeuroImage Clin. 2012, 2, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Verly, M.; Verhoeven, J.; Zink, I.; Mantini, D.; Peeters, R.; Deprez, S.; Emsell, L.; Boets, B.; Noens, I.; Steyaert, J.; et al. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. Neuroimage Clin. 2014, 4, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Verly, M.; Verhoeven, J.; Zink, I.; Mantini, D.; Van Oudenhove, L.; Lagae, L.; Sunaert, S.; Rommel, N. Structural and functional underconnectivity as a negative predictor for language in autism. Hum. Brain Mapp. 2014, 35, 3602–3615. [Google Scholar] [CrossRef] [PubMed]
- Scheeringa, R.; Bastiaansen, M.C.; Petersson, K.M.; Oostenveld, R.; Norris, D.G.; Hagoort, P. Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 2008, 67, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Assaf, M.; Jagannathan, K.; Calhoun, V.D.; Miller, L.; Stevens, M.C.; Sahl, R.; O’Boyle, J.G.; Schultz, R.T.; Pearlson, G.D. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010, 53, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Uddin, L.Q.; Supekar, K.; Khouzam, A.; Phillips, J.; Menon, V. Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits. Biol. Psychiatry 2013, 74, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Washington, S.D.; Gordon, E.M.; Brar, J.; Warburton, S.; Sawyer, A.T.; Wolfe, A.; Mease-Ference, E.R.; Girton, L.; Hailu, A.; Mbwana, J.; et al. Dysmaturation of the default mode network in autism. Hum. Brain Mapp. 2014, 35, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.L.; Gabard-Durnam, L.; Vogel-Farley, V.; Tager-Flusberg, H.; Nelson, C.A. Developmental trajectories of resting EEG power: An endophenotype of autism spectrum disorder. PLoS ONE 2012, 7, e39127. [Google Scholar] [CrossRef] [PubMed]
- Benasich, A.A.; Gou, Z.; Choudhury, N.; Harris, K.D. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav. Brain Res. 2008, 195, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.; Alderson-Day, B.; Prendergast, G.; Bennett, S.; Jordan, J.; Whitton, C.; Gouws, A.; Jones, N.; Attur, R.; Tomlinson, H.; et al. Gamma activation in young people with autism spectrum disorders and typically-developing controls when viewing emotions on faces. PLoS ONE 2012, 7, e41326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatcher, R.W.; North, D.M.; Biver, C.J. Development of cortical connections as measured by EEG coherence and phase delays. Hum. Brain Mapp. 2008, 29, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Van der Molen, M.J.; van der Molen, M.W.; Ridderinkhof, K.R.; Hamel, B.C.; Curfs, L.M.; Ramakers, G.J. Auditory change detection in fragile X syndrome males: A brain potential study. Clin. Neurophysiol. 2012, 123, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Salmond, C.H.; Vargha-Khadem, F.; Gadian, D.G.; de Haan, M.; Baldeweg, T. Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: Evidence from ERP and MRI. Cortex 2007, 43, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, K.T.; Courchesne, E.; Elmasian, R. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Garrett, A.S.; Menon, V.; MacKenzie, K.; Reiss, A.L. Here’s looking at you, kid: Neural systems underlying face and gaze processing in Fragile X Syndrome. Arch. Gen. Psychiatry 2004, 61, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mottron, L.; Burack, J.A.; Iarocci, G.; Belleville, S.; Enns, J.T. Locally oriented perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms. J. Child Psychol. Psychiatry Allied Discip. 2003, 44, 904–913. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; McCarthy, R.; Selikowitz, M. EEG coherence in attention-deficit/hyperactivity disorder: A comparative study of two DSM-IV types. Clin. Neurophysiol. 2002, 113, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Brandwein, A.B.; Foxe, J.J.; Butler, J.S.; Frey, H.P.; Bates, J.C.; Shulman, L.H.; Molholm, S. Neurophysiological indices of atypical auditory processing and multisensory integration are associated with symptom severity in autism. J. Autism Dev. Disord. 2015, 45, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.C.; Tedrus, G.M.; Chiodi, M.G.; Cerqueira, J.N.; Tonelotto, J.M. Quantitative EEG in children with learning disabilities: Analysis of band power. Arq. Neuro-Psiquiatr. 2006, 64, 376–381. [Google Scholar] [CrossRef]
- Huber, K.M.; Gallagher, S.M.; Warren, S.T.; Bear, M.F. Altered synaptic plasticity in a mouse model of Fragile X mental retardation. Proc. Natl. Acad. Sci. USA 2002, 99, 7746–7750. [Google Scholar] [CrossRef] [PubMed]
- Dolen, G.; Bear, M.F. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of Fragile X Syndrome. J. Physiol. 2008, 586, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Paluszkiewicz, S.M.; Olmos-Serrano, J.L.; Corbin, J.G.; Huntsman, M.M. Impaired inhibitory control of cortical synchronization in Fragile X Syndrome. J. Neurophysiol. 2011, 106, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.A.; Zielinski, B.A.; Fletcher, P.T.; Alexander, A.L.; Lange, N.; Bigler, E.D.; Lainhart, J.E.; Anderson, J.S. Abnormal lateralization of functional connectivity between language and default mode regions in autism. Mol. Autism 2014, 5. [Google Scholar] [CrossRef]
- Kennedy, D.P.; Redcay, E.; Courchesne, E. Failing to deactivate: Resting functional abnormalities in autism. Proc. Natl. Acad. Sci. USA 2006, 103, 8275–8280. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Leroux, J.; White, C.D.; Reiss, A.L. Frontostriatal deficits in Fragile X Syndrome: Relation to FMR1 gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 3615–3620. [Google Scholar] [CrossRef] [PubMed]
- Righi, G.; Tierney, A.L.; Tager-Flusberg, H.; Nelson, C.A. Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An eeg study. PLoS ONE 2014, 9, e105176. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Barstein, J.; Ethridge, L.E.; Mosconi, M.W.; Takarae, Y.; Sweeney, J.A. Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 2013, 5. [Google Scholar] [CrossRef]
- Paluszkiewicz, S.M.; Martin, B.S.; Huntsman, M.M. Fragile X Syndrome: The GABAergic system and circuit dysfunction. Dev. Neurosci. 2011, 33, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.R.; Bartley, A.F.; Hays, S.A.; Huber, K.M. Imbalance of neocortical excitation and inhibition and altered up states reflect network hyperexcitability in the mouse model of Fragile X Syndrome. J. Neurophysiol. 2008, 100, 2615–2626. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.M.; Hessl, D.; Rathmell, B.; Zarevics, P.; Cherubini, M.; Walton-Bowen, K.; Mu, Y.; Nguyen, D.V.; Gonzalez-Heydrich, J.; Wang, P.P.; et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: A randomized, controlled, phase 2 trial. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Snijders, T.M.; Milivojevic, B.; Kemner, C. Atypical excitation-inhibition balance in autism captured by the gamma response to contextual modulation. Neuroimage Clin. 2013, 3, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, S.; Horder, J.; Inkster, B.; Mendez, M.A.; Murphy, D.G.; Nutt, D.J. GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neurosci. Biobehav. Rev. 2012, 36, 2044–2055. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; van Kooten, I.A.; Hof, P.R.; van Engeland, H.; Patterson, P.H.; Steinbusch, H.W. Autism: Neuropathology, alterations of the GABAergic system, and animal models. Int. Rev. Neurobiol. 2005, 71, 1–26. [Google Scholar] [PubMed]
- Lindemann, L.; Jaeschke, G.; Michalon, A.; Vieira, E.; Honer, M.; Spooren, W.; Porter, R.; Hartung, T.; Kolczewski, S.; Buttelmann, B.; et al. CTEP: A novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J. Pharmacol. Exp. Ther. 2011, 339, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.; Wijetunge, L.; Kinoshita, M.N.; Shumway, M.; Hammond, R.S.; Postma, F.R.; Brynczka, C.; Rush, R.; Thomas, A.; Paylor, R.; et al. Reversal of disease-related pathologies in the Fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD67 mRNA levels in cerebellar purkinje cells in autism: Pathophysiological implications. Acta Neuropathol. 2007, 113, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Delaby, E.; Merico, D.; Barbosa, M.; Merikangas, A.; Klei, L.; Thiruvahindrapuram, B.; Xu, X.; Ziman, R.; Wang, Z.; et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 2014, 94, 677–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Thuras, P.D. Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 2009, 8, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.L.; Ma, D.; Whitehead, P.L.; Martin, E.R.; Wright, H.H.; Abramson, R.K.; Hussman, J.P.; Haines, J.L.; Cuccaro, M.L.; Gilbert, J.R.; et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 2006, 7, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Cornew, L.; Roberts, T.P.; Blaskey, L.; Edgar, J.C. Resting-state oscillatory activity in autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R.; Ziegler, D.A.; Deutsch, C.K.; O’Brien, L.M.; Lange, N.; Bakardjiev, A.; Hodgson, J.; Adrien, K.T.; Steele, S.; Makris, N.; et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.J.; Sparks, B.F.; Friedman, S.D.; Shaw, D.W.; Giedd, J.; Dawson, G.; Dager, S.R. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. 2009, 172, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bilousova, T.V.; Dansie, L.; Ngo, M.; Aye, J.; Charles, J.R.; Ethell, D.W.; Ethell, I.M. Minocycline promotes dendritic spine maturation and improves behavioural performance in the Fragile X mouse model. J. Med. Genet. 2009, 46, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Leigh, M.J.; Adams, P.; Nanakul, R.; Chechi, T.; Olichney, J.; Hagerman, R.; Hessl, D. Electrocortical changes associated with minocycline treatment in Fragile X Syndrome. J. Psychopharmacol. 2013, 27, 956–963. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devitt, N.M.; Gallagher, L.; Reilly, R.B. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information? Brain Sci. 2015, 5, 92-117. https://doi.org/10.3390/brainsci5020092
Devitt NM, Gallagher L, Reilly RB. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information? Brain Sciences. 2015; 5(2):92-117. https://doi.org/10.3390/brainsci5020092
Chicago/Turabian StyleDevitt, Niamh Mc, Louise Gallagher, and Richard B. Reilly. 2015. "Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?" Brain Sciences 5, no. 2: 92-117. https://doi.org/10.3390/brainsci5020092
APA StyleDevitt, N. M., Gallagher, L., & Reilly, R. B. (2015). Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information? Brain Sciences, 5(2), 92-117. https://doi.org/10.3390/brainsci5020092